
Chapter �

Zero�Knowledge Proof Systems

In this chapter we discuss zero�knowledge proof systems� Loosely speaking� such proof
systems have the remarkable property of being convincing and yielding nothing �beyond
the validity of the assertion�� The main result presented is a method to generate zero�
knowledge proof systems for every language in NP � This method can be implemented using
any bit commitment scheme� which in turn can be implemented using any pseudorandom
generator� In addition� we discuss more re�ned aspects of the concept of zero�knowledge
and their a�ect on the applicability of this concept�

��� Zero�Knowledge Proofs� Motivation

An archetypical �cryptographic� problem consists of providing mutually distrustful parties
with a means of �exchanging� �predetermined� �pieces of information�� The setting consists
of several parties� each wishing to obtain some predetermined partial information concerning
the secrets of the other parties� Yet each party wishes to reveal as little information as
possible about its own secret� To clarify the issue� let us consider a speci�c example�

Suppose that all users in a system keep backups of their entire �le system�
encrypted using their public�key encryption� in a publicly accessible storage
media� Suppose that at some point� one user� called Alice� wishes to reveal to
another user� called Bob� the cleartext of one of her �les �which appears in one of
her backups�� A trivial �solution� is for Alice just to send the �cleartext� �le to
Bob� The problem with this �solution� is that Bob has no way of verifying that
Alice really sent him a �le from her public backup� rather than just sending
him an arbitrary �le� Alice can simply prove that she sends the correct �le by
revealing to Bob her private encryption key� However� doing so� will reveal to
Bob the contents of all her �les� which is certainly something that Alice does

	
�
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not want to happen� The question is whether Alice can convince Bob that she
indeed revealed the correct �le without yielding any additional �knowledge��

An analogous question can be phrased formally as follows� Let f be a one�way
permutation� and b a hard�core predicate with respect to f � Suppose that one
party� A� has a string x� whereas another party� denoted B� only has f�x��
Furthermore� suppose that A wishes to reveal b�x� to party B� without yielding
any further information� The trivial �solution� is to let A send b�x� to B� but�
as explained above� B will have no way of verifying whether A has really sent
the correct bit �and not its complement�� Party A can indeed prove that it sends
the correct bit �i�e�� b�x�� by sending x as well� but revealing x to B is much
more than what A had originally in mind� Again� the question is whether A can
convince B that it indeed revealed the correct bit �i�e�� b�x�� without yielding
any additional �knowledge��

In general� the question is whether it is possible to prove a statement without yielding
anything beyond its validity� Such proofs� whenever they exist� are called zero�knowledge�
and play a central role �as we shall see in the subsequent chapter� in the construction of
�cryptographic� protocols�

Loosely speaking� zero�knowledge proofs are proofs that yield nothing �i�e�� �no knowl�
edge�� beyond the validity of the assertion� In the rest of this introductory section� we
discuss the notion of a �proof� and a possible meaning of the phrase �yield nothing �i�e��
no knowledge� beyond something��

����� The Notion of a Proof

We discuss the notion of a proof with the intention of uncovering some of its underlying
aspects�

A Proof as a �xed sequence or as an interactive process

Traditionally in mathematics� a �proof� is a �xed sequence consisting of statements which
are either self�evident or are derived from previous statements via self�evident rules� Actu�
ally� it is more accurate to substitute the phrase �self�evident� by the phrase �commonly
agreed�� In fact� in the formal study of proofs �i�e�� logic�� the commonly agreed statements
are called axioms� whereas the commonly agreed rules are referred to as derivation rules�
We wish to stress two properties of mathematics proofs�

	� proofs are viewed as �xed objects


�� proofs are considered at least as fundamental as their consequence �i�e�� the theorem��
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However� in other areas of human activity� the notion of a �proof� has a much wider
interpretation� In particular� a proof is not a �xed object but rather a process by which
the validity of an assertion is established� For example� the cross�examination of a witness
in court is considered a proof in law� and failure to answer a rival�s claim is considered a
proof in philosophical� political and sometimes even technical discussions� In addition� in
real�life situations� proofs are considered secondary �in importance� to their consequence�

To summarize� in �canonical� mathematics proofs have a static nature �e�g�� they are
�written��� whereas in real�life situations proofs have a dynamic nature �i�e�� they are es�
tablished via an interaction�� The dynamic interpretation of the notion of a proof is more
adequate to our setting in which proofs are used as tools �i�e�� subprotocols� inside �cryp�
tographic� protocols� Furthermore� the dynamic interpretation �at least in a weak sense� is
essential to the non�triviality of the notion of a zero�knowledge proof�

Prover and Veri�er

The notion of a prover is implicit in all discussions of proofs� be it in mathematics or in
real�life situations� Instead� the emphasis is placed on the veri�cation process� or in other
words on �the role of� the veri�er� Both in mathematics and in real�life situations� proofs
are de�ned in terms of the veri�cation procedure� Typically� the veri�cation procedure is
considered to be relatively simple� and the burden is placed on the party�person supplying
the proof �i�e�� the prover��

The asymmetry between the complexity of the veri�cation and the theorem�proving
tasks is captured by the complexity class NP � which can be viewed as a class of proof
systems� Each language L � NP has an e�cient veri�cation procedure for proofs of state�
ments of the form �x � L�� Recall that each L � NP is characterized by a polynomial�time
recognizable relation RL so that

L � fx � �y s�t� �x� y��RLg

and �x� y��RL only if jyj � poly�jxj�� Hence� the veri�cation procedure for membership
claims of the form �x � L� consists of applying the �polynomial�time� algorithm for rec�
ognizing RL� to the claim �encoded by� x and a prospective proof denoted y� Hence� any
y satisfying �x� y� � RL is considered a proof of membership of x � L� Hence� correct
statements �i�e�� x � L� and only them have proofs in this proof system� Note that the ver�
i�cation procedure is �easy� �i�e�� polynomial�time�� whereas coming up with proofs may
be �di�cult��

It is worthwhile to stress the distrustful attitude towards the prover in any proof system�
If the veri�er trusts the prover then no proof is needed� Hence� whenever discussing a proof
system one considers a setting in which the veri�er is not trusting the prover and furthermore
is skeptic of anything the prover says�
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Completeness and Validity

Two fundamental properties of a proof system �i�e�� a veri�cation procedure� are its validity
and completeness� The validity property asserts that the veri�cation procedure cannot be
�tricked� into accepting false statements� In other words� validity captures the veri�er
ability of protecting itself from being convinced of false statements �no matter what the
prover does in order to fool it�� On the other hand� completeness captures the ability of
some prover to convince the veri�er of true statements �belonging to some predetermined
set of true statements�� Note that both properties are essential to the very notion of a proof
system�

We remark here that not every set of true statements has a �reasonable� proof system
in which each of these statements can be proven �while no false statement can be �proven���
This fundamental fact is given a precise meaning in results such as G�odel�s Incompleteness
Theorem and Turing�s proof of the unsolvability of the Halting Problem� We stress that in
this chapter we con�ne ourself to the class of sets that do have �e�cient proof systems��
In fact� Section ��� is devoted to discussing and formulating the concept of �e�cient proof
systems�� Jumping ahead� we hint that the e�ciency of a proof system will be associated
with the e�ciency of its veri�cation procedure�

����� Gaining Knowledge

Recall that we have motivated zero�knowledge proofs as proofs by which the veri�er gains
�no knowledge� �beyond the validity of the assertion�� The reader may rightfully wonder
what is knowledge and what is a gain of knowledge� When discussing zero�knowledge proofs�
we avoid the �rst question �which is quite complex�� and treat the second question directly�
Namely� without presenting a de�nition of knowledge� we present a generic case in which it
is certainly justi�ed to say that no knowledge is gained� Fortunately� this �conservative�
approach seems to su�ce as far as cryptography is concerned�

To motivate the de�nition of zero�knowledge consider a conversation between two par�
ties� Alice and Bob� Assume �rst that this conversation is unidirectional� speci�cally Alice

only talks and Bob only listens� Clearly� we can say that Alice gains no knowledge from
the conversation� On the other hand� Bob may or may not gain knowledge from the con�
versation �depending on what Alice says�� For example� if all that Alice says is 	 � 	 � �
then clearly Bob gains no knowledge from the conversation since he knows this fact himself�
If� on the other hand� Alice tells Bob a proof of Fermat�s Theorem then certainly he gained
knowledge from the conversation�

To give a better �avour of the de�nition� we now consider a conversation between Alice

and Bob in which Bob asks Alice questions about a large graph �that is known to both of
them�� Consider �rst the case in which Bob asks Alice whether the graph is Eulerian or
not� Clearly� we say that Bob gains no knowledge from Alice�s answer� since he could have
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determined the answer easily by himself �e�g�� by using Euler�s Theorem which asserts that
a graph is Eulerian if and only if all its vertices have even degree�� On the other hand� if
Bob asks Alice whether the graph is Hamiltonian or not� and Alice �somehow� answers
this question then we cannot say that Bob gained no knowledge �since we do not know of
an e�cient procedure by which Bob can determine the answer by himself� and assuming
P �� NP no such e�cient procedure exists�� Hence� we say that Bob gained knowledge
from the interaction if his computational ability� concerning the publicly known graph� has
increased �i�e�� if after the interaction he can easily compute something that he could not
have e�ciently computed before the interaction�� On the other hand� if whatever Bob can
e�ciently compute about the graph after interacting with Alice� he can also e�ciently
compute by himself �from the graph� then we say that Bob gained no knowledge from the
interaction� Hence� Bob gains knowledge only if he receives the result of a computation which
is infeasible for Bob� The question of how could Alice conduct this infeasible computation
�e�g�� answer Bob�s question of whether the graph is Hamiltonian� has been ignored so far�
Jumping ahead� we remark that Alice may be a mere abstraction or may be in possession
of additional hints� that enables to e�ciently conduct computations that are otherwise
infeasible �and in particular are infeasible for Bob who does not have these hints�� �Yet�
these hints are not necessarily �information� in the information theoretic sense as they may
be determined by the common input� but not e�ciently computed from it��

Knowledge vs� information

We wish to stress that knowledge �as discussed above� is very di�erent from information �in
the sense of information theory��

� Knowledge is related to computational di�culty� whereas information is not� In the
above examples� there was a di�erent between the knowledge revealed in case Alice

answers questions of the form �is the graph Eulerian� and the case she answers ques�
tions of the form �is the graph Hamilton�� From an information theoretic point of view
there is no di�erence between the two cases �i�e�� in both Bob gets no information��

� Knowledge relates mainly to publicly known objects� whereas information relates
mainly to objects on which only partial information is publicly known� Consider the
case in which Alice answers each question by �ipping an unbiased coin and telling
Bob the outcome� From an information theoretic point of view� Bob gets from Alice

information concerning an event� However� we say that Bob gains no knowledge from
Alice� since he can toss coins by himself�
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��� Interactive Proof Systems

In this section we introduce the notion of an interactive proof system� and present a non�
trivial example of such a system �speci�cally to claims of the form �the following two
graphs are not isomorphic��� The presentation is directed towards the introduction of zero�
knowledge interactive proofs� Interactive proof systems are interesting for their own sake�
and have important complexity theoretic applications� that are discussed in Chapter ��

����� De�nition

The de�nition of an interactive proof system refers explicitly to the two computational tasks
related to a proof system� �producing� a proof and verifying the validity of a proof� These
tasks are performed by two di�erent parties� called the prover and the veri�er� which interact
with one another� The interaction may be very simple and in particular unidirectional �i�e��
the prover sends a text� called the proof� to the veri�er�� In general the interaction may be
more complex� and may take the form of the veri�er interrogating the prover�

Interaction

Interaction between two parties is de�ned in the natural manner� The only point worth
noting is that the interaction is parameterized by a common input �given to both parties��
In the context of interactive proof systems� the common input represents the statement
to be proven� We �rst de�ne the notion of an interactive machine� and next the notion
of interaction between two such machines� The reader may skip to the next part of this
subsection �titled �Conventions regarding interactive machines�� with little loss �if at all��

De�nition ��� �an interactive machine��

� An interactive Turing machine �ITM� is a �deterministic� multi�tape Turing machine�
The tapes consists of a read�only input�tape� a read�only random�tape� a read�and�
write work�tape� a write�only output�tape� a pair of communication�tapes� and a
read�and�write switch�tape consisting of a single cell initiated to contents �� One
communication�tape is read�only and the other is write�only�

� Each ITM is associated a single bit � � f�� 	g� called its identity� An ITM is said
to be active� in a con�guration� if the contents of its switch�tape equals the machine�s
identity� Otherwise the machine is said to be idle� While being idle� the state of
the machine� the location of its heads on the various tapes� and the contents of the
writeable tapes of the ITM is not modi�ed�
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� The contents of the input�tape is called input� the contents of the random�tape is called
random�input� and the contents of the output�tape at termination is called output�
The contents written on the write�only communication�tape during a �time� period
in which the machine is active is called the message sent at this period� Likewise�
the contents read from the read�only communication�tape during an active period is
called the message received �at that period�� �Without loss of generality the machine
movements on both communication�tapes are only in one direction� say left to right��

The above de�nition� taken by itself� seems quite nonintuitive� In particular� one may
say that once being idle the machine never becomes active again� One may also wonder
what is the point of distinguishing the read�only communication�tape from the input�tape
�and respectively distinguishing the write�only communication�tape from the output�tape��
The point is that we are never going to consider a single interactive machine� but rather a
pair of machines combined together so that some of their tapes coincide� Intuitively� the
messages sent by an interactive machine are received by a second machine which shares its
communication�tapes �so that the read�only communication�tape of one machine coincides
with the write�only tape of the other machine�� The active machine may become idle by
changing the contents of the shared switch�tape and by doing so the other machine �having
opposite identity� becomes active� The computation of such a pair of machines consists of
the machines alternatingly sending messages to one another� based on their initial �common�
input� their �distinct� random�inputs� and the messages each machine has received so far�

De�nition ��� �joint computation of two ITMs��

� Two interactive machines are said to be linked if they have opposite identities� their
input�tapes coincide� their switch�tapes coincide� and the read�only communication�
tape of one machine coincides with the write�only communication�tape of the other
machine� and vice versa� We stress that the other tapes of both machines �i�e�� the
random�tape� the work�tape� and the output�tape� are distinct�

� The joint computation of a linked pair of ITMs� on a common input x� is a sequence
of pairs� Each pair consists of the local con�guration of each of the machines� In each
such pair of local con�gurations� one machine �not necessarily the same one� is active
while the other machine is idle�

� If one machine halts while the switch�tape still holds its identity the we say that both
machines have halted�

At this point� the reader may object to the above de�nition� saying that the individual
machines are deprived of individual local inputs �and observing that they are given indi�
vidual and unshared random�tapes�� This restriction is removed in Subsection ������ and in
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fact removing it is quite important �at least as far as practical purposes are concerned�� Yet�
for a �rst presentation of interactive proofs� as well as for demonstrating the power of this
concept� we prefer the above simpler de�nition� The convention of individual random�tapes
is however essential to the power of interactive proofs �see Exercise 
��

Conventions regarding interactive machines

Typically� we consider executions when the contents of the random�tape of each machine is
uniformly and independently chosen �among all in�nite bit sequences�� The convention of
having an in�nite sequence of internal coin tosses should not bother the reader since during
a �nite computation only a �nite pre�x is read �and matters�� The contents of each of these
random�tapes can be viewed as internal coin tosses of the corresponding machine �as in the
de�nition of ordinary probabilistic machines� presented in Chapter 	�� Hence� interactive
machines are in fact probabilistic�

Notation� Let A and B be a linked pair of ITMs� and suppose that all possible interactions
of A and B on each common input terminate in a �nite number of steps� We denote by
hA�Bi�x� the random variable representing the �local� output of B when interacting with
machine A on common input x� when the random�input to each machine is uniformly and
independently chosen�

Another important convention is to consider the time�complexity of an interactive ma�
chine as a function of its input only�

De�nition ��� �the complexity of an interactive machine�� We say that an interactive
machine A has time complexity t � IN �� IN if for every interactive machine B and every
string x� it holds that when interacting with machine B� on common input x� machine A
always �i�e�� regardless of the contents of its random�tape and B�s random�tape� halts within
t�jxj� steps�

We stress that the time complexity� so de�ned� is independent of the contents of the
messages that machine A receives� In other word� it is an upper bound which holds for all
possible incoming messages� In particular� an interactive machine with time complexity t���
reads� on input x� only a pre�x of total length t�jxj� of the messages sent to it�

Proof systems

In general� proof systems are de�ned in terms of the veri�cation procedure �which may be
viewed as one entity called the veri�er�� A �proof� to a speci�c claim is always considered
as coming from the outside �which can be viewed as another entity called the prover�� The

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



���� INTERACTIVE PROOF SYSTEMS 	�	

veri�cation procedure itself� does not generate �proofs�� but merely veri�es their validity�
Interactive proof systems are intended to capture whatever can be e�ciently veri�ed via
interaction with the outside� In general� the interaction with the outside may be very
complex and may consist of many message exchanges� as long as the total time spent by
the veri�er is polynomial�

In light of the association of e�cient procedures with probabilistic polynomial�time
algorithms� it is natural to consider probabilistic polynomial�time veri�ers� Furthermore�
the veri�er�s verdict of whether to accept or reject the claim is probabilistic� and a bounded
error probability is allowed� �The error can of course be decreased to be negligible by
repeating the veri�cation procedure su�ciently many times�� Loosely speaking� we require
that the prover can convince the veri�er of the validity of valid statement� while nobody can
fool the veri�er into believing false statements� In fact� it is only required that the veri�er
accepts valid statements with �high� probability� whereas the probability that it accepts
a false statement is �small� �regardless of the machine with which the veri�er interacts��
In the following de�nition� the veri�er�s output is interpreted as its decision on whether to
accept or reject the common input� Output 	 is interpreted as �accept�� whereas output �
is interpreted as �reject��

De�nition ��� �interactive proof system�� A pair of interactive machines� �P� V �� is called
an interactive proof system for a language L if machine V is polynomial�time and the following
two conditions hold

� Completeness� For every x � L

Prob �hP� V i�x��	� �
�

�

� Soundness� For every x �� L and every interactive machine B

Prob �hB� V i�x��	� �
	

�

Some remarks are in place� We �rst stress that the soundness condition refers to all
potential �provers� whereas the completeness condition refers only to the prescribed prover
P � Secondly� the veri�er is required to be �probabilistic� polynomial�time� while no re�
source bounds are placed on the computing power of the prover �in either completeness or
soundness conditions��� Thirdly� as in the case of BPP � the error probability in the above
de�nition can be made exponentially small by repeating the interaction �polynomially�
many times �see below��

Every language in NP has an interactive proof system� Speci�cally� let L � NP and
let RL be a witness relation associated with the language L �i�e�� RL is recognizable in
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polynomial�time and L equals the set fx � �y s�t� jyj � poly�x� 	 �x� y� � RLg�� Then�
an interactive proof for the language L consists of a prover that on input x � L sends a
witness y �as above�� and a veri�er that upon receiving y �on common input x� outputs
	 if jyj � poly�jxj� and �x� y��RL �and � otherwise�� Clearly� when interacting with the
prescribed prover� this veri�er will always accept inputs in the language� On the other hand�
no matter what a cheating �prover� does� this veri�er will never accept inputs not in the
language� We point out that in this proof system both parties are deterministic �i�e�� make
no use of their random�tape�� It is easy to see that only languages in NP have interactive
proof systems in which both parties are deterministic �see Exercise ���

In other words� NP can be viewed as a a class of interactive proof systems in which
the interaction is unidirectional �i�e�� from the prover to the veri�er� and the veri�er is
deterministic �and never errs�� In general interactive proofs� both restrictions are waived�
the interaction is bidirectional and the veri�er is probabilistic �and may err with some small
probability�� Both bidirectional interaction and randomization seem essential to the power
of interactive proof systems �see further discussion in Chapter ���

De�nition ��� �the class IP�� The class IP consists of all languages having interactive
proof systems�

By the above discussion NP 
 IP� Since languages in BPP can be viewed as having a
veri�er �that decides on membership without any interaction�� it follows that BPP�NP 

IP� We remind the reader that it is not known whether BPP 
 NP �

We stress that the de�nition of the class IP remains invariant if one replaced the
�constant� bounds in the completeness and soundness conditions by two functions c� s �
IN �� IN satisfying c�n� � 	� ��poly�n�� s�n� � ��poly�n�� and c�n� � s�n�� �

poly�n� � Namely�

De�nition ��� �generalized interactive proof�� Let c� s � IN �� IN be functions satisfying
c�n� � s�n� � �

p�n� � for some polynomial p���� An interactive pair �P� V � is called a �gen�

eralized� interactive proof system for the language L� with completeness bound c��� and
soundness bound s���� if

� �modi�ed� completeness� For every x � L

Prob �hP� V i�x��	� � c�jxj�

� �modi�ed� soundness� For every x �� L and every interactive machine B

Prob �hB� V i�x��	� � s�jxj�

The function g���� where g�n�
def
� c�n��s�n�� is called the acceptance gap of �P� V �� and the

function e���� where e�n�
def
� maxf	� c�n�� s�n�g� is called the error probability of �P� V ��
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Proposition ��	 The following three conditions are equivalent

	� L � IP� Namely� there exists a interactive proof system� with completeness bound �
�

and soundness bound �
� � for the language L�


� L has very strong interactive proof systems� For every polynomial p���� there exists
an interactive proof system for the language L� with error probability bounded above
by ��p����

�� L has a very weak interactive proof� There exists a polynomial p���� and a generalized
interactive proof system for the language L� with acceptance gap bounded below by
	�p���� Furthermore� completeness and soundness bounds for this system� namely the
values c�n� and s�n�� can be computed in time polynomial in n�

Clearly either of the �rst two items imply the third one �including the requirement for
e�ciently computable bounds�� The ability to e�ciently compute completeness and sound�
ness bounds is used in proving the opposite �non�trivial� direction� The proof is left as an
exercise �i�e�� Exercise 	��

����� An Example �Graph Non�Isomorphism in IP�

All examples of interactive proof systems presented so far were degenerate �e�g�� the in�
teraction� if at all� was unidirectional�� We now present an example of a non�degenerate
interactive proof system� Furthermore� we present an interactive proof system for a lan�
guage not known to be in BPP � NP � Speci�cally� the language is the set of pairs of
non�isomorphic graphs� denoted GNI �

Two graphs� G���V�� E�� and G���V�� E��� are called isomorphic if there exists a 	�	
and onto mapping� �� from the vertex set V� to the vertex set V� so that �u� v� � E� if and
only if ���v�� ��u�� � E�� The mapping �� if existing� is called an isomorphism between the
graphs�

Construction ��
 �Interactive proof system for Graph Non�Isomorphism��

� Common Input� A pair of two graphs� G� � �V�� E�� and G� � �V�� E��� Suppose�
without loss of generality� that V� � f	� �� ���� jV�jg� and similarly for V��

� Veri�er�s �rst Step �V	�� The veri�er selects at random one of the two input graphs�
and sends to the prover a random isomorphic copy of this graph� Namely� the veri�er
selects uniformly � � f	� �g� and a random permutation � from the set of permutations
over the vertex set V�� The veri�er constructs a graph with vertex set V� and edge set

F
def
� f���u�� ��v�� � �u� v��E�g

and sends �V�� F � to the prover�
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� Motivating Remark� If the input graphs are non�isomorphic� as the prover claims�
then the prover should be able to distinguish �not necessarily by an e�cient algorithm�
isomorphic copies of one graph from isomorphic copies of the other graph� However�
if the input graphs are isomorphic then a random isomorphic copy of one graph is
distributed identically to a random isomorphic copy of the other graph�

� Prover�s �rst Step �P	�� Upon receiving a graph� G� � �V �� E��� from the veri�er� the
prover �nds a � � f	� �g so that the graph G� is isomorphic to the input graph G� � �If
both � �	� � satisfy the condition then � is selected arbitrarily� In case no � � f	� �g
satis�es the condition� � is set to ��� The prover sends � to the veri�er�

� Veri�er�s second Step �V��� If the message� � � received from the prover equals �

�chosen in Step V	� then the veri�er outputs 	 �i�e�� accepts the common input��
Otherwise the veri�er outputs � �i�e�� rejects the common input��

The veri�er program presented above is easily implemented in probabilistic polynomial�
time� We do not known of a probabilistic polynomial�time implementation of the prover�s
program� but this is not required� We now show that the above pair of interactive machines
constitutes an interactive proof system �in the general sense� for the language GNI �Graph
Non�Isomorphism��

Proposition ��� The language GNI is in the class IP� Furthermore� the programs speci�
�ed in Construction 
�� constitute a generalized interactive proof system for GNI� Namely�

	� If G� and G� are not isomorphic �i�e�� �G�� G�� � GNI� then the veri�er always
accept �when interacting with the prover��


� If G� and G� are isomorphic �i�e�� �G�� G�� �� GNI� then� no matter with what
machine the veri�er interacts� it rejects the input with probability at least �

��

proof� Clearly� if G� and G� are not isomorphic then no graph can be isomorphic to both
G� and G�� It follows that there exists a unique � such that the graph G� �received by the
prover in Step P	� is isomorphic to the input graph G� � Hence� � found by the prover in
Step �P	� always equals � chosen in Step �V	�� Part �	� follows�

On the other hand� if G� and G� are isomorphic then the graph G� is isomorphic to
both input graphs� Furthermore� we will show that in this case the graph G� yields no
information about �� and consequently no machine can �on input G�� G� and G�� set � so
that it equal �� with probability greater than �

� � Details follow�

Let � be a permutation on the vertex set of a graph G� �V�E�� Then� we denote by
��G� the graph with vertex set V and edge set f���u�� ��v�� � �u� v� � Eg� Let � be a
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random variable uniformly distributed over f	� �g� and � be a random variable uniformly
distributed over the permutations of the set V � We stress that these two random variable
are independent� We are interested in the distribution of the random variable ��G��� We
are going to show that� although ��G�� is determined by the random variables � and ��
the random variables � and ��G�� are statistically independent� In fact we show

Claim ������ If the graphs G� and G� are isomorphic then for every graph G� it holds that

Prob
�
��	j��G���G�� � Prob

�
���j��G���G�� � 	

�

proof� We �rst claim that the sets S�
def
� f� � ��G�� � G�� and S�

def
� f� � ��G�� � G��

are of equal cardinality� This follows from the observation that there is a 	�	 and onto
correspondence between the set S� and the set S� �the correspondence is given by the
isomorphism between the graphs G� and G��� Hence�

Prob
�
��G���G�j��	

�
� Prob

�
��G���G��

� Prob ���S��

� Prob ���S��

� Prob
�
��G���G�j���

�
Using Bayes Rule� the claim follows��

Using Claim ����	� it follows that for every pair� �G�� G��� of isomorphic graphs and for
every randomized process� R� �possibly depending on this pair� it holds that

Prob �R���G������ �
X
G�

Prob
�
��G����G�� �Prob �R�G�����j��G���G��

�
X
G�

Prob
�
��G����G��

�
X

b�f���g

Prob
�
R�G����b

�
�Prob

�
b��j��G���G��

�
X
G�

Prob
�
��G����G�� �Prob �R�G���� f	� �g

�
�
	

�

�
	

�

with equality in case R always outputs an element in the set f	� �g� Part ��� of the propo�
sition follows�
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Remarks concerning Construction ��


In the proof system of Construction ���� the veri�er always accepts inputs in the language
�i�e�� the error probability in these cases equals zero�� All interactive proof systems we shall
consider will share this property� In fact it can be shown that every interactive proof system
can be transformed into an interactive proof system �for the same language� in which the
veri�er always accepts inputs in the language� On the other hand� as shown in Exercise ��
only languages in NP have interactive proof system in which the veri�er always rejects
inputs not in the language�

The fact that GNI � IP� whereas it is not known whether GNI � NP� is an indi�
cation to the power of interaction and randomness in the context of theorem proving� A
much stronger indication is provided by the fact that every language in PSPACE has an
interactive proof system �in fact IP equals PSPACE�� For further discussion see Chapter ��

����� Augmentation to the Model

For purposes that will become more clear in the sequel we augment the basic de�nition of
an interactive proof system by allowing each of the parties to have a private input �in addi�
tion to the common input�� Loosely speaking� these inputs are used to capture additional
information available to each of the parties� Speci�cally� when using interactive proof sys�
tems as subprotocols inside larger protocols� the private inputs are associated with the local
con�gurations of the machines before entering the subprotocol� In particular� the private
input of the prover may contain information which enables an e�cient implementation of
the prover�s task�

De�nition ���� �interactive proof systems � revisited��

� An interactive machine is de�ned as in De�nition 
�	� except that the machine has
an additional read�only tape called the auxiliary�input�tape� The contents of this tape
is call auxiliary input�

� The complexity of such an interactive machine is still measured as a function of the
�common� input� Namely� the interactive machine A has time complexity t � IN �� IN

if for every interactive machine B and every string x� it holds that when interacting
with machine B� on common input x� machine A always �i�e�� regardless of contents
of its random�tape and its auxiliary�input�tape as well as the contents of B�s tapes�
halts within t�jxj� steps�

� We denote by hA�y�� B�z�i�x� the random variable representing the �local� output of
B when interacting with machine A on common input x� when the random�input to
each machine is uniformly and independently chosen� and A �resp�� B� has auxiliary
input y �resp�� z��
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� A pair of interactive machines� �P� V �� is called an interactive proof system for a
language L if machine V is polynomial�time and the following two conditions hold


 Completeness� For every x � L� there exists a string y such that for every
z � f�� 	g�

Prob �hP �y�� V �z�i�x��	� �
�

�


 Soundness� For every x �� L� every interactive machine B� and every y� z �
f�� 	g�

Prob �hB�y�� V �z�i�x��	� �
	

�

We stress that when saying that an interactive machine is polynomial�time� we mean
that its running�time is polynomial in the length of the common input� Consequently� it is
not guaranteed that such a machine has enough time to read its entire auxiliary input�

��� Zero�Knowledge Proofs� De�nitions

In this section we introduce the notion of a zero�knowledge interactive proof system� and
present a non�trivial example of such a system �speci�cally to claims of the form �the
following two graphs are isomorphic���

����� Perfect and Computational Zero�Knowledge

Loosely speaking� we say that an interactive proof system� �P� V �� for a language L is zero�
knowledge if whatever can be e�ciently computed after interacting with P on input x �L�
can also be e�ciently computed from x �without any interaction�� We stress that the above
holds with respect to any e�cient way of interacting with P � not necessarily the way de�ned
by the veri�er program V � Actually� zero�knowledge is a property of the prescribed prover
P � It captures P �s robustness against attempts to gain knowledge by interacting with it� A
straightforward way of capturing the informal discussion follows�

Let �P� V � be an interactive proof system for some language L� We say that
�P� V �� actually P � is perfect zero�knowledge if for every probabilistic polynomial�
time interactive machine V � there exists an �ordinary� probabilistic polynomial�
time algorithm M� so that for every x � L the following two random variables
are identically distributed

� hP� V �i�x� �i�e�� the output of the interactive machine V � after interacting
with the interactive machine P on common input x�
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� M��x� �i�e�� the output of machine M� on input x��

Machine M� is called a simulator for the interaction of V � with P �

We stress that we require that for every V � interacting with P � not merely for V �
there exists a ��perfect�� simulator M�� This simulator� although not having access to the
interactive machine P � is able to simulate the interaction of V � with P � This fact is taken
as evidence to the claim that V � did not gain any knowledge from P �since the same output
could have been generated without any access to P ��

Note that every language in BPP has a perfect zero�knowledge proof system in which
the prover does nothing �and the veri�er checks by itself whether to accept the common
input or not�� To demonstrate the zero�knowledge property of this �dummy prover�� one
may present for every veri�er V � a simulator M� which is essentially identical to V � �except
that the communication tapes of V � are considered as ordinary work tapes of M���

Unfortunately� the above formulation of perfect zero�knowledge is slightly too strict to be
useful� We relax the formulation by allowing the simulator to fail� with bounded probability�
to produce an interaction�

De�nition ���� �perfect zero�knowledge�� Let �P� V � be an interactive proof system for
some language L� We say that �P� V � is perfect zero�knowledge if for every probabilistic
polynomial�time interactive machine V � there exists a probabilistic polynomial�time algo�
rithm M� so that for every x � L the following two conditions hold�

	� With probability at most �
�� on input x� machine M� outputs a special symbol denoted


 �i�e�� Prob�M��x��
� � �
���


� Let m��x� be a random variable describing the distribution of M��x� conditioned on
M��x� �� 
 �i�e�� Prob�m��x� � 	� � Prob�M��x� � 	jM��x� �� 
�� for every 	 �
f�� 	g��� Then the following random variables are identically distributed

� hP� V �i�x� �i�e�� the output of the interactive machine V � after interacting with
the interactive machine P on common input x��

� m��x� �i�e�� the output of machine M� on input x� conditioned on not being 
��

Machine M� is called a perfect simulator for the interaction of V � with P �

Condition 	 �above� can be replaced by a stronger condition requiring that M� outputs
the special symbol �i�e�� 
� only with negligible probability� For example� one can require
that on input x machine M� outputs 
 with probability bounded above by ��p�jxj�� for
any polynomial p���
 see Exercise �� Consequently� the statistical di�erence between the
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random variables hP� V �i�x� and M��x� can be made negligible �in jxj�
 see Exercise ��
Hence� whatever the veri�er e�ciently computes after interacting with the prover� can be
e�ciently computed �up to an overwhelmingly small error� by the simulator �and hence by
the veri�er himself��

Following the spirit of Chapters � and 
� we observe that for practical purposes there
is no need to be able to �perfectly simulate� the output of V � after interacting with P �
Instead� it su�ces to generate a probability distribution which is computationally indis�
tinguishable from the output of V � after interacting with P � The relaxation is consistent
with our original requirement that �whatever can be e�ciently computed after interacting
with P on input x �L� can also be e�ciently computed from x �without any interaction���
The reason being that we consider computationally indistinguishable ensembles as being
the same� Before presenting the relaxed de�nition of general zero�knowledge� we recall the
de�nition of computationally indistinguishable ensembles� Here we consider ensembles in�
dexed by strings from a language� L� We say that the ensembles fRxgx�L and fSxgx�L are
computationally indistinguishable if for every probabilistic polynomial�time algorithm� D�
for every polynomial p��� and all su�ciently long x � L it holds that

jProb�D�x�Rx��	�� Prob�D�x� Sx��	�j �
	

p�jxj�

De�nition ���� �computational zero�knowledge�� Let �P� V � be an interactive proof sys�
tem for some language L� We say that �P� V � is computational zero�knowledge �or just
zero�knowledge� if for every probabilistic polynomial�time interactive machine V � there ex�
ists a probabilistic polynomial�time algorithm M� so that the following two ensembles are
computationally indistinguishable

� fhP� V �i�x�gx�L �i�e�� the output of the interactive machine V � after interacting with
the interactive machine P on common input x��

� fM��x�gx�L �i�e�� the output of machine M� on input x��

Machine M� is called a simulator for the interaction of V � with P �

The reader can easily verify �see Exercise �� that allowing the simulator to output
the symbol 
 �with probability bounded above by� say� �

�� and considering the conditional
output distribution �as done in De�nition ��		�� does not add to the power of De�nition ��	��

We stress that both de�nitions of zero�knowledge apply to interactive proof systems in
the general sense �i�e�� having any non�negligible gap in the acceptance probabilities for
inputs inside and outside the language�� In fact� the de�nitions of zero�knowledge apply to

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



	�� CHAPTER �� ZERO�KNOWLEDGE PROOF SYSTEMS

any pair of interactive machines �actually to each interactive machine�� Namely� we may
say that the interactive machine A is zero�knowledge on L if whatever can be e�ciently
computed after interacting with A on common input x � L� can also be e�ciently computed
from x itself�

An alternative formulation of zero�knowledge

An alternative formulation of zero�knowledge considers the veri�er�s view of the interaction
with the prover� rather than only the output of the veri�er after such an interaction� By the
�veri�er�s view of the interaction� we mean the entire sequence of the local con�gurations of
the veri�er during an interaction �execution� with the prover� Clearly� it su�ces to consider
only the contents of the random�tape of the veri�er and the sequence of messages that the
veri�er has received from the prover during the execution �since the entire sequence of local
con�gurations as well as the �nal output are determine by these objects��

De�nition ���� �zero�knowledge � alternative formulation�� Let �P� V �� L and V � be as
in De�nition 
�	
� We denote by viewP

V ��x� a random variable describing the contents of
the random�tape of V � and the messages V � receives from P during a joint computation on
common input x� We say that �P� V � is zero�knowledge if for every probabilistic polynomial�
time interactive machine V � there exists a probabilistic polynomial�time algorithm M� so
that the ensembles fviewP

V ��x�gx�L and fM��x�gx�L are computationally indistinguishable�

A few remarks are in place� De�nition ��	� is obtained from De�nition ��	� by replac�
ing hP� V �i�x� for viewP

V ��x�� The simulator M� used in De�nition ��	� is related� but not
equal� to the simulator used in De�nition ��	� �yet� this fact is not re�ected in the text of
these de�nitions�� Clearly� V ��x� can be computed in �deterministic� polynomial�time from
viewP

V ��x�� for every V �� Although the opposite direction is not always true� De�nition ��	�
is equivalent to De�nition ��	� �see Exercise 	��� The latter fact justi�es the use of Def�
inition ��	�� which is more convenient to work with� although it seems less natural than
De�nition ��	�� An alternative formulation of perfect zero�knowledge is straightforward�
and clearly it is equivalent to De�nition ��		�

� Complexity classes based on Zero�Knowledge

De�nition ���� �class of languages having zero�knowledge proofs�� We denote by ZK
�also CZK� the class of languages having �computational� zero�knowledge interactive proof
systems� Likewise� PZK denotes the class of languages having perfect zero�knowledge in�
teractive proof systems�

Clearly� BPP 
 PZK 
 CZK 
 IP � We believe that the �rst two inclusions are
strict� Assuming the existence of �non�uniformly� one�way functions� the last inclusion is
an equality �i�e�� CZK � IP�� See Proposition ���
 and Theorems ���� and �����
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� Expected polynomial�time simulators

The formulation of perfect zero�knowledge presented in De�nition ��		 is di�erent from
the standard de�nition used in the literature� The standard de�nition requires that the
simulator always outputs a legal transcript �which has to be distributed identically to the
real interaction� yet it allows the simulator to run in expected polynomial�time rather than
in strictly polynomial�time time� We stress that the expectation is taken over the coin
tosses of the simulator �whereas the input to the simulator is �xed��

De�nition ���� �perfect zero�knowledge � liberal formulation�� We say that �P� V � is per�
fect zero�knowledge in the liberal sense if for every probabilistic polynomial�time interactive
machine V � there exists an expected polynomial�time algorithm M� so that for every x � L
the random variables hP� V �i�x� and M��x� are identically distributed�

We stress that by probabilistic polynomial�time we mean a strict bound on the run�
ning time in all possible executions� whereas by expected polynomial�time we allow non�
polynomial�time executions but require that the running�time is �polynomial on the aver�
age�� Clearly� De�nition ��		 implies De�nition ��	� � see Exercise �� Interestingly� there
exists interactive proofs which are perfect zero�knowledge with respect to the liberal de�ni�
tion but not known to be perfect zero�knowledge with respect to De�nition ��		� We prefer
to adopt De�nition ��		� rather than De�nition ��	�� because we wanted to avoid the notion
of expected polynomial�time that is much more subtle than one realizes at �rst glance�

A parenthetical remark concerning the notion of average polynomial�time� The
naive interpretation of expected polynomial�time is having average running�time
that is bounded by a polynomial in the input length� This de�nition of expected
polynomial�time is unsatisfactory since it is not closed under reductions and is
�too� machine dependent� Both aggravating phenomenon follow from the fact
that a function may have an average �say over f�� 	gn� that is bounded by
polynomial �in n� and yet squaring the function yields a function which is not
bounded by a polynomial �in n�� Hence� a better interpretation of expected
polynomial�time is having running�time that is bounded by a polynomial in a
function which has average linear growing rate�

Furthermore� the correspondence between average polynomial�time and e�cient computa�
tions is more controversial than the more standard association of strict polynomial�time
with e�cient computations�

An analogous discussion applies also to computational zero�knowledge� More speci�cally�
De�nition ��	� requires that the simulator works in polynomial�time� whereas a more liberal
notion allows it to work in expected polynomial�time�
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For sake of elegancy� it is customary to modify the de�nitions allowing expected polynomial�
time simulators� by requiring that such simulators exist also for the interaction of expected
polynomial�time veri�ers with the prover�

����� An Example �Graph Isomorphism in PZK�

As mentioned above� every language in BPP has a trivial �i�e�� degenerate� zero�knowledge
proof system� We now present an example of a non�degenerate zero�knowledge proof system�
Furthermore� we present a zero�knowledge proof system for a language not known to be in
BPP� Speci�cally� the language is the set of pairs of isomorphic graphs� denoted GI �see
de�nition in Section �����

Construction ���� �Perfect Zero�Knowledge proof for Graph Isomorphism��

� Common Input� A pair of two graphs� G�� �V�� E�� and G�� �V�� E��� Let 
 be an
isomorphism between the input graphs� namely 
 is a 	�	 and onto mapping of the
vertex set V� to the vertex set V� so that �u� v� � E� if and only if ���v�� ��u��� E��

� Prover�s �rst Step �P	�� The prover selects a random isomorphic copy of G�� and
sends it to the veri�er� Namely� the prover selects at random� with uniform probability
distribution� a permutation � from the set of permutations over the vertex set V�� and
constructs a graph with vertex set V� and edge set

F
def
� f���u�� ��v�� � �u� v��E�g

The prover sends �V�� F � to the veri�er�

� Motivating Remark� If the input graphs are isomorphic� as the prover claims� then
the graph sent in step P	 is isomorphic to both input graphs� However� if the input
graphs are not isomorphic then no graph can be isomorphic to both of them�

� Veri�er�s �rst Step �V	�� Upon receiving a graph� G� � �V �� E��� from the prover� the
veri�ers asks the prover to show an isomorphism between G� and one of the input
graph� chosen at random by the veri�er� Namely� the veri�er uniformly selects � �
f	� �g� and sends it to the prover �who is supposed to answer with an isomorphism
between G� and G���

� Prover�s second Step �P��� If the message� �� received from the veri�er equals � then
the prover sends � to the veri�er� Otherwise �i�e�� � �� ��� the prover sends � �
 �i�e��

the composition of � on 
� de�ned as � � 
�v�
def
� ��
�v��� to the veri�er� �Remark�

the prover treats any � �� � as � � 	��
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� Veri�er�s second Step �V��� If the message� denoted �� received from the prover is an
isomorphism between G� and G� then the veri�er outputs 	� otherwise it outputs ��

Let use denote the prover�s program by PGI �

The veri�er program presented above is easily implemented in probabilistic polynomial�
time� In case the prover is given an isomorphism between the input graphs as auxiliary input�
also the prover�s program can be implemented in probabilistic polynomial�time� We now
show that the above pair of interactive machines constitutes a zero�knowledge interactive
proof system �in the general sense� for the language GI �Graph Isomorphism��

Proposition ���	 The language GI has a perfect zero�knowledge interactive proof system�
Furthermore� the programs speci�ed in Construction 
�	
 satisfy

	� If G� and G� are isomorphic �i�e�� �G�� G�� � GI� then the veri�er always accepts
�when interacting with the prover��


� If G� and G� are not isomorphic �i�e�� �G�� G�� �� GI� then� no matter with what
machine the veri�er interacts� it rejects the input with probability at least �

��

�� The above prover �i�e�� PGI � is perfect zero�knowledge� Namely� for every probabilistic
polynomial�time interactive machine V � there exists a probabilistic polynomial�time

algorithmM� outputting 
 with probability at most �
� so that for every x

def
� �G�� G�� �

GI the following two random variables are identically distributed

� viewPGI

V � �x� �i�e�� the view of V � after interacting with PGI � on common input x��

� m��x� �i�e�� the output of machine M�� on input x� conditioned on not being 
��

A zero�knowledge interactive proof system for GI with error probability ��k �only in the
soundness condition� can be derived by executing the above protocol� sequentially� k times�
We stress that in each repetition� of the above protocol� both �the prescribed� prover and
veri�er use coin tosses which are independent of the coins used in the other repetitions of the
protocol� For further discussion see Section ����
� We remark that k parallel executions will
decrease the error in the soundness condition to ��k as well� but the resulting interactive
proof is not known to be zero�knowledge in case k grows faster than logarithmic in the input
length� In fact� we believe that such an interactive proof is not zero�knowledge� For further
discussion see Section ����

We stress that it is not known whether GI � BPP� Hence� Proposition ��	� asserts the
existence of perfect zero�knowledge proofs for languages not known to be in BPP �

proof� We �rst show that the above programs indeed constitute a �general� interactive proof
system for GI � Clearly� if the input graphs� G� and G�� are isomorphic then the graph G�
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constructed in step �P	� is isomorphic to both of them� Hence� if each party follows its
prescribed program then the veri�er always accepts �i�e�� outputs 	�� Part �	� follows� On
the other hand� if G� and G� are not isomorphic then no graph can be isomorphic to both
G� and G�� It follows that no matter how the �possibly cheating� prover constructs G� there
exists � � f	� �g so that G� and G� are not isomorphic� Hence� when the veri�er follows its
program� the veri�er rejects �i�e�� outputs �� with probability at least �

� � Part ��� follows�

It remains to show that PGI is indeed perfect zero�knowledge on GI � This is indeed the
di�cult part of the entire proof� It is easy to simulate the output of the veri�er speci�ed
in Construction ��	� �since its output is identically 	 on inputs in the language GI�� It is
also not hard to simulate the output of a veri�er which follows the program speci�ed in
Construction ��	�� except that at termination it output the entire transcript of its interac�
tion with PGI � see Exercise 		� The di�cult part is to simulate the output of an e�cient
veri�er which deviates arbitrarily from the speci�ed program�

We will use here the alternative formulation of �perfect� zero�knowledge� and show how
to simulate V ��s view of the interaction with PGI � for every probabilistic polynomial�time
interactive machine V �� As mentioned above it is not hard to simulate the veri�er�s view
of the interaction with PGI in case the veri�er follows the speci�ed program� However� we
need to simulate the view of the veri�er in the general case �in which it uses an arbitrary
polynomial�time interactive program�� Following is an overview of our simulation �i�e�� of
our construction of a simulator� M�� for each V ���

The simulator M� incorporates the code of the interactive program V �� On input
�G�� G��� the simulator M� �rst selects at random one of the input graphs �i�e�� either
G� or G�� and generates a random isomorphic copy� denoted G��� of this input graph� In
doing so� the simulator behaves di�erently from PGI � but the graph generated �i�e�� G��� is
distributed identically to the message sent in step �P	� of the interactive proof� Say that
the simulator has generated G�� by randomly permuting G�� Then� if V � asks to see the
isomorphism between G� and G��� the simulator can indeed answer correctly and in doing
so it completes a simulation of the veri�er�s view of the interaction with PGI � However�
if V � asks to see the isomorphism between G� and G��� then the simulator �which� unlike
PGI � does not �know� 
� has no way to answer correctly� and we let it halt with output

� We stress that the simulator �has no way of knowing� whether V � will ask to see an
isomorphism to G� or G�� The point is that the simulator can try one of the possibilities
at random and if it is lucky �which happens with probability exactly �

�� then it can output
a distribution which is identical to the view of V � when interacting with PGI �on common
input �G�� G���� A detailed description of the simulator follows�

Simulator M�� On input x
def
� �G�� G��� simulator M� proceeds as follows�

	� Setting the random�tape of V �� Let q��� denote a polynomial bounding the running�
time of V �� The simulator M� starts by uniformly selecting a string r � f�� 	gq�jxj��
to be used as the contents of the random�tape of V ��
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�� Simulating the prover�s �rst step �P	�� The simulator M� selects at random� with
uniform probability distribution� a �bit� � � f	� �g and a permutation � from the set
of permutations over the vertex set V� � It then constructs a graph with vertex set V�
and edge set

F
def
� f���u�� ��v�� � �u� v��E�g

Set G�� def� �V� � F ��

�� Simulating the veri�er�s �rst step �V	�� The simulator M� initiates an execution of
V � by placing x on V ��s common�input�tape� placing r �selected in step �	� above� on
V ��s random�tape� and placing G�� �constructed in step ��� above� on V ��s incoming
message�tape� After executing a polynomial number of steps of V �� the simulator can
read the outgoing message of V �� denoted �� To simplify the rest of the description�
we normalize � by setting � � 	 if � �� � �and leave � unchanged if � � ���


� Simulating the prover�s second step �P
�� If � � � then the simulator halts with
output �x� r� G��� ���

�� Failure of the simulation� Otherwise �i�e�� � �� ��� the simulator halts with output 
�

Using the hypothesis that V � is polynomial�time� it follows that so is the simulator M��
It is left to show that M� outputs 
 with probability at most �

� � and that� conditioned
on not outputting 
� the simulator�s output is distributed as the veri�er�s view in a �real
interaction with PGI�� The following claim is the key to the proof of both claims�

Claim ������� Suppose that the graphs G� and G� are isomorphic� Let � be a random
variable uniformly distributed in f	� �g� and ��G� be a random variable �independent of
�� describing the graph obtained from the graph G by randomly relabelling its nodes �cf�
Claim ����	�� Then� for every graph G��� it holds that

Prob
�
��	j��G���G��� � Prob

�
���j��G���G���

Claim ��	��	 is identical to Claim ����	 �used to demonstrate that Construction ��� consti�
tutes an interactive proof for GNI�� As in the rest of the proof of Proposition ���� it follows
that any random process with output in f	� �g� given ��G��� outputs � with probability
exactly �

� � Hence� given G
�� �constructed by the simulator in step ����� the veri�er�s program

yields �normalized� � so that � �� � with probability exactly �
� � We conclude that the simu�

lator outputs 
 with probability �
� � It remains to prove that� conditioned on not outputting


� the simulator�s output is identical to �V ��s view of real interactions�� Namely�

Claim ������� Let x � �G�� G�� � GI � Then� for every string r� graph H � and permutation
�� it holds that

Prob
�
viewPGI

V � �x���x� r�H���
�
� Prob �M��x���x� r�H� �� jM��x� ��
�
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proof� Let m��x� describe M��x� conditioned on its not being 
� We �rst observe that both
m��x� and viewPGI

V � �x� are distributed over quadruples of the form �x� r� �� ��� with uniformly
distributed r � f�� 	gq�jxj�� Let ��x� r� be a random variable describing the last two elements
of viewPGI

V � �x� conditioned on the second element equals r� Similarly� let 
�x� r� describe the
last two elements of m��x� �conditioned on the second element equals r�� Clearly� it su�ces
to show that ��x� r� and 
�x� r� are identically distributed� for every x and r� Observe that
once r is �xed the message sent by V � on common input x� random�tape r� and incoming
message H � is uniquely de�ned� Let us denote this message by v��x� r�H�� We show that
both ��x� r� and 
�x� r� are uniformly distributed over the set

Cx�r
def
�
n
�H��� � H � ��Gv��x�r�H��

o

where ��G� denotes the graph obtained from G by relabelling the vertices using the per�
mutation � �i�e�� if G��V�E� then ��G� � �V� F � so that �u� v� � E i� ���u�� ��v�� � F ��
The proof of this statement is rather tedious and unrelated to the subjects of this book
�and hence can be skipped with no damage��

The proof is slightly non�trivial because it relates �at least implicitly� to the
automorphism group of the graph G� �i�e�� the set of permutations � for which
��G�� is identical� not just isomorphic� to G��� For simplicity� consider �rst
the special case in which the automorphism group of G� consists of merely the
identity permutation �i�e�� G����G�� if and only if � is the identity permuta�
tion�� In this case� �H��� � Cx�r if and only if H is isomorphic to �both G�

and� G� and � is the isomorphism between H and Gv��x�r�H�� Hence� Cx�r con�
tains exactly jV�j� pairs� each containing a di�erent graph H as the �rst element�
In the general case� �H��� � Cx�r if and only if H is isomorphic to �both G�

and� G� and � is an isomorphism between H and Gv��x�r�H�� We stress that
v��x� r�H� is the same in all pairs containing H � Let aut�G�� denotes the size
of the automorphism group of G�� Then� each H �isomorphic to G�� appears in
exactly aut�G�� pairs of Cx�r and each such pair contain a di�erent isomorphism
between H and Gv��x�r�H��

We �rst consider the random variable 
�x� r� �describing the su�x ofm��x���
Recall that 
�x� r� is de�ned by the following two step random process� In the
�rst step� one selects uniformly a pair ��� ��� over the set of pairs f	� �g�times�
permutation� and sets H � ��G��� In the second step� one outputs �i�e�� sets

�x� r� to� ���G��� �� if v

��x� r�H�� � �and ignores the ��� �� pair otherwise��
Hence� each graphH �isomorphic toG�� is generated� at the �rst step� by exactly
aut�G�� di�erent �	� ���pairs �i�e�� the pairs �	� �� satisfying H���G���� and by
exactly aut�G�� di�erent ��� ���pairs �i�e�� the pairs ��� �� satisfying H���G����
All these � � aut�G�� pairs yield the same graph H � and hence lead to the same
value of v��x� r�H�� It follows that out of the � � aut�G�� pairs� ��� ��� yielding
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the graph H���G��� only the pairs satisfying ��v��x� r�H� lead to an output�
Hence� for each H �which is isomorphic to G��� the probability that 
�x� r� �
�H� �� equals aut�G����jV�j��� Furthermore� for each H �which is isomorphic to
G���

Prob �
�x� r���H���� �

�
�

jV�j�
if H���Gv��x�r�H��

� otherwise

Hence 
�x� r� is uniformly distributed over Cx�r�
We now consider the random variable ��x� r� �describing the su�x of the

veri�er�s view in a �real interaction� with the prover�� Recall that ��x� r� is
de�ned by selecting uniformly a permutation � �over the set V��� and setting
��x� r�� ���G��� �� if v

��x� r� ��G���� � and ��x� r�� ���G��� � � 
� otherwise�
where 
 is the isomorphism between G� and G�� Clearly� for each H �which is
isomorphic to G��� the probability that ��x� r� � �H� �� equals aut�G����jV�j���
Furthermore� for each H �which is isomorphic to G���

Prob ���x� r���H���� �

�
�

jV�j�
if ��� � 
��v

��x�r�H�

� otherwise

Observing that H � ��Gv��x�r�H�� if and only if ��� �
��v
��x�r�H�� we conclude

that 
�x� r� and ��x� r� are identically distributed�

The claim follows� �

This completes the proof of Part ��� of the proposition�

����� Zero�Knowledge w�r�t� Auxiliary Inputs

The de�nitions of zero�knowledge presented above fall short of what is required in practical
applications and consequently a minor modi�cation should be used� We recall that these
de�nitions guarantee that whatever can be e�ciently computed after interaction with the
prover on any common input� can be e�ciently computed from the input itself� However�
in typical applications �e�g�� when an interactive proof is used as a sub�protocol inside a
bigger protocol� the veri�er interacting with the prover� on common input x� may have
some additional a�priori information� encoded by a string z� which may assist it in its
attempts to �extract knowledge� from the prover� This danger may become even more
acute in the likely case in which z is related to x� �For example� consider the protocol of
Construction ��	� and the case where the veri�er has a�priori information concerning an
isomorphism between the input graphs�� What is typically required is that whatever can be
e�ciently computed from x and z after interaction with the prover on any common input
x� can be e�ciently computed from x and z �without any interaction with the prover�� This
requirement is formulated below using the augmented notion of interactive proofs presented
in De�nition ��	��
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De�nition ���
 �zero�knowledge � revisited�� Let �P� V � be an interactive proof for a lan�
guage L �as in De�nition 
�	��� Denote by PL�x� the set of strings y satisfying the complete�
ness condition with respect to x � L �i�e�� for every z � f�� 	g� Prob �hP �y�� V �z�i�x��	� �
�
��� We say that �P� V � is zero�knowledge with respect to auxiliary input �auxiliary input zero�
knowledge� if for every probabilistic polynomial�time interactive machine V � there exists a
probabilistic algorithmM�� running in time polynomial in the length of its �rst input� so that
the following two ensembles are computationally indistinguishable �when the distinguishing
gap is considered as a function of jxj�

� fhP �y�� V ��z�i�x�gx�L�y�PL�x��z�f���g�

� fM��x� z�gx�L�z�f���g�

Namely� for every probabilistic algorithm� D� with running�time polynomial in length of
the �rst input� every polynomial p���� and all su�ciently long x � L� all y � PL�x� and
z � f�� 	g�� it holds that

jProb�D�x� z� hP �y�� V ��z�i�x���	�� Prob�D�x� z�M��x� z���	�j�
	

p�jxj�

In the above de�nition y represents a�priori information to the prover� whereas z repre�
sents a�priori information to the veri�er� Both y and z may depend on the common input
x� We stress that the local inputs �i�e�� y and z� may not be known� even in part� to the
counterpart� We also stress that the auxiliary input z is also given to the distinguishing
algorithm �which may be thought of as an extension of the veri�er��

Recall that by De�nition ��	�� saying that the interactive machine V � is probabilistic
polynomial�time means that its running�time is bounded by a polynomial in the length
of the common input� Hence� the veri�er program� the simulator� and the distinguishing
algorithm� all run in time polynomial in the length of x �and not in time polynomial in the
total length of all their inputs�� This convention is essential in many respects� For example�
having allowed even one of these machines to run in time proportional to the length of
the auxiliary input would have collapsed computational zero�knowledge to perfect zero�
knowledge �e�g�� by considering veri�ers which run in time polynomial in the common�input
yet have huge auxiliary inputs of length exponential in the common�input��

De�nition ��	� refers to computational zero�knowledge� A formulation of perfect zero�
knowledge with respect to auxiliary input is straightforward� We remark that the perfect
zero�knowledge proof for Graph Isomorphism� presented in Construction ��	�� is in fact
perfect zero�knowledge with respect to auxiliary input� This fact follows easily by a minor
augmentation to the simulator constructed in the proof of Proposition ��	� �i�e�� when
invoking the veri�er� the simulator should provide it with the auxiliary input which is
given to the simulator�� In general� a demonstration of zero�knowledge can be extended
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to yield zero�knowledge with respect to auxiliary input� provided that the simulator used
in the original demonstration works by invoking the veri�er�s program as a black box� All
simulators presented in this book have this property�

� Implicit non�uniformity in De�nition ���


The non�uniform nature of De�nition ��	� is captured by the fact that the simulator gets
an auxiliary input� It is true that this auxiliary input is also given to both the veri�er
program and the simulator� however if it is su�ciently long then only the distinguisher
can make any use of its su�x� It follows that the simulator guaranteed in De�nition ��	�
produces output that is indistinguishable from the real interactions also by non�uniform
polynomial�size machines� Namely� for every �even non�uniform� polynomial�size circuit
family� fCngn�IN� every polynomial p���� and all su�ciently large n�s� all x � L � f�� 	gn�
all y � PL�x� and z � f�� 	g��

jProb�Cn�x� z� hP �y�� V
��z�i�x���	�� Prob�Cn�x� z�M

��x� z���	�j�
	

p�jxj�

Following is a sketch of the proof� We assume� to the contrary� that there exists a polynomial�
size circuit family� fCngn�IN� such that for in�nitely many n�s there exists triples �x� y� z�
for which Cn has a non�negligible distinguishing gap� We derive a contradiction by incorpo�
rating the description of Cn together with the auxiliary input z into a longer auxiliary input�
denoted z�� This is done in a way that both V � and M� have no su�cient time to reach
the description of Cn� For example� let q��� be a polynomial bounding the running�time of
both V � and M�� as well as the size of Cn� Then� we let z� be the string which results by
padding z with blanks to a total length of q�n� and appending the description of the circuit
Cn at its end �i�e�� if jzj � q�n� then z� is a pre�x of z�� Clearly� M��x� z�� � M��x� z�
and hP �y�� V ��z��i�x� � hP �y�� V ��z�i�x�� On the other hand� by using a circuit evaluat�
ing algorithm� we get an algorithm D such that D�x� z�� 	� � Cn�x� z�� and contradiction
follows�

����	 Sequential Composition of Zero�Knowledge Proofs

An intuitive requirement that a de�nition of zero�knowledge proofs must satisfy is that
zero�knowledge proofs are closed under sequential composition� Namely� if one executes one
zero�knowledge proof after another then the composed execution must be zero�knowledge�
The same should remain valid even if one executes polynomially many proofs one after
the other� Indeed� as we will shortly see� the revised de�nition of zero�knowledge �i�e��
De�nition ��	�� satis�es this requirement� Interestingly� zero�knowledge proofs as de�ned
in De�nition ��	� are not closed under sequential composition� and this fact is indeed another
indication to the necessity of augmenting this de�nition �as done in De�nition ��	���
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In addition to its conceptual importance� the Sequential Composition Lemma is an
important tool in the design of zero�knowledge proof systems� Typically� these proof system
consists of many repetitions of a atomic zero�knowledge proof� Loosely speaking� the atomic
proof provides some �but not much� statistical evidence to the validity of the claim� By
repeating the atomic proof su�ciently many times the con�dence in the validity of the claim
is increased� More precisely� the atomic proof o�ers a gap between the accepting probability
of string in the language and strings outside the language� For example� in Construction ��	�
pairs of isomorphic graphs �i�e�� inputs in GI� are accepted with probability 	� whereas pairs
of non�isomorphic graphs �i�e�� inputs not in GI� are accepted with probability at most �

� �
By repeating the atomic proof the gap between the two probabilities is further increased�
For example� repeating the proof of Construction ��	� for k times yields a new interactive
proof in which inputs in GI are still accepted with probability 	 whereas inputs not in GI
are accepted with probability at most �

�k
� The Sequential Composition Lemma guarantees

that if the atomic proof system is zero�knowledge then so is the proof system resulting by
repeating the atomic proof polynomially many times�

Before we state the Sequential Composition Lemma� we remind the reader that the
zero�knowledge property of an interactive proof is actually a property of the prover� Also�
the prover is required to be zero�knowledge only on inputs in the language� Finally� we
stress that when talking on zero�knowledge with respect to auxiliary input we refer to all
possible auxiliary inputs for the veri�er�

Lemma ���� �Sequential Composition Lemma�� Let P be an interactive machine �i�e��
a prover� which is zero�knowledge with respect to auxiliary input on some language L�
Suppose that the last message sent by P � on input x� bears a special �end of proof� symbol�
Let Q��� be a polynomial� and let PQ be an interactive machine that� on common input
x� proceeds in Q�jxj� phases� each of them consisting of running P on common input x�
�We stress that in case P is probabilistic� the interactive machine PQ uses independent coin
tosses for each of the Q�jxj� phases�� Then PQ is zero�knowledge �with respect to auxiliary
input� on L� Furthermore� if P is perfect zero�knowledge �with respect to auxiliary input�
then so is PQ�

The convention concerning �end of proof� is introduced for technical purposes �and is re�
dundant in all known provers for which the number of messages sent is easily computed from
the length of the common input�� Clearly� every machine P can be easily modi�ed so that
its last message bears an appropriate symbol �as assumed above�� and doing so preserves
the zero�knowledge properties of P �as well as completeness and soundness conditions��

The Lemma remain valid also if one allows auxiliary input to the prover� The extension
is straightforward� The lemma ignores other aspects of repeating an interactive proof several
times
 speci�cally� the e�ect on the gap between the accepting probability of inputs inside
and outside of the language� This aspect of repetition is discussed in the previous section
�see also Exercise 	��
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Proof� Let V � be an arbitrary probabilistic polynomial�time interactive machine interacting
with the composed prover PQ� Our task is to construct a �polynomial�time� simulator�
M�� which simulates the real interactions of V � with PQ� Following is a very high level
description of the simulation� The key idea is to simulate the real interaction on common
input x in Q�jxj� phases corresponding to the phases of the operation of PQ� Each phase
of the operation of PQ is simulated using the simulator guaranteed for the atomic prover
P � The information accumulated by the veri�er in each phase is passed to the next phase
using the auxiliary input�

The �rst step in carrying�out the above plan is to partition the execution of an arbitrary
interactive machine V � into phases� The partition may not exist in the code of the program
V �� and yet it can be imposed on the executions of this program� This is done using the
phase structure of the prescribed prover PQ� which is induced by the �end of proof� symbols�
Hence� we claim that no matter how V � operates� the interaction of V � with PQ on common
input x� can be captured by Q�jxj� successive interaction of a related machine� denoted V ���
with P � Namely�

Claim ������� There exists a probabilistic polynomial�time V �� so that for every common
input x and auxiliary input z it holds that

hPQ� V
��z�i�x� � Z�Q�jxj��

where Z��� def
� z and Z�i��� def

� hP� V ���Z�i��i�x�

Namely� Z�Q�jxj�� is a random variable describing the output of V �� after Q�jxj� successive
interactions with P � on common input x� where the auxiliary input of V �� in the i � 	st

interaction equals the output of V �� after the ith interaction �i�e�� Z�i���

proof� Consider an interaction of V ��z� with PQ� on common input x� Machine V � can be
slightly modi�ed so that it starts its execution by reading the common�input� the random�
input and the auxiliary�input into special regions in its work�tape� and never accesses the
above read�only tapes again� Likewise� V � is modi�ed so that it starts each active period
by reading the current incoming message from the communication�tape to a special region
in the work tape �and never accesses the incoming message�tape again during this period��
Actually� the above description should be modi�ed so that V � copies only a polynomially
long �in the common input� pre�x of each of these tapes� the polynomial being the one
bounding the running time of V ��

Considering the contents of the work�tape of V � at the end of each of the Q�jxj� phases
�of interactions with PQ�� naturally leads us to the construction of V ��� Namely� on common
input x and auxiliary input z�� machine V �� starts by copying z� into the work�tape of V ��
Next� machine V �� simulates a single phase of the interaction of V � with PQ �on input x�
starting with the above contents of the work�tape of V � �instead of starting with an empty
work�tape�� The invoked machine V � regards the communication�tapes of machine V �� as
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its own communication�tapes� Finally� V �� terminates by outputting the current contents
of the work�tape of V �� Actually� the above description should be slightly modi�ed to
deal di�erently with the �rst phase in the interaction with PQ� Speci�cally� V �� copies z�

into the work�tape of V � only if z� encodes a contents of the work�tape of V � �we assume�
w�l�o�g�� that the contents of the work�tape of V � is encoded di�erently from the encoding
of an auxiliary input for V ��� In case z� encodes an auxiliary input to V �� machine V ��

invokes V � on an empty work�tape� and V � regards the readable tapes of V �� �i�e�� common�
input�tape� the random�input�tape and the auxiliary�input�tape� as its own� Observe that

Z��� def
� hP� V ���z�i�x� describes the contents of the work�tape of V � after one phase� and

Z�i� def
� hP� V ���Z�i����i�x� describes the contents of the work�tape of V � after i phases�

The claim follows� �

Since V �� is a polynomial�time interactive machine �with auxiliary input� interacting
with P � it follows by the lemma�s hypothesis that there exists a probabilistic machine which
simulates these interactions in time polynomial in the length of the �rst input� Let M��

denote this simulator� We may assume� without loss of generality� that with overwhelmingly
high probability M�� halts with output �as we can increase the probability of output by
successive applications ofM���� Furthermore� for sake of simplicity� we assume in the rest of
this proof that M�� always halts with output� Namely� for every probabilistic polynomial�
time �in x� algorithmD� every polynomial p���� all su�ciently long x � L and all z � f�� 	g��
we have

jProb�D�x� z� hP� V ���z�i�x�� � 	�� Prob�D�x� z�M���x� z�� � 	�j �
	

p�jxj�

We are now ready to present the construction of a simulator� M�� that simulates the
�real� output of V � after interaction with PQ� Machine M� uses the above guaranteed
simulator M��� On input �x� z�� machine M� sets z��� � z and proceeds in Q�jxj� phases�
In the ith phase� machine M� computes z�i� by running machine M�� on input �x� z�i�����
After Q�jxj� phases are completed� machine M� stops outputting z�Q�jxj���

Clearly� machine M�� constructed above� runs in time polynomial in its �rst input� �For
non�constant Q��� it is crucial here that the running�time of M� is polynomial in the length
of the �rst input� rather than being polynomial in the length of both inputs�� It is left
to show that machine M� indeed produces output which is polynomially indistinguishable
from the output of V � �after interacting with PQ�� Namely�

Claim ������� For every probabilistic algorithm D� with running�time polynomial in its �rst
input� every polynomial p���� all su�ciently long x � L and all z � f�� 	g�� we have

jProb�D�x� z� hPQ� V
��z�i�x�� � 	�� Prob�D�x� z�M��x� z�� � 	�j �

	

p�jxj�
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proof sketch� We use a hybrid argument� In particular� we de�ne the following Q�jxj� � 	
hybrids� The ith hybrid� �� i�Q�jxj�� corresponds to the following random process� We
�rst let V �� interact with P for i phases� starting with common input x and auxiliary input
z� and denote by Z�i� the output of V �� after the ith phase� We next repeatedly iterate M��

for the remaining Q�m�� k phases� In both cases� we use the output of the previous phase
as auxiliary input to the new phase� Formally� the hybrid H�i� is de�ned as follows�

H�i��x� z�
def
� M��

Q�m��i�x� Z
�i��

where Z��� def
� z and Z�j��� def

� hP� V ���Z�j��i�x�

M��
� �x� z��

def
� �x� z�� and M��

j �x� z��
def
� M��

j���x�M
���x� z���

Using Claim ��	��	� the Q�jxj�th hybrid �i�e�� H�Q�jxj���x� z�� equals hPQ� V ��z�i�x��� On the
other hand� recalling the construction of M�� we see that the zero hybrid �i�e�� H����x� z��
equals M��x� z��� Hence� all that is required to complete the proof is to show that every two
adjacent hybrids are polynomially indistinguishable �as this would imply that the extreme
hybrids� H�Q�m�� and H���� are indistinguishable too�� To this end� we rewrite the ith and
i� 	st hybrids as follows�

H�i��x� z� � M��
Q�jxj��i�x� hP� V

���Z�i����i�x��

H�i����x� z� � M��
Q�jxj��i�x�M

���x� Z�i�����

where Z�i��� is as de�ned above �in the de�nition of the hybrids��

Using an averaging argument� it follows that if an algorithm� D� distinguishes the hy�
brids H�i��x� z� and H�i����x� z� then there exists a z� so that algorithm D distinguishes
the random variables M��

Q�jxj��i�x� hP� V
���z��i�x�� and M��

Q�jxj��i�x�M
���x� z��� at least as

well� Incorporating algorithm M�� into D� we get a new algorithm D�� with running time
polynomially related to the former algorithms� which distinguishes the random variables
�x� z�� hP� V ���z��i�x�� and �x� z��M���x� z��� at least as well� �Further details are presented
below�� Contradiction �to the hypothesis that M�� simulates �P� V ���� follows� �

The lemma follows�

Further details concerning the proof of Claim ������� The proof of Claim ��	��� is
rather sketchy� The main thing which is missing are details concerning the way in which
an algorithm contradicting the hypothesis that M�� is a simulator for �P� V ��� is derived
from an algorithm contradicting the statement of Claim ��	���� These details are presented
below� and the reader is encouraged not to skip them�

Let us start with the non�problematic part� We assume� to the contradiction� that
there exists a probabilistic polynomial�time algorithm� D� and a polynomial p���� so that
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for in�nitely many x � L there exists z � f�� 	g� such that

jProb�D�x� z� hPQ� V
��z�i�x�� � 	�� Prob�D�x� z�M��x� z�� � 	�j �

	

p�jxj�

It follows that for every such x and z� there exists an i � f	� ����Q�jxj�g such that

jProb�D�x� z�H�i��x� z�� � 	�� Prob�D�x� z�H�i����x� z�� � 	�j �
	

Q�jxj� � p�jxj�

Denote ��n�
def
� 	��Q�n� � p�n��� Combining the de�nition of the ith and i� 	st hybrids with

an averaging argument� it follows that for each such x� z and i� there exists a z�� in the
support of Z�i��� �de�ned as above�� such that

jProb�D�x� z��M��
Q�jxj��ihP� V

���z��i�x�� � 	�

�Prob�D�x� z��M��
Q�jxj��i�M

���x� z���� � 	�j � ��jxj�

This almost leads to the desired contradiction� Namely� the random variables �x� z�� hP� V ���z��i�x��
and �x� z��M���x� z��� can be distinguished using algorithms D and M��� provided we
�know� i� The problem is resolved using the fact� pointed out at the end of Subsection ������
that the output ofM�� is undistinguished from the interactions of V �� with the prover even
with respect to non�uniform polynomial�size circuits� Details follow�

We construct a polynomial�size circuit family� denoted fCng� which distinguishes �x� z�� hP� V ���z���i�x��
and �x� z��M���x� z����� for the above�mentioned �x� z�� pairs� On input x �supposedly
in L � f�� 	gn� and 	 �supposedly in either �x� z�� hP� V ���z���i�x�� or �x� z��M���x� z������
the circuit Cn� incorporating �the above�mentioned� i� uses algorithm M�� to compute
� � MQ�jxj��i�x� 	�� Next Cn� using algorithm D� computes � � D��x� z��� �� and halts
outputting �� Contradiction �to the hypothesis that M�� is a simulator for �P� V ���� fol�
lows� �

And what about parallel composition�

Unfortunately� we cannot prove that zero�knowledge �even with respect to auxiliary input�
is preserved under parallel composition� Furthermore� there exist zero�knowledge proofs
that when played twice in parallel do yield knowledge �to a �cheating veri�er��� For further
details see Subsection ����

The fact that zero�knowledge is not preserved under parallel composition of protocols
is indeed bad news� One may even think that this fact is a conceptually annoying phe�
nomenon� We disagree with this feeling� Our feeling is that the behaviour of protocols
and �games� under parallel composition is� in general �i�e�� not only in the context of zero�
knowledge�� a much more complex issue than the behaviour under sequential composition�
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Furthermore� the only advantage of parallel composition over sequential composition is in
e�ciency� Hence� we don�t consider the non�closure under parallel composition to be a
conceptual weakness of the formulation of zero�knowledge� Yet� the �non�closure� of zero�
knowledge motivates the search for either weaker or stronger notions which are preserved
under parallel composition� For further details� the reader is referred to Sections ��� and ����

��� Zero�Knowledge Proofs for NP

This section presents the main thrust of the entire chapter
 namely� a method for construct�
ing zero�knowledge proofs for every language in NP � The importance of this method stems
from its generality� which is the key to its many applications� Speci�cally� we observe that
almost all statements one wish to prove in practice can be encoded as claims concerning
membership in languages in NP �

The method� for constructing zero�knowledge proofs for NP�languages� makes essential
use of the concept of bit commitment� Hence� we start with a presentation of this concept�

��	�� Commitment Schemes

Commitment schemes are a basic ingredient in many cryptographic protocols� The are used
to enable a party to commit itself to a value while keeping it secret� In a latter stage the
commitment is �opened� and it is guaranteed that the �opening� can yield only a single
value determined in the committing phase� Commitment schemes are the digital analogue
of nontransparent sealed envelopes� By putting a note in such an envelope a party commits
itself to the contents of the note while keeping it secret�

De�nition

Loosely speaking� a commitment scheme is an e�cient two�phase two�party protocol through
which one party� called the sender� can commit itself to a value so the following two con�
�icting requirements are satis�ed�

	� Secrecy� At the end of the �rst phase� the other party� called the receiver� does not
gain any knowledge of the sender�s value� This requirement has to be satis�ed even if
the receiver tries to cheat�

�� Unambiguity� Given the transcript of the interaction in the �rst phase� there exists
at most one value which the receiver may later �i�e�� in the second phase� accept as a
legal �opening� of the commitment� This requirement has to be satis�ed even if the
sender tries to cheat�
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In addition� one should require that the protocol is viable in the sense that if both parties
follow it then� at the end of the second phase� the receiver gets the value committed to
by the sender� The �rst phase is called the commit phase� and the second phase is called
the reveal phase� We are requiring that the commit phase yield no knowledge �at least
not of the sender�s value� to the receiver� whereas the commit phase does �commit� the
sender to a unique value �in the sense that in the reveal phase the receiver may accept only
this value�� We stress that the protocol is e�cient in the sense that the predetermined
programs of both parties can be implemented in probabilistic� polynomial�time� Without
loss of generality� the reveal phase may consist of merely letting the sender send� to the
receiver� the original value and the sequence of random coin tosses that it has used during
the commit phase� The receiver will accept the value if and only if the supplied information
matches its transcript of the interaction in the commit phase� The latter convention leads
to the following de�nition �which refers explicitly only to the commit phase��

De�nition ���� �bit commitment scheme�� A bit commitment scheme is a pair of prob�
abilistic polynomial�time interactive machines� denoted �S�R� �for sender and receiver��
satisfying�

� Input Speci�cation� The common input is an integer n presented in unary �serving
as the security parameter�� The private input to the sender is a bit v�

� Secrecy� The receiver �even when deviating arbitrarily from the protocol� cannot dis�
tinguish a commitment to � from a commitment to 	� Namely� for every probabilis�
tic polynomial�time machine R� interacting with S� the random variables describing
the output of R� in the two cases� namely hS���� R�i�	n� and hS�	�� R�i�	n�� are
polynomially�indistinguishable�

� Unambiguity�
Preliminaries


 A receiver�s view of an interaction with the sender� denoted �r�m�� consists of
the random coins used by the receiver �r� and the sequence of messages received
from the sender �m��


 Let � � f�� 	g� We say that a receiver�s view �of such interaction�� �r�m�� is a
possible ��commitment if there exists a string s such thatm describes the messages
received by R when R uses local coins r and interacts with machine S which uses
local coins s and has input ��� 	n�� �Using the notation of De�nition 
�	�� the

condition may be expressed as m � view
S����n�s�
R��n�r� ��


 We say that the receiver�s view �r�m� is ambiguous if it is both a possible ��
commitment and a possible 	�commitment�
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The unambiguity requirement asserts that� for all but a negligible fraction of the coin
tosses of the receiver� there exists no sequence of messages �from the sender� which
together with these coin tosses forms an ambiguous receiver view� Namely� that for
all but a negligible fraction of the r � f�� 	gpoly�n� there is no m such that �r�m� is
ambiguous�

The secrecy requirement �above� is analogous to the de�nition of indistinguishability of en�
cryptions �i�e�� De�nition �missing�enc�indist�def���� An equivalent formulation analo�
gous to semantic security �i�e�� De�nition �missing�enc�semant�def��� can be presented�
but is less useful in typical applications of commitment schemes� In any case� the secrecy re�
quirement is a computational one� On the other hand� the unambiguity requirement has an
information theoretic �avour �i�e�� it does not refer to computational powers�� A dual def�
inition� requiring information theoretic secrecy and computational unfeasibility of creating
ambiguities� is presented in Subsection ������

The secrecy requirement refers explicitly to the situation at the end of the commit phase�
On the other hand� we stress that the unambiguity requirement implicitly assumes that the
reveal phase takes the following form�

	� the sender sends to the receiver its initial private input� v� and the random coins� s�
it has used in the commit phase


�� the receiver veri�es that v and s �together with the coins �r� used by R in the commit
phase� indeed yield the messages thatR has received in the commit phase� Veri�cation
is done in polynomial�time �by running the programs S and R��

Note that the viability requirement �i�e�� asserting that if both parties follow the protocol
then� at the end of the reveal phase� the receiver gets v� is implicitly satis�ed by the above
convention�

Construction based on any one�way permutation

Some public�key encryption scheme can be used as a commitment scheme� This can be
done by having the sender generate a pair of keys and use the public�key together with the
encryption of a value as its commitment to the value� In order to satisfy the unambiguity
requirement� the underlying public�key scheme needs to satisfy additional requirements �e�g��
the set of legitimate public�keys should be e�ciently recognizable�� In any case� public�
key encryption schemes have additional properties not required of commitment schemes
and their existence seems to require stronger intractability assumptions� An alternative
construction� presented below� uses any one�way permutation� Speci�cally� we use a one�
way permutation� denoted f � and a hard�core predicate for it� denoted b �see Section �����
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Construction ���� �simple bit commitment�� Let f � f�� 	g� �� f�� 	g� be a function� and
b � f�� 	g� �� f�� 	g be a predicate�

	� commit phase� To commit to value v � f�� 	g �using security parameter n�� the sender
uniformly selects s � f�� 	gn and sends the pair �f�s�� b�s�� v� to the receiver�


� reveal phase� In the reveal phase� the sender reveals the string s used in the commit
phase� The receiver accepts the value v if f�s� � 	 and b�s�� v � �� where �	� �� is
the receiver�s view of the commit phase�

Proposition ���� Let f � f�� 	g� �� f�� 	g� be a length preserving 	�	 one�way function�
and b � f�� 	g� �� f�� 	g be a hard�core predicate of f � Then� the protocol presented in
Construction 
�
	 constitutes a bit commitment scheme�

Proof� The secrecy requirement follows directly from the fact that b is a hard�core of f �
The unambiguity requirement follows from the 	�	 property of f � In fact� there exists no
ambiguous receiver view� Namely� for each receiver view �	� ��� there is a unique s � f�� 	gj�j

so that f�s� � 	 and hence a unique v � f�� 	g so that b�s�� v � ��

Construction based on any one�way function

We now present a construction of a bit commitment scheme which is based on the weakest
assumption possible� the existence of one�way function� Proving the that the assumption is
indeed minimal is left as an exercise �i�e�� Exercise 	��� On the other hand� by the results in
Chapter � �speci�cally� Theorems ��		 and ������ the existence of one�way functions imply
the existence of pseudorandom generators expanding n�bit strings into �n�bit strings� We
will use such a pseudorandom generator in the construction presented below�

We start by motivating the construction� Let G be a pseudorandom generator satisfying
jG�s�j � � � jsj� Assume that G has the property that the sets fG�s� � s � f�� 	gng and
fG�s�� 	�n � s � f�� 	gng are disjoint� were 	� � denote the bit�by�bit exclusive�or of the
strings 	 and �� Then� the sender may commit itself to the bit v by uniformly selecting
s � f�� 	gn and sending the message G�s� � v�n �vk denotes the all�v�s k�bit long string��
Unfortunately� the above assumption cannot be justi�ed� in general� and a slightly more
complex variant is required� The key observation is that for most strings � � f�� 	g�n

the sets fG�s� � s � f�� 	gng and fG�s� � � � s � f�� 	gng are disjoint� Such a string
� is called good� This observation suggests the following protocol� The receiver uniformly
selects � � f�� 	g�n� hoping that it is good� and the sender commits to the bit v by uniformly
selecting s � f�� 	gn and sending the message G�s� if v � � and G�s�� � otherwise�

Construction ���� �bit commitment under general assumptions�� Let G � f�� 	g� ��
f�� 	g� be a function so that jG�s�j � � � jsj for all s � f�� 	g��
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	� commit phase� To receive a commitment to a bit �using security parameter n�� the
receiver uniformly selects r � f�� 	g�n and sends it to the sender� Upon receiving the
message r �from the receiver�� the sender commits to value v � f�� 	g by uniformly
selecting s � f�� 	gn and sending G�s� if v � � and G�s�� r otherwise�


� reveal phase� In the reveal phase� the sender reveals the string s used in the commit
phase� The receiver accepts the value � if G�s� � 	 and the value 	 if G�s�� r � 	�
where �r� 	� is the receiver�s view of the commit phase�

Proposition ���� If G is a pseudorandom generator� then the protocol presented in Con�
struction 
�
� constitutes a bit commitment scheme�

Proof� The secrecy requirement follows the fact that G is a pseudorandom generator�
Speci�cally� let Uk denote the random variable uniformly distributed on strings of length
k� Then for every r � f�� 	g�n� the random variables U�n and U�n � r are identically dis�
tributed� Hence� if it is feasible to �nd an r � f�� 	g�n such that G�Un� and G�Un� � r
are computationally distinguishable then either U�n and G�Un� are computationally dis�
tinguishable or U�n � r and G�Un� � r are computationally distinguishable� In either case
contradiction to the pseudorandomness of G follows�

We now turn to the unambiguity requirement� Following the motivating discussion�
we call � � f�� 	g�n good if the sets fG�s� � s � f�� 	gng and fG�s� � � � s � f�� 	gng
are disjoint� We say that � � f�� 	g�n yields a collision between the seeds s� and s� if
G�s�� � G�s�� � �� Clearly� � is good if it does not yield a collision between any pair of
seeds� On the other hand� there is a unique string � which yields a collision between a
given pair of seeds �i�e�� � � G�s�� � G�s���� Since there are ��n possible pairs of seeds�
at most ��n strings yield collisions between seeds and all the other �n�bit long strings are
good� It follows that with probability at least 	� ��n��n the receiver selects a good string�
The unambiguity requirement follows�

Extensions

The de�nition and the constructions of bit commitment schemes are easily extended to
general commitment schemes enabling the sender to commit to a string rather than to a
single bit� When de�ning the secrecy of such schemes the reader is advised to consult
De�nition �missing�enc�indist�def���� For the purposes of the rest of this section we
need a commitment scheme by which one can commit to a ternary value� Extending the
de�nition and the constructions to deal with this case is even more straightforward�

In the rest of this section we will need commitment schemes with a seemingly stronger
secrecy requirement than de�ned above� Speci�cally� instead of requiring secrecy with
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respect to all polynomial�time machines� we will require secrecy with respect to all �not
necessarily uniform� families of polynomial�size circuits� Assuming the existence of non�
uniformly one�way functions �see De�nition ��� in Section ���� commitment schemes with
nonuniform secrecy can be constructed� following the same constructions used in the uniform
case�

��	�� Zero�Knowledge proof of Graph Coloring

Presenting a zero�knowledge proof system for one NP�complete language implies the exis�
tence of a zero�knowledge proof system for every language in NP � This intuitively appealing
statement does require a proof which we postpone to a later stage� In the current subsec�
tion we present a zero�knowledge proof system for one NP�complete language� speci�cally
Graph ��Colorability� This choice is indeed arbitrary�

The language Graph ��Coloring� denoted G�C� consists of all simple graphs �i�e�� no
parallel edges or self�loops� that can be vertex�colored using � colors so that no two adjacent
vertices are given the same color� Formally� a graph G��V�E�� is ��colorable� if there exists
a mapping 
 � V �� f	� �� �g so that 
�u� �� 
�v� for every �u� v� � E�

Motivating discussion

The idea underlying the zero�knowledge proof system for G�C is to break the proof of the
claim that a graph is ��colorable into polynomially many pieces arranged in templates so
that each template by itself yields no knowledge and yet all the templates put together
guarantee the validity of the main claim� Suppose that the prover generates such pieces
of information� places each of them in a separate sealed and nontransparent envelope� and
allows the veri�er to open and inspect the pieces participating in one of the templates� Then
certainly the veri�er gains no knowledge in the process� yet his con�dence in the validity
of the claim �that the graph is ��colorable� increases� A concrete implementation of this
abstract scheme follows�

To prove that the graph G � �V�E� is ��colorable� the prover generates a random ��
coloring of the graph� denoted 
 �actually a random relabelling of a �xed coloring will do��
The color of each single vertex constitutes a piece of information concerning the ��coloring�
The set of templates corresponds to the set of edges �i�e�� each pair �
�u�� 
�v��� �u� v� � E�
constitutes a template to the claim that G is ��colorable�� Each single template �being
merely a random pair of distinct elements in f	� �� �g� yield no knowledge� However� if all
the templates are OK then the graph must be ��colorable� Consequently� graphs which are
not ��colorable must contain at least one bad template and hence are rejected with non�
negligible probability� Following is an abstract description of the resulting zero�knowledge
interactive proof system for G�C�
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� Common Input� A simple graph G��V�E��

� Prover�s �rst step� Let � be a ��coloring of G� The prover selects a random per�

mutation� �� over f	� �� �g� and sets 
�v�
def
� ����v��� for each v � V � Hence� the

prover forms a random relabelling of the ��coloring �� The prover sends the veri�er
a sequence of jV j locked and nontransparent boxes so that the vth box contains the
value 
�v�


� Veri�er�s �rst step� The veri�er uniformly selects an edge �u� v� � E� and sends it to
the prover


� Motivating Remark� The veri�er asks to inspect the colors of vertices u and v


� Prover�s second step� The prover sends to the veri�er the keys to boxes u and v


� Veri�er�s second step� The veri�er opens boxes u and v� and accepts if and only if
they contain two di�erent elements in f	� �� �g


Clearly� if the input graph is ��colorable then the prover can cause the veri�er to accept
always� On the other hand� if the input graph is not ��colorable then any contents placed in
the boxes must be invalid on at least one edge� and consequently the veri�er will reject with
probability at least 	�jEj� Hence� the above protocol exhibits a non�negligible gap in the
accepting probabilities between the case of inputs in G�C and inputs not in G�C� The zero�
knowledge property follows easily� in this abstract setting� since one can simulate the real
interaction by placing a random pair of di�erent colors in the boxes indicated by the veri�er�
We stress that this simple argument will not be possible in the digital implementation since
the boxes are not totally ine�ected by their contents �but are rather e�ected� yet in an
indistinguishable manner�� Finally� we remark that the con�dence in the validity of the
claim �that the input graph is ��colorable� may be increased by sequentially applying the
above proof su�cient many times� �In fact if the boxes are perfect as assumed above then
one can also use parallel repetitions��

The interactive proof

We now turn to the digital implementation of the above abstract protocol� In this imple�
mentation the boxes are implemented by a commitment scheme� Namely� for each box we
invoke an independent execution of the commitment scheme� This will enable us to exe�
cute the reveal phase in only some of the commitments� a property that is crucial to our
scheme� For simplicity of exposition� we use the simple commitment scheme presented in
Construction ���	 �or� more generally� any one�way interaction commitment scheme�� We
denote by Cs��� the commitment of the sender� using coins s� to the �ternary� value ��

Construction ���� �A zero�knowledge proof for Graph ��Coloring��
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� Common Input� A simple ���colorable� graph G � �V�E�� Let n
def
� jV j and V �

f	� ���� ng�

� Auxiliary Input to the Prover� A ��coloring of G� denoted ��

� Prover�s �rst step �P	�� The prover selects a random permutation� �� over f	� �� �g�

and sets 
�v�
def
� ����v��� for each v � V � The prover uses the commitment scheme

to commit itself to the color of each of the vertices� Namely� the prover uniformly and
independently selects s�� ���� sn � f�� 	gn� computes ci � Csi�
�i��� for each i � V � and
sends c�� ���� cn to the veri�er�

� Veri�er�s �rst step �V	�� The veri�er uniformly selects an edge �u� v� � E� and sends
it to the prover�

� Motivating Remark� The veri�er asks to inspect the colors of vertices u and v�

� Prover�s second step �P��� Without loss of generality� we may assume that the message
received for the veri�er is an edge� denoted �u� v�� �Otherwise� the prover sets �u� v� to
be some predetermined edge of G�� The prover uses the reveal phase of the commitment
scheme in order to reveal the colors of vertices u and v to the veri�er� Namely� the
prover sends �su� 
�u�� and �sv� 
�v�� to the veri�er�

� Veri�er�s second step �V��� The veri�er checks whether the values corresponding to
commitments u and v were revealed correctly and whether these values are di�erent�
Namely� upon receiving �s� �� and �s�� ��� the veri�er checks whether cu � Cs����
cv � Cs����� and � �� � �and both in f	� �� �g�� If all conditions hold then the veri�er
accepts� Otherwise it rejects�

Let us denote the above prover�s program by PG�C �

We stress that both the programs of the veri�er and of the prover can be implemented in
probabilistic polynomial�time� In case of the prover�s program this property is made possible
by the use of the auxiliary input to the prover� As we will shortly see� the above protocol
constitutes a weak interactive proof for G�C� As usual� the con�dence can be increased
�i�e�� the error probability can be decreased� by su�ciently many successive applications�
However� the mere existence of an interactive proof for G�C is obvious �since G�C �
NP�� The punch�line is that the above protocol is zero�knowledge �also with respect to
auxiliary input�� Using the Sequential Composition Lemma �Lemma ��	��� it follows that
also polynomially many sequential applications of this protocol preserve the zero�knowledge
property�

Proposition ���� Suppose that the commitment scheme used in Construction 
�
� satis�
�es the �nonuniform� secrecy and the unambiguity requirements� Then Construction 
�
�
constitutes an auxiliary input zero�knowledge �generalized� interactive proof for G�C�
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For further discussion of Construction ���� see remarks at the end of the current subsection�

Proof of Proposition ����

We �rst prove that Construction ���� constitutes a weak interactive proof for G�C� Assume
�rst that the input graph is indeed ��colorable� Then if the prover follows the program in
the construction then the veri�er will always accept �i�e�� accept with probability 	�� On
the other hand� if the input graph is not ��colorable then� no matter what the prover
does� the n commitments sent in Step �P	� cannot �correspond� to a ��coloring of the
graph �since such coloring does not exists�� We stress that the unique correspondence
of commitments to values is guaranteed by the unambiguity property of the commitment
scheme� It follows that there must exists an edge �u� v� � E so that cu and cv� sent in step
�P	�� are not commitments to two di�erent elements of f	� �� �g� Hence� no matter how
the prover behaves� the veri�er will reject with probability at least 	�jEj� Hence there is
a non�negligible �in the input length� gap between the accepting probabilities in case the
input is in G�C and in case it is not�

We now turn to show that PG�C � the prover in Construction ����� is indeed zero�
knowledge for G�C� The claim is proven without reference to auxiliary input �to the
veri�er�� yet extending the argument to auxiliary input zero�knowledge is straightforward�
Again� we will use the alternative formulation of zero�knowledge �i�e�� De�nition ��	���
and show how to simulate V ��s view of the interaction with PG�C � for every probabilistic
polynomial�time interactive machine V �� As in the case of the Graph Isomorphism proof
system �i�e�� Construction ��	�� it is quite easy to simulate the veri�er�s view of the in�
teraction with PG�C � provided that the veri�er follows the speci�ed program� However� we
need to simulate the view of the veri�er in the general case �in which it uses an arbitrary
polynomial�time interactive program�� Following is an overview of our simulation �i�e�� of
our construction of a simulator� M�� for an arbitrary V ���

The simulator M� incorporates the code of the interactive program V �� On input a
graph G��V�E�� the simulator M� �not having access to a ��coloring of G� �rst uniformly
and independently selects n values e�� ���� en � f	� �� �g� and constructs a commitment to
each of them� These ei�s constitute a �pseudo�coloring� of the graph� in which the end�points
of each edge are colored di�erently with probability �

� � In doing so� the simulator behaves
very di�erently from PG�C � but nevertheless the sequence of commitments so generated is
computationally indistinguishable from the sequence of commitments to a valid ��coloring
sent by PG�C in step �P	�� If V �� when given the commitments generated by the simulator�
asks to inspect an edge �u� v� so that eu �� ev then the simulator can indeed answer correctly�
and doing so it completes a simulation of the veri�er�s view of the interaction with PG�C �
However� if V � asks to inspect an edge �u� v� so that eu � ev then the simulator has no way
to answer correctly� and we let it halt with output 
� We stress that we don�t assume that
the simulator a�priori �knows� which edge the veri�er V � will ask to inspect� The validity
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of the simulator stems from a di�erent source� If the veri�er�s request were oblivious of the
prover�s commitment then with probability �

� the veri�er would have asked to inspect an
edge which is properly colored� Using the secrecy property of the commitment scheme it
follows that the veri�er�s request is �almost oblivious� of the values in the commitments�
The zero�knowledge claim follows �yet� with some e�ort�� Further detail follow� We start
with a detailed description of the simulator�

Simulator M�� On input a graph G��V�E�� the simulator M� proceeds as follows�

	� Setting the random tape of V �� Let q��� denote a polynomial bounding the running�
time of V �� The simulator M� starts by uniformly selecting a string r � f�� 	gq�jxj��
to be used as the contents of the local random tape of V ��

�� Simulating the prover�s �rst step �P	�� The simulator M� uniformly and indepen�
dently selects n values e�� ���� en � f	� �� �g and n random strings s�� ���� sn � f�� 	gn

to be used for committing to these values� The simulator computes� for each i � V � a
commitment di � Csi�ei��

�� Simulating the veri�er�s �rst step �V	�� The simulator M� initiates an execution of
V � by placing G on V ��s �common input tape�� placing r �selected in step �	� above�
on V ��s �local random tape�� and placing the sequence �d�� ���� dn� �constructed in step
��� above� on V ��s �incoming message tape�� After executing a polynomial number
of steps of V �� the simulator can read the outgoing message of V �� denoted m� Again�
we assume without loss of generality that m � E and let �u� v� � m� �Actually m �� E
is treated as in step �P�� in PG�C 
 namely� �u� v� is set to be some predetermined edge
of G��


� Simulating the prover�s second step �P
�� If eu �� ev then the simulator halts with
output �G� r� �d�� ���� dn�� �su� eu� sv� ev���

�� Failure of the simulation� Otherwise �i�e�� eu � ev�� the simulator halts with output

�

Using the hypothesis that V � is polynomial�time� it follows that so is the simulator M��
It is left to show that M� outputs 
 with probability at most �

� � and that� conditioned
on not outputting 
� the simulator�s output is computationally indistinguishable from the
veri�er�s view in a �real interaction with PG�C�� The proposition will follow by running the
above simulator n times and outputting the �rst output di�erent from 
� We now turn to
prove the above two claims�

Claim ������� For every su�ciently large graph� G��V�E�� the probability thatM��G� � 

is bounded above by �

� �
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proof� As above� n will denote the cardinality of the vertex set of G� Let us denote by
pu�v�G� r� �e�� ���� en�� the probability� taken over all the choices of the s�� ���� sn � f�� 	gn�
that V �� on input G� random coins r� and prover message �Cs��e��� ���� Csn�en��� replies with
the message �u� v�� We assume� for simplicity� that V � always answers with an edge of G
�since otherwise its message is anyhow treated as if it were an edge of G�� We �rst claim
that for every su�ciently large graph� G��V�E�� every r � f�� 	gq�n�� every edge �u� v� � E�
and every two sequences 	� � � f	� �� �gn� it holds that

jpu�v�G� r� 	�� pu�v�G� r� ��j �
	

�jEj

Actually� we can prove the following�

Request Obliviousness Subclaim� For every polynomial p���� every su�ciently large graph�
G � �V�E�� every r � f�� 	gq�n�� every edge �u� v� � E� and every two sequences 	� � �
f	� �� �gn� it holds that

jpu�v�G� r� 	�� pu�v�G� r� ��j �
	

p�n�

The Request Obliviousness Subclaim is proven using the non�uniform secrecy of the com�
mitment scheme� The reader should be able to �ll�up the details of such a proof at this
stage� Nevertheless� a proof of the subclaim follows�

Proof of the Request Obliviousness Subclaim� Assume on the contrary that there
exists a polynomial p���� and an in�nite sequence of integers such that for each
integer n �in the sequence� there exists an n�vertices graph� Gn � �Vn� En��
a string rn � f�� 	gq�n�� an edge �un� vn� � En� and two sequences 	n� �n �
f	� �� �gn so that

jpun�vn�Gn� rn� 	n�� pun�vn�Gn� rn� �n�j �
	

p�n�

We construct a circuit family� fAng� by letting An incorporate the interactive
machine V �� the graph Gn� and rn� un� vn� 	n� �n� all being as in the contradic�
tion hypothesis� On input� y �supposedly a commitment to either 	n or �n��
circuit An runs V � �on input Gn coins rn and prover�s message y�� and out�
puts 	 if and only if V � replies with �un� vn�� Clearly� fAng is a �non�uniform�
family of polynomial�size circuits� The key observation is that An distinguishes
commitments to 	n from commitments to �n� since

Prob�An�CU
n�
���� � 	� � pun�vn�Gn� rn� ��

where Uk denotes� as usual� a random variable uniformly distributed over f�� 	gk�
Contradiction to the �non�uniform� secrecy of the commitment scheme follows by
a standard hybrid argument �which relates the indistinguishability of sequences
to the indistinguishability of single commitments��
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Returning to the proof of Claim �����	� we now use the above subclaim to upper bound
the probability that the simulator outputs 
� The intuition is simple� Since the requests
of V � are almost oblivious of the values to which the simulator has committed itself� it is
unlikely that V � will request to inspect an illegally colored edge more often than if he would
have made the request without looking at the commitment� A formal �but straightforward�
analysis follows�

Let M�
r �G� denote the output of machine M� on input G� conditioned on the event

that it chooses the string r in step �	�� We remind the reader that M�
r �G� � 
 only in

case the veri�er on input G� random tape r� and a commitment to some pseudo�coloring
�e�� ���� en�� asks to inspect an edge �u� v� which is illegally colored �i�e�� eu � ev�� Let
E�e������en� denote the set of edges �u� v� � E that are illegally colored �i�e�� satisfy eu � ev�
with respect to �e�� ���� en�� Then� �xing an arbitrary r and considering all possible choices
of �e�� ���� en� � f	� �� �gn�

Prob�M�
r �G� � 
� �

X
e�f�����gn

	

�n
�

X
�u�v��Ee

pu�v�G� r� e�

�Recall that pu�v�G� r� e� denotes the probability that the veri�er asks to inspect �u� v� when
given a sequence of random commitments to the values e�� De�ne Bu�v to be the set of n�
tuples �e�� ���� en� � f	� �� �g

n satisfying eu � ev� Clearly� jBu�v j � �n��� By straightforward
calculation we get

Prob�M�
r �G� � 
� �

	

�n
�
X

�u�v��E

X
e�Bu�v

pu�v�G� r� e�

�
	

�n
�
X

�u�v��E

jBu�vj �

�
pu�v�G� r� �	� ���� 	���

	

�jEj

�

�
	

�
�

	

�
�
X

�u�v��E

pu�v�G� r� �	� ���� 	��

�
	

�
�

	

�

The claim follows� �

For simplicity� we assume in the sequel that on common input G � G�C� the prover gets
the lexicographically �rst ��coloring of G as auxiliary input� This enables us to omit the
auxiliary input to PG�C �which is now implicit in the common input� from the notation�
The argument is easily extended to the general case where PG�C gets an arbitrary ��coloring
of G as auxiliary input�

Claim ������� The ensemble consisting of the output of M� on input G� �V�E� � G�C�
conditioned on it not being 
� is computationally indistinguishable from the ensemble
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fviewPG�C

V � �G�gG�G�C � Namely� for every probabilistic polynomial�time algorithm� A� every
polynomial p���� and all su�ciently large graph G��V�E��

jProb�A�M��G�� � 	jM��G� �� 
�� Prob�A�viewPG�C

V � �G�� � 	�j �
	

p�jV j�

We stress that these ensembles are very di�erent �i�e�� the statistical distance between them
is very close to the maximum possible�� and yet they are computationally indistinguishable�
Actually� we can prove that these ensembles are indistinguishable also by �non�uniform�
families of polynomial�size circuits� In �rst glance it seems that Claim ������ follows easily
from the secrecy property of the commitment scheme� Indeed� Claim ������ is proven
using the secrecy property of the commitment scheme� yet the proof is more complex than
one anticipates �at �rst glance�� The di�culty lies in the fact that the above ensembles
consist not only of commitments to values� but also of an opening of some of the values�
Furthermore� the choice of which commitments are to be opened depends on the entire
sequence of commitments�

proof� Given a graph G��V�E�� we de�ne for each edge �u� v� � E two random variables
describing� respectively� the output of M� and the view of V � in a real interaction� in case
the veri�er asked to inspect the edge �u� v�� Speci�cally

� 
u�v�G� describes M��G� conditioned on M��G� containing the �reveal information�
for vertices u and v�

� �u�v�G� describes viewPG�C

V � �G� conditioned on viewPG�C

V � �G� containing the �reveal
information� for vertices u and v�

Let pu�v�G� denote the probability thatM��G� contains �reveal information� for vertices
u and v� conditioned on M��G� �� 
� Similarly� let qu�v�G� denote the probability that

viewPG�C

V � �G� contains �reveal information� for vertices u and v�

Assume� in the contrary to the claim� that the ensembles mentioned in the claim are
computationally distinguishable� Then one of the following cases must occur�

Case 	� There is a noticeable di�erence between the probabilistic pro�le of the requests
of V � when interacting with PG�C and the requests of V � when invoked by M��
Formally� there exists a polynomial p��� and an in�nite sequence of integers such that
for each integer n �in the sequence� there exists an n�vertices graph Gn � �Vn� En��
and an edge �un� vn� � En� so that

jpun�vn�Gn�� qun�vn�Gn�j �
	

p�n�
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Case �� An algorithm distinguishing the above ensembles does so also conditioned on
V � asking for a particular edge� Furthermore� this request occurs with noticeable
probability which is about the same in both ensembles� Formally� there exists a
probabilistic polynomial�time algorithm A� a polynomial p��� and an in�nite sequence
of integers such that for each integer n �in the sequence� there exists an n�vertices
graph Gn��Vn� En�� and an edge �un� vn� � En� so that the following conditions hold

� qun�vn�Gn� �
�

p�n�

� jpun�vn�Gn�� qun�vn�Gn�j �
�

��p�n��

� jProb�A�
un�vn�Gn�� � 	�� Prob�A��un�vn�Gn�� � 	�j � �
p�jV j� �

Case 	 can be immediately discarded since it leads easily to contradiction �to the non�
uniform secrecy of the commitment scheme�� The idea is to use the Request Obliviousness
Subclaim appearing in the proof of Claim �����	� Details are omitted� We are thus left with
Case ��

We are now going to show that also Case � leads to contradiction� To this end we will
construct a circuit family that will distinguish commitments to di�erent sequences of values�
Interestingly� neither of these sequences will equal the sequence of commitments generated
by either the prover or by the simulator� Following is an overview of the construction�
The nth circuit gets a sequence of �n commitments and produces from it a sequence of n
commitments �part of which is a subsequence of the input�� When the input sequence to the
circuit is taken from one distribution the circuit generates a subsequence corresponding to
the sequence of commitments generated by the prover� Likewise� when the input sequence
�to the circuit� is taken from the other distribution the circuit will generate a subsequence
corresponding to the sequence of commitments generated by the simulator� We stress that
the circuit does so without knowing from which distribution the input is taken� After
generated an n�long sequence� the circuit feeds it to V �� and depending on V ��s behaviour
the circuit may feed part of the sequence to algorithm A �mentioned in Case ��� Following
is a detailed description of the circuit family�

Let us denote by �n the �lexicographically �rst� ��coloring of Gn used by the prover�
We construct a circuit family� denoted fAng� by letting An incorporate the interactive
machine V �� the �distinguishing� algorithm A� the graph Gn� the ��coloring �n� and the
edge �un� vn�� all being those guaranteed in Case �� The input to circuit An will be a sequence
of commitments to �n values� each in f	� �� �g� The circuit will distinguish commitments
to a uniformly chosen �n�long sequence from commitments to the �xed sequence 	n�n�n

�i�e�� the sequence consisting of n 	�values� followed by n ��values� followed by n ��values��
Following is a description of the operation of An�

On input� y � �y�� ���� y�n� �where each yi is supposedly a commitment to an element of
f	� �� �g�� the circuit An proceeds as follows�
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� An �rst selects uniformly a permutation � over f	� �� �g� and computes 
�i� � ���n�i���
for each i � Vn�

� For each i � Vn � fun� vng� the circuit sets ci � y��i��n�n�i �i�e�� ci � yi if 
�i� � 	�
ci � yn�i if 
�i� � �� and ci � y�n�i if 
�i� � ��� Note that each yj is used at most
once� and �n� � of the yj �s are not used at all�

� The circuit uniformly selects su� sv � f�� 	gn� and sets cun � Csun �
�un�� and cvn �
Csvn�
�vn���

� The circuit initiates an execution of V � by placing Gn on V ��s �common input tape��
placing a uniformly selected r � f�� 	gq�n� on V ��s �local random tape�� and placing
the sequence �c�� ���� cn� �constructed above� on V ��s �incoming message tape�� The
circuit reads the outgoing message of V �� denoted m�

� If m �� �un� vn� then the circuit outputs 	�

� Otherwise �i�e�� m � �un� vn��� the circuit invokes algorithm A and outputs

A�Gn� r� �c�� ���� cn�� �sun � 
�un�� svn � 
�vn���

Clearly the size of An is polynomial in n� We now evaluate the distinguishing ability of
An� Let us �rst consider the probability that circuit An outputs 	 on input a random com�
mitment to the sequence 	n�n�n� The reader can easily verify that the sequence �c�� ���� cn�
constructed by circuit An is distributed identically to the sequence sent by the prover in
step �P	�� Hence� letting C��� denote a random commitment to a sequence � � f	� �� �g��
we get

Prob�An�C�	n�n�n�� � 	� � �	� qun�vn�Gn��

�qun�vn�Gn� � Prob�A��un�vn�Gn�� � 	�

On the other hand� we consider the probability that circuit An outputs 	 on input a
random commitment to a uniformly chosen �n�long sequence over f	� �� �g� The reader can
easily verify that the sequence �c�� ���� cn� constructed by circuit An is distributed identically
to the sequence �d�� ���� dn� generated by the simulator in step ���� conditioned on dun �� dvn �
Letting T�n denote a random variable uniformly distributed over f	� �� �g�n� we get

Prob�An�C�T�n� � 	� � �	� pun�vn�Gn��

�pun�vn�Gn� �Prob�A�
un�vn�Gn�� � 	�

Using the conditions of Case �� and omitting Gn from the notation� we get

jProb�An�C�	n�n�n�� � 	�� Prob�An�C�T�n� � 	�j
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� qun�vn � jProb�A��un�vn� � 	�� Prob�A�
un�vn� � 	�j � � � jpun�vn � qun�vn j

�
	

p�n�
�

	

p�n�
� � �

	

� � p�n��

�
	

� � p�n��

Hence� the circuit family fAng distinguishes commitments to f	n�n�ng from commitments
to fT�ng� Combining an averaging argument with a hybrid argument� we conclude that there
exists a polynomial�size circuit family which distinguishes commitments� This contradicts
the non�uniform secrecy of the commitment scheme�

Having reached contradiction in both cases� Claim ������� �

Combining Claims �����	 and ������� the zero�knowledge property of PG�C follows� This
completes the proof of the proposition�

Concluding remarks

Construction ���� has been presented using a unidirectional commitment scheme� A funda�
mental property of such schemes is that their secrecy is preserved also in case �polynomi�
ally� many instances are invoked simultaneously� The proof of Proposition ���� indeed took
advantage on this property� We remark that Construction ���� also possesses this simulta�
neous secrecy property� and hence the proof of Proposition ���� can be carried out also if
the commitment scheme in used is the one of Construction ���� �see Exercise 	
�� We recall
that this latter construction constitutes a commitment scheme if and only if such schemes
exist at all �since Construction ���� is based on any one�way function and the existence of
one�way functions is implied by the existence of commitment schemes��

Proposition ���� assumes the existence of a nonuniformly secure commitment scheme�
The proof of the proposition makes essential use of the nonuniform security by incorpo�
rating instances on which the zero�knowledge property fails into circuits which contradict
the security hypothesis� We stress that the sequence of �bad� instances is not necessar�
ily constructible by e�cient �uniform� machines� Put in other words� the zero�knowledge
requirement has some nonuniform �avour� A uniform analogue of zero�knowledge would
require only that it is infeasible to �nd instances on which a veri�er gains knowledge �and
not that such instances do not exist at all�� Using a uniformly secure commitment scheme�
Construction ���� can be shown to be uniformly zero�knowledge�

By itself� Construction ���� has little practical value� since it o�ers very moderate accep�
tance gap �between inputs inside and outside of the language�� Yet� repeating the protocol�
on common input G � �V�E�� for k � jEj times �and letting the veri�er accept only if all
iterations are accepting� yields an interactive proof for G�C with error probability bounded
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by e�k � where e � ���	� is the natural logarithm base� Namely� on common input G � G�C
the veri�er always accepts� whereas on common input G �� G�C the veri�er accepts with
probability bounded above by e�k �no matter what the prover does�� We stress that� by
virtue of the Sequential Composition Lemma �Lemma ��	��� if these iterations are per�
formed sequentially then the resulting �strong� interactive proof is zero�knowledge as well�
Setting k to be any super�logarithmic function of jGj �e�g�� k � jGj�� the error probability of
the resulting interactive proof is negligible� We remark that it is unlikely that one can prove
an analogous statement with respect to the interactive proof which results by performing
these iteration in parallel� See Section ����

An important property of Construction ���� is that the prescribed prover �i�e�� PG�C�
can be implemented in probabilistic polynomial�time� provided that it is given as auxiliary
input a ��coloring of the common input graph� As we shall see� this property is essential to
the applications of Construction ���� to the design of cryptographic protocols�

As admitted in the beginning of the current subsection� the choice of G�C as a boot�
strapping NP�complete language is totally arbitrary� It is quite easy to design analogous
zero�knowledge proofs for other popular NP�complete languages� Such constructions will
use the same underlying ideas as those presented in the motivating discussion�

��	�� The General Result and Some Applications

The theoretical and practical importance of a zero�knowledge proof for Graph ��Coloring
�e�g�� Construction ����� follows from the fact that it can be applied to prove� in zero�
knowledge� any statement having a short proof that can be e�ciently veri�ed� More pre�
cisely� a zero�knowledge proof system for a speci�c NP�complete language �e�g�� Construc�
tion ����� can be used to present zero�knowledge proof systems for every language in NP �

Before presenting zero�knowledge proof systems for every language in NP � let us recall
some conventions and facts concerning NP � We �rst recall that every language L � NP is
characterized by a binary relation R satisfying the following properties

� There exists a polynomial p��� such that for every �x� y� � R it holds jyj � p�jxj��

� There exists a polynomial�time algorithm for deciding membership in R�

� L � fx � �w s�t� �x� w� � Rg�

Actually� each language in NP can be characterized by in�nitely many such relations�
Yet� for each L � NP we �x and consider one characterizing relation� denoted RL� Sec�
ondly� since G�C is NP�complete� we know that L is polynomial�time reducible �i�e�� Karp�
reducible� to G�C� Namely� there exists a polynomial�time computable function� f � such
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that x � L if and only if f�x� � G�C� Thirdly� we observe that the standard reduction of
L to G�C� denoted fL� has the following additional property�

There exists a polynomial�time computable function� denoted gL� such that for
every �x� w� � RL it holds that gL�w� is a ��coloring of fL�x��

We stress that the above additional property is not required by the standard de�nition
of a Karp�reduction� Yet� it can be easily veri�ed that the standard reduction fL �i�e��
the composition of the generic reduction of L to SAT � the standard reductions of SAT to
�SAT � and the standard reduction of �SAT to G�C� does have such a corresponding gL�
�See Exercise 	��� Using these conventions� we are ready to �reduce� the construction of
zero�knowledge proof for NP to a zero�knowledge proof system for G�C�

Construction ���	 �A zero�knowledge proof for a language L � NP��

� Common Input� A string x �supposedly in L��

� Auxiliary Input to the Prover� A witness� w� for the membership of x � L �i�e�� a
string w such that �x� w� � RL��

� Local pre�computation� Each party computes G
def
� fL�x�� The prover computes �

def
�

gL�w��

� Invoking a zero�knowledge proof for G�C� The parties invoke a zero�knowledge proof
on common input G� The prover enters this proof with auxiliary input ��

Proposition ���
 Suppose that the subprotocol used in the last step of Construction 
�
� is
indeed an auxiliary input zero�knowledge proof for G�C� Then Construction 
�
� constitutes
an auxiliary input zero�knowledge proof for L�

Proof� The fact that Construction ���� constitutes an interactive proof for L is immediate
from the validity of the reduction �and the fact that it uses an interactive proof for G�C��
In �rst glance it seems that the zero�knowledge property of Construction ���� follows as
immediately� There is however a minor issue that one should not ignore� The veri�er in
the zero�knowledge proof for G�C� invoked in Construction ����� possesses not only the
common input graph G but also the original common input x which reduces to G� This
extra information might have helped this veri�er to extract knowledge in theG�C interactive
proof� if it were not the case that this proof system is zero�knowledge also with respect to
auxiliary input� can be dealt with using auxiliary input to the veri�er in Details follow�

Suppose we need to simulate the interaction of a machine V � with the prover� on common
input x� Without loss of generality we may assume that machine V � invokes an interactive
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machine V �� which interacts with the prover of the G�C interactive proof� on common input
G � fL�x� and having auxiliary input x� Using the hypothesis that the G�C interactive
proof is auxiliary input zero�knowledge� it follows that there exists a simulator M�� that
on input �G� x� simulates the interaction of V �� with the G�C�prover �on common input
G and veri�er�s auxiliary input x�� Hence� the simulator for Construction ����� denoted

M�� operates as follows� On input x� the simulator M� computes G
def
� fL�x� and outputs

M���G� x�� The proposition follows�

We remark that an alternative way of resolving the minor di�culty addressed above is
to observe that the function fL �i�e�� the one induced by the standard reductions� can be
inverted in polynomial�time �see Exercise 	��� In any case� we immediately get

Theorem ���� Suppose that there exists a commitment scheme satisfying the �nonuni�
form� secrecy and the unambiguity requirements� Then every language in NP has an aux�
iliary input zero�knowledge proof system� Furthermore� the prescribed prover in this system
can be implemented in probabilistic polynomial�time� provided it gets the corresponding NP�
witness as auxiliary input�

We remind the reader that the condition of the theorem is satis�ed if �and only if� there ex�
ists �non�uniformly� one�way functions� See Theorem ���� �asserting that one�way functions
imply pseudorandom generators�� Proposition ���
 �asserting that pseudorandom genera�
tors imply commitment schemes�� and Exercise 	� �asserting that commitment schemes
imply one�way functions��

An Example� Proving properties of secrets

A typical application of Theorem ���� is to enable one party to prove some property of
its secrets without revealing the secrets� For concreteness� consider a party� denoted S�
sending encrypted messages �over a public channel� to various parties� denoted R�� ���� Rt�
and wishing to prove to some other party� denoted V � that all the corresponding plaintext
messages are identical� Further suppose that the messages are sent to the receivers �i�e�� the
Ri�s� using a secure public�key encryption scheme� and let Ei��� denote the �probabilistic�
encryption employed when sending a message to Ri� Namely� to send messageMi to Ri� the
sender uniformly chooses ri � f�� 	gn� computes the encryption Ei�ri�Mi�� and transmits it
over the public channel� In order to prove that C� � E��r��M� and C� � E��r��M� both
encrypt the same message it su�ces to reveal r�� r� and M � However� doing so reveals the
message M to the veri�er� Instead� one can prove in zero�knowledge that there exists r��
r� and M such that C� � E��r��M� and C� � E��r��M�� The existence of such a zero�
knowledge proof follows from Theorem ���� and the fact that the statement to be proven
is of NP�type� Formally� we de�ne a language

L
def
� f�C�� C�� � �r�� r��M s�t� C� � E��r��M� and C� � E��r��M�g
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Clearly� the language L is in NP � and hence Theorem ���� can be applied� Additional
examples are presented in Exercise 	��

Zero�Knowledge for any language in IP

Interestingly� the result of Theorem ���� can be extended �to the maximum�
 in the sense
that under the same conditions every language having an interactive proof system also has
a zero�knowledge proof system� Namely�

Theorem ���� Suppose that there exists a commitment scheme satisfying the �nonuni�
form� secrecy and unambiguity requirements� Then every language in IP has a zero�
knowledge proof system�

We believe that this extension does not have much practical signi�cance� Theorem ����
is proven by �rst converting the interactive proof for L into one in which the veri�er uses
only �public coins� �i�e�� an Arthur�Merlin proof�
 see Chapter �� Next� the veri�er�s
coin tosses are forced to be almost unbiased by using a coin tossing protocols �see section
    !!!�� Finally� the prover�s replies are sent using a commitment scheme� At the end
of the interaction the prover proves in zero�knowledge that the original veri�er would have
accepted the hidden transcript �this is an NP�statement��

��	�	 E
ciency Considerations

When presenting zero�knowledge proof systems for every language in NP � we made no
attempt to present the most e�cient construction possible� Our main concern was to
present a proof which is as simple to explain as possible� However� once we know that
zero�knowledge proofs for NP exist� it is natural to ask how e�cient can they be�

In order to establish common grounds for comparing zero�knowledge proofs� we have to
specify a desired measure of error probability �for these proofs�� An instructive choice� used
in the sequel� is to consider the complexity of zero�knowledge proofs with error probability
��k � where k is a parameter that may depend on the length of the common input� Another
issue to bear in mind when comparing zero�knowledge proof is under what assumptions �if
at all� are they valid� Throughout this entire subsection we stick to the assumption used
so far �i�e�� the existence of one�way functions��

Standard e�ciency measures

Natural and standard e�ciency measures to consider are
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� The communication complexity of the proof� The most important communication
measure is the round complexity �i�e�� the number of message exchanges�� The total
number of bits exchanged in the interaction is also an important consideration�

� The computational complexity of the proof� Speci�cally the number of elementary
steps taken by each of the parties�

Communication complexity seems more important than computational complexity� as long
as the trade�o� between them is �reasonable��

To demonstrate these measures we consider the zero�knowledge proof for G�C presented
in Construction ����� Recall that this proof system has very moderate acceptance gap�
speci�cally 	�jEj� on common input graph G � �V�E�� So Construction ���� has to be
applied sequentially k � jEj in order to result in a zero�knowledge proof with error probability
e�k � where e � ���	� is the natural logarithm base� Hence� the round complexity of the
resulting zero�knowledge proof is O�k � jEj�� the bit complexity is O�k � jEj � jV j��� and the
computational complexity is O�k � jEj �poly�jV j��� where the polynomial poly��� depends on
the commitment scheme in use�

Much more e�cient zero�knowledge proof systems may be custom�made for speci�c
languages inNP � Furthermore� even if one adopts the approach of reducing the construction
of zero�knowledge proof systems for NP languages to the construction of a zero�knowledge
proof system for a single NP�complete language� e�ciency improvements can be achieved�
For example� using Exercise 	�� one can present zero�knowledge proofs for the Hamiltonian
Circuit Problem �again with error ��k� having round complexity O�k�� bit complexity
O�k � jV j����� and computational complexity O�k � jV j��O����� where � � � is a constant
depending on the desired security of the commitment scheme �in Construction ���� and
in Exercise 	� we chose � � 	�� Note that complexities depending on the instance size
are e�ected by reductions among problems� and hence a fair comparison is obtained by
considering the complexities for the generic problem �i�e�� Bounded Halting��

The round complexity of a protocol is a very important e�ciency consideration and it
is desirable to reduce it as much as possible� In particular� it is desirable to have zero�
knowledge proofs with constant number of rounds and negligible error probability� This
goal is pursued in Section ����

Knowledge Tightness� a particular e�ciency measure

The above e�ciency measures are general in the sense that they are applicable to any
protocol �independent on whether it is zero�knowledge or not�� A particular measure of
e�ciency applicable to zero�knowledge protocols is their knowledge tightness� Intuitively�
knowledge tightness is a re�nement of zero�knowledge which is aimed at measuring the
�actual security� of the proof system� Namely� how much harder does the veri�er need to
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work� when not interacting with the prover� in order to compute something which it can
computes after interacting with the prover� Thus� knowledge tightness is the ratio between
the �expected� running�time of the simulator and the running�time of the veri�er in the
real interaction simulated by the simulator� Note that the simulators presented so far� as
well as all known simulator� operate by repeated random trials and hence an instructive
measure of tightness should consider their expected running�time �assuming they never err
�i�e�� output the special 
 symbol�� rather than the worst case�

De�nition ���� �knowledge tightness�� Let t � IN �� IN be a function� We say that a zero�
knowledge proof for language L has knowledge tightness t��� if there exists a polynomial p���
such that for every probabilistic polynomial�time veri�er V � there exists a simulator M� �as
in De�nition 
�	
� such that for all su�ciently long x � L we have

TimeM��x�� p�jxj�

TimeV ��x�
� t�jxj�

where TimeM��x� denotes the expected running�time of M� on input x� and TimeV ��x�
denotes the running time of V � on common input x�

We assume a model of computation allowing one machine to invoke another machine at
the cost of merely the running�time of the latter machine� The purpose of polynomial p����
in the above de�nition� is to take care of generic overhead created by the simulation �this is
important in case the veri�er V � is extremely fast�� We remark that the de�nition of zero�
knowledge does not guarantee that the knowledge tightness is polynomial� Yet� all known
zero�knowledge proof� and more generally all zero�knowledge properties demonstrated using
a single simulator with black�box access to V �� have polynomial knowledge tightness� In
particular� Construction ��	� has knowledge tightness �� whereas Construction ���� has
knowledge tightness ���� We believe that knowledge tightness is a very important e�ciency
consideration and that it desirable to have it be a constant�

��	 
 Negative Results

In this section we review some negative results concerning zero�knowledge� These results
can be viewed as evidence to the belief that some of the shortcomings of the results and con�
structions presented in previous sections are unavoidable� Most importantly� Theorem ����
asserts the existence of �computational� zero�knowledge proof systems for NP � assuming
that one�way functions exist� Two natural questions arise

	� An unconditional result� Can one prove the existence of �computational� zero�knowledge
proof systems for NP � without making any assumptions!
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�� Perfect zero�knowledge� Can one present perfect zero�knowledge proof systems for
NP � even under some reasonable assumptions!

The answer to both question seems to be negative�

Another important question concerning zero�knowledge proofs is their preservation un�
der parallel composition� We show that� in general� zero�knowledge is not preserved under
parallel composition �i�e�� there exists a pair of zero�knowledge protocols that when executed
in parallel leak knowledge in a strong sense�� Furthermore� we consider some natural proof
systems� obtained via parallel composition of zero�knowledge proofs� and indicate that it is
unlikely that the resulting composed proofs can be proven to be zero�knowledge�

����� Implausibility of an Unconditional �NP in ZK
 Result

Recall that Theorem ���� asserts the existence of zero�knowledge proofs for any languages
in IP � provided that nonuniform one�way functions exist� In this subsection we consider the
question of whether this su�cient condition is also necessary� The results� known to date�
seem to provide some �yet� weak� indication in this direction� Speci�cally� the existence of
zero�knowledge proof systems for languages out of BPP implies very weak forms of one�
wayness� Also� the existence of zero�knowledge proof systems for languages which are hard
to approximate� in some average case sense� implies the existence of one�way functions �but
not of nonuniformly one�way functions�� In the rest of this subsection we provide precise
statements of the above results�

��� BPP � CZK implies weak forms of one�wayness

De�nition ���� �collection of functions with one�way instances�� A collection of functions�
ffi � Di �� f�� 	g�gi�I� is said to have one�way instances if there exists three probabilistic
polynomial�time algorithms� I� D and F � so that the following two conditions hold

	� easy to sample and compute� as in De�nition 
�		�


� some functions are hard to invert� For every probabilistic polynomial�time algorithm�
A�� every polynomial p���� and in�nitely many i�s

Prob
�
A��fi�Xn�� i��f

��
i fi�Xn�

�
�

	

p�n�

where Xn is a random variable describing the output of algorithm D on input i�

Actually� since the hardness condition does not refer to the distribution induced by I � we
may assume� without loss of generality� that I � f�� 	g� and algorithm I uniformly selects
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a string �of length equal to the length of its input�� Recall that collections of one�way
functions �as de�ned in De�nition ��		� requires hardness to invert of all but a negligible
measure of the functions fi �where the probability measure is induced by algorithm I��

Theorem ���� If there exist zero�knowledge proofs for languages outside of BPP then
there exist collections of functions with one�way instances�

We remark that the mere assumption that BPP � IP is not known to imply any form of
one�wayness� The existence of a language in NP which is not in BPP implies the existence
of a function which is easy to compute but hard to invert in the worst�case �see Section ��	��
The latter consequence seems to be a much weaker form of one�wayness�

��� zero�knowledge proofs for �hard� languages yield one�way functions

Our notion of hard languages is the following

De�nition ���� We say that a language L is hard to approximate if there exists a probabilis�
tic polynomial�time algorithm S such that for every probabilistic polynomial�time algorithm
A� every polynomial p���� and in�nitely many n�s

Prob�A�Xn���L�Xn�� �
	

�
�

	

p�n�

where Xn
def
� S�	n�� and �L is the characteristic function of the language L �i�e�� �L�x� � 	

if x � L and �L�x� � � otherwise��

Theorem ���� If there exist zero�knowledge proofs for languages that are hard to approx�
imate then there exist one�way functions�

We remark that the mere existence of languages that are hard to approximate �even
in a stronger sense by which the approximater must fail on all su�ciently large n�s� is not
known to imply the existence of one�way functions �see Section ��	��

����� Implausibility of Perfect Zero�Knowledge proofs for all of NP

A theorem bounding the class of languages possessing perfect zero�knowledge proof systems
follows� We start with some background �for more details see Section �missing�eff�ip�sec����
By AM we denote the class of languages having an interactive proof which proceeds as fol�
lows� First the veri�er sends a random string to the prover� next the prover answers with
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some string� and �nally the veri�er decided whether to accept or reject based on a deter�
ministic computation �depending on the common input and the above two strings�� The
class AM seems to be a randomized counterpart ofNP � and it is believed that coNP is not
contained in AM� Additional support to this belief is given by the fact that coNP 
 AM
implies the collapse of the Polynomial�Time Hierarchy� In any case it is known that

Theorem ���� The class of languages possessing perfect zero�knowledge proof systems is
contained in the class coAM� �In fact� these languages are also in AM��

The theorem remains valid under several relaxations of perfect zero�knowledge �e�g��
allowing the simulator to run in expected polynomial�time� etc��� Hence� if some NP�
complete language has a perfect zero�knowledge proof system then coNP 
 AM� which is
unlikely�

We stress that Theorem ���� does not apply to perfect zero�knowledge arguments� de�
�ned and discussed in Section ���� Hence� there is no con�ict between Theorem ���� and
the fact that� under some reasonable complexity assumptions� perfect zero�knowledge argu�
ments do exist for every language in NP �

����� Zero�Knowledge and Parallel Composition

We discuss two negative results of very di�erent conceptual standing� The �rst result
asserts the failure of the general �Parallel Composition Conjecture�� but says nothing about
speci�c natural candidates� The second result refers to a class of interactive proofs� which
contains several interesting and natural examples� and assert that the members of this class
cannot be proven zero�knowledge using a general paradigm �know by the name �black box
simulation��� We mention that it is hard to conceive an alternative way of demonstrating
the zero�knowledge property of protocols �rather than by following this paradigm��

��� Failure of the Parallel Composition Conjecture

For some time� after zero�knowledge proofs were �rst introduced� several researchers insisted
that the following must be true

Parallel Composition Conjecture� Let P� and P� be two zero�knowledge provers� Then the
prover resulting by running both of them in parallel is also zero�knowledge�

Some researchers even considered the failure to prove the Parallel Composition Conjecture
as a sign of incompetence� However� the Parallel Composition Conjecture is just wrong�
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Proposition ���	 There exists two provers� P� and P�� such that each is zero�knowledge�
and yet the prover resulting by running both of them in parallel yields knowledge �e�g�� a
cheating veri�er may extract from this prover a solution to a problem that is not solvable in
polynomial�time�� Furthermore� the above holds even if the zero�knowledge property of each
of the Pi�s can be demonstrated using a simulator which uses the veri�er as a black�box �see
below��

We remark that these provers can be incorporated into a single prover that randomly selects
which of the two programs to execute� Alternatively� the choice may be determined by the
veri�er�

Proof idea� Consider a prover� denoted P�� that send �knowledge� to the veri�er if and
only if the veri�er can answer some randomly chosen hard question �i�e�� we stress that
the question is chosen by P��� Answers to the hard questions look pseudorandom� yet P�

�which is not computationally bounded� can verify their correctness� Now� consider a second
prover� denoted P�� that answers these hard questions� Each of these provers �by itself� is
zero�knowledge� P� is zero�knowledge since it is unlikely that any probabilistic polynomial�
time veri�er can answer its questions
 whereas P� is zero�knowledge since its answers can
be simulated by random strings� Yet� once played in parallel� a cheating veri�er can answer
the question of P� by sending it to P�� and using this answer gain knowledge from P�� To
turn this idea into a proof we need to implement a hard problem with the above properties�

The above proposition refutes the Parallel Composition Conjecture by means of exponen�
tial time provers� Assuming the existence of one�way functions the Parallel Composition
Conjecture can be refuted also for probabilistic polynomial�time provers �with auxiliary in�
puts�� For example� consider the following two provers P� and P�� which make use of proofs
of knowledge �see Section ����� Let C be a bit commitment scheme �which we know to
exist provided that one�way functions exist�� On common�input C�	n� ��� where � � f�� 	g�
prover P� proves to the veri�er� in zero�knowledge� that it knows �� �To this end the prover
is give as auxiliary input the coins used in the commitment�� On input C�	n� ��� prover P�

asks the veri�er to prove that it knows � and if P� is convinced then it sends � to the veri�
�er� This veri�er employs the same system of proofs of knowledge used by the program P��
Clearly� each prover is zero�knowledge and yet their parallel composition is not� Similarly�
using stronger intractability assumptions� one can refute the Parallel Composition Conjec�
ture also with respect to perfect zero�knowledge �rather than with respect to computational
zero�knowledge��

��� Problems with �natural� candidates

By de�nition� to show that a prover is zero�knowledge one has to present� for each prospec�
tive veri�er V �� a corresponding simulator M� �which simulates the interaction of V � with
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the prover�� However� all known demonstrations of zero�knowledge proceed by presenting
one �universal� simulator which uses any prospective veri�er V � as a black�box� In fact�
these demonstrations use as black�box �or oracle� the �next message� function determined
by the veri�er program �i�e�� V ��� its auxiliary�input and its random�input� �This property
of the simulators is implicit in our constructions of the simulators in previous sections�� We
remark that it is hard to conceive an alternative way of demonstrating the zero�knowledge
property�

De�nition ���
 �black�box zero�knowledge��

� next message function� Let B be an interactive turing machine� and x� z� r be strings
representing a common�input� auxiliary�input� and random�input� respectively� Con�
sider the function Bx�z�r��� describing the messages sent by machine B such that
Bx�z�r�m� denotes the message sent by B on common�input x� auxiliary�input z�
random�input r� and sequence of incoming messages m� For simplicity� we assume
that the output of B appears as its last message�

� black�box simulator� We say that a probabilistic polynomial�time oracle machine M is
a black�box simulator for the prover P and the language L if for every polynomial�time
interactive machine B� every probabilistic polynomial�time oracle machine D� every
polynomial p���� all su�ciently large x � L� and every z� r � f�� 	g��

jProb
�
DBx�z�r �hP�Br�z�i�x���	

�
� Prob

�
DBx�z�r �MBx�z�r �x���	

�
j �

	

p�jxj�

where Br�z� denotes the interaction of machine B with auxiliary�input z and random�
input r�

� We say that P is black�box zero knowledge if it has a black�box simulator�

Essentially� the de�nition says that a black�box simulator mimics the interaction of
prover P with any polynomial�time veri�er B� relative to any auxiliary�input �i�e�� z� that
B may get and any random�input �i�e�� r� that B may choose� The simulator does so �ef�
�ciently�� merely by using oracle calls to Bx�z�r �which speci�es the next message that B
sends on input x� auxiliary�input z� and random�input r�� The simulation is indistinguish�
able from the true interaction� even if the distinguishing algorithm �i�e�� D� is given access
to the oracle Bx�z�r � An equivalent formulation is presented in Exercise ��� Clearly� if P
is black�box zero�knowledge then it is zero�knowledge with respect to auxiliary input �and
has polynomially bounded knowledge tightness �see De�nition ���	���

Theorem ���� Suppose that �P� V � is an interactive proof system� with negligible error
probability� for the language L� Further suppose that �P� V � has the following properties
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� constant round� There exists an integer k such that for every x � L� on input x the
prover P sends at most k messages�

� public coins� The messages sent by the veri�er V are predetermined consecutive seg�
ments of its random tape�

� black�box zero�knowledge� The prover P has a black�box simulator �over the language
L��

Then L � BPP�

We remark that both Construction ��	� �zero�knowledge proof for Graph Isomorphism�
and Construction ���� �zero�knowledge proof for Graph Coloring� are constant round� use
public coins and are black�box zero�knowledge �for the corresponding languages�� However�
they do not have negligible error probability� Yet� repeating each of these constructions
polynomially many times in parallel yields an interactive proof� with negligible error prob�
ability� for the corresponding language� Clearly the resulting proof system are constant
round and use public coins� Hence� unless the corresponding languages are in BPP � these
parallelized proof systems are not black�box zero�knowledge�

Theorem ���� is sometimes interpreted as pointing to an inherent limitation of interactive
proofs with public coins �also known asArthur Merlin games
 see Section �missing�eff�ip�sec����
Such proofs cannot be both round�e�cient �i�e�� have constant number of rounds and negli�
gible error� and black�box zero�knowledge �unless they are trivially so� i�e�� the language is
in BPP�� In other words� when constructing round�e�cient zero�knowledge proof systems
�for languages not in BPP�� one is advised to use �private coins� �i�e�� to let the veri�er
send messages depending upon� but not revealing its coin tosses��

��� 
 Witness Indistinguishability and Hiding

In light of the non�closure of zero�knowledge under parallel composition� see Subsection ������
alternative �privacy� criteria that are preserved under parallel composition are of practical
and theoretical importance� Two notions� called witness indistinguishability and witness
hiding� which refer to the �privacy� of interactive proof systems �of languages in NP�� are
presented in this section� Both notions seem weaker than zero�knowledge� yet they su�ce
for some speci�c applications�

����� De�nitions

In this section we con�ne ourself to languages in NP � Recall that a witness relation for a
language L � NP is a binary relation RL that is polynomially�bounded �i�e�� �x� y��RL
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implies jyj � poly�jxj��� polynomial�time recognizable� and characterizes L by

L � fx � �y s�t� �x� y��RLg

Witness indistinguishability

Loosely speaking� an interactive proof for a language L � NP is witness independent �resp��
witness indistinguishable� if the veri�er�s view of the interaction with the prover is statis�
tically independent �resp�� �computationally independent�� of the auxiliary input of the
prover� Actually� we will relax the requirement so that it applies only to the case in which
the auxiliary input constitutes an NP�witness to the common input
 namely� let RL be the
witness relation of the language L and suppose that x � L� then we consider only auxiliary

inputs in RL�x�
def
� fy
 �x� y��RLg� By saying that the view is computational independent

of the witness we mean that for every two choices of auxiliary inputs the resulting views
are computationally indistinguishable� In the actual de�nition we combine notations and
conventions from De�nitions ��	� and ��	��

De�nition ���� �witness indistinguishability � independence�� Let �P� V �� L � NP and
V � be as in De�nition 
�	�� and let RL be a �xed witness relation for the language L� We

denote by view
P �y�
V ��z��x� a random variable describing the contents of the random�tape of

V � and the messages V � receives from P during a joint computation on common input x�
when P has auxiliary input y and V � has auxiliary input z� We say that �P� V � is witness

indistinguishable for RL if for every probabilistic polynomial�time interactive machine V ��
and every two sequences W � � fw�

xgx�L and W � � fw�
xgx�L� so that w�

x� w
�
x � RL�x�� the

following two ensembles are computationally indistinguishable

� fx� view
P �w�

x�
V ��z� �x�gx�L�z�f���g�

� fx� view
P �w�

x�
V ��z� �x�gx�L�z�f���g�

Namely� for every probabilistic polynomial�time algorithm� D� every polynomial p���� all
su�ciently long x � L� and all z � f�� 	g�� it holds that

jProb�D�x� view
P �w�

x�
V ��z� �x���	�� Prob�D�x� view

P �w�
x�

V ��z� �x���	�j �
	

p�jxj�

We say that �P� V � is witness independent if the above ensembles are identically distributed�
Namely� for every x � L every w�

x� w
�
x � R�x� and z � f�� 	g�� the random variables

view
P �w�

x�
V ��z� �x� and view

P �w�
x�

V ��z� �x� are identically distributed�
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A few remarks are in place� First� one may observe that any proof system in which the
prover ignores its auxiliary�input is trivially witness independent� In particular� exponential�
time provers may� without loss of generality� ignore their auxiliary�input �without any de�
crease in the probability that they convince the veri�er�� Yet� probabilistic polynomial�time
provers can not a�ord to ignore their auxiliary input �since otherwise they become useless��
Hence� for probabilistic polynomial�time provers for languages outside BPP � witness indis�
tinguishability is non�trivial� Secondly� one can easily show that any zero�knowledge proof
system for a language in NP is witness indistinguishable �since the view corresponding to
each witness can be approximated by the same simulator�� Likewise� perfect zero�knowledge
proofs are witness independent� Finally� it is relatively easy to see that witness indistin�
guishability and witness independence are preserved under sequential composition� In the
next subsection we show that they are also preserved under parallel composition�

Witness hiding

We now turn to the notion of witness hiding� Intuitively� a proof system for a language in
NP is witness hiding if after interacting with the prover it is still infeasible for the veri�er
to �nd an NP witness for the common input� Clearly� such a requirement can hold only
if it is infeasible to �nd witnesses from scratch� Since� each NP language has instances
for which witness �nding is easy� we must consider the task of witness �nding for specially
selected hard instances� This leads to the following de�nitions�

De�nition ���� �distribution of hard instances�� Let L � NP and RL be a witness relation

for L� Let X
def
� fXngn�IN be a probability ensemble so that Xn assign non�zero probability

mass only to strings in L � f�� 	gn� We say that X is hard for RL if for every probabilistic
polynomial�time �witness �nding� algorithm F � every polynomial p���� all su�ciently large
n�s and all z � f�� 	gpoly�n�

Prob�F �Xn� z��RL�Xn�� �
	

p�n�

De�nition ���� �witness hiding�� Let �P� V �� L � NP� and RL be as in the above de�ni�
tions�

� Let X � fXngn�IN be a hard instance ensemble for RL� We say that �P� V � is witness

hiding for the relation RL under the instance ensemble X if for every probabilistic
polynomial�time machine V �� every polynomial p��� and all su�ciently large n�s� and
all z � f�� 	g�

Prob�hP �Yn�� V
��z�i�Xn��RL�Xn�� �

	

p�n�

where Yn is arbitrarily distributed over RL�Xn��
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� We say that �P� V � is universal witness hiding for the relation RL if the proof system
�P� V � is witness hiding for RL under every ensemble of hard instances� for RL� that
is e�ciently constructible �see De�nition ����

We remark that the relation between the two privacy criteria �i�e�� witness indistin�
guishable and witness hiding� is not obvious� Yet� zero�knowledge proofs �for NP� are also
�universal� witness hiding �for any corresponding witness relation�� We remark that witness
indistinguishability and witness hiding� similarly to zero�knowledge� are properties of the
prover �and more generally of a any interactive machine��

����� Parallel Composition

In contrary to zero�knowledge proof systems� witness indistinguishable proofs o�er some
robustness under parallel composition� Speci�cally� parallel composition of witness indis�
tinguishable proof systems results in a witness indistinguishable system� provided that the
original prover is probabilistic polynomial�time�

Lemma ���� �Parallel Composition Lemma�� Let L � NP� and RL be as in De�ni�
tion 
���� and suppose that P is probabilistic polynomial�time� and �P� V � is witness indis�
tinguishable �resp�� witness independent� for RL� Let Q��� be a polynomial� and PQ denote
a program that on common�input x�� ���� xQ�n� � f�� 	g

n and auxiliary�input w�� ���� wQ�n� �

f�� 	g�� invokes P in parallel Q�n� times� so that in the ith copy P is invoked on common�
input xi and auxiliary�input wi� Then� PQ is witness indistinguishable �resp�� witness inde�
pendent� for

RQ
L

def
� f�x� w� � �i �xi� wi��RLg

where x � �x�� ���� xm�� and w � �w�� ���� wm�� so that m � Q�n� and jxij�n for each i�

Proof Sketch� Both the computational and information theoretic versions follow by a
hybrid argument� We concentrate on the computational version� To avoid cumbersome
notation we consider a generic n for which the claim of the lemma fails� �By contradiction
there must be in�nitely many such n�s and a precise argument will actually handle all these
n�s together�� Namely� suppose that by using a veri�er program V �

Q� it is feasible to distin�

guish the witnesses w� � �w�
�� ���� w

�
m� and w� � �w�

�� ���� w
�
m�� used by PQ� in an interaction

on common�input x � Lm� Then� for some i� the program V �
Q distinguishes also the hybrid

witnesses h
�i�

� �w�
�� ���� w

�
i � w

�
i��� ���� w

�
m� and h

�i���
� �w�

�� ���� w
�
i��� w

�
i��� ���� w

�
m�� Rewrite

h
�i�

� �w�� ���� wi� w
�
i��� wi��� ���� wm� and h

�i���
� �w�� ���� wi� w

�
i��� wi��� ���� wm�� We derive

a contradiction by constructing a veri�er V � that distinguishes �the witnesses used by P
in� interactions with the original prover P � Details follow�
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The program V � incorporates the programs P and V �
Q and proceeds by interacting

with the prover P in parallel to simulating m � 	 other interactions with P � The real
interaction with P is viewed as the i�	st copy in an interaction of V �

Q� whereas the simulated
interactions are associated with the other copies� Speci�cally� in addition to the common�

input x� machine V � gets the appropriate i and the sequences x� h
�i�

and h
�i���

as part of
its auxiliary input� For each j �� i�	� machine V � will use xj as common�input and wj as
the auxiliary�input to the jth copy of P � Machine V � invokes V �

Q on common input x and
provides it with an interface to a virtual interaction with PQ� The i� 	st component of a
message 	 � �	�� ���� 	m� sent by V

�
Q is forwarded to the prover P and all other components

are kept for the simulation of the other copies� When P answers with a message �� machine
V � computes the answers of the other copies of P �by feeding the program P with the
corresponding auxiliary�input and the corresponding sequence of incoming messages�� It
follows� that V � can distinguish the case P uses the witness w�

i�� from the case P uses w�
i���

����� Constructions

In this subsection we present constructions of witness indistinguishable and witness hiding
proof systems�

Constructions of witness indistinguishable proofs

Using the Parallel Composition Lemma and the observation that zero�knowledge proofs are
witness indistinguishable we derive the following

Theorem ���� Assuming the existence of �nonuniformly� one�way functions� every lan�
guage in NP has a constant�round witness indistinguishable proof system with negligible

error probability� In fact� the error probability can be made exponentially small�

We remark that no such result is known for zero�knowledge proof system� Namely� the
known proof systems for NP are either

� not constant�round �e�g�� Construction �����
 or

� have non�negligible error probability �e�g�� Construction �����
 or

� require stronger intractability assumptions �see Subsection ����	�
 or

� are only computationally sound �see Subsection �������

Similarly� we can derive a constant�round witness independent proof system� with exponen�
tially small error probability� for Graph Isomorphism� �Again� no analogous result is known
for perfect zero�knowledge proofs��
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Constructions of witness hiding proofs

Witness indistinguishable proof systems are not necessarily witness hiding� For example�
any language with unique witnesses has a proof system which yields the unique witness�
and yet is trivially witness independent� On the other hand� for some relations� witness
indistinguishability implies witness hiding� For example

Proposition ���� Let f�f�i � f
�
i � � i � Ig be a collection of �nonuniform� clawfree functions�

and let
R

def
� f�x� w� � w���� r�	 x��i� x�� 	 x��f�i �r�g

Then if a machine P is witness indistinguishable for R then it is also witness hiding for R
under the distribution generated by setting i � I�	n� and x� � f�i �D��� i��� where I and D
are as in De�nition 
�	��

By a collection of nonuniform clawfree functions we mean that even nonuniform families
of circuits fCng fail to form claws on input distribution I�	n�� except with negligible prob�
ability� We remark that the above proposition does not relate to the purpose of interacting
with P �e�g�� whether P is proving membership in a language� knowledge of a witness� and
so on�� The proposition is proven by contradiction� Details follow�

Suppose that an interactive machine V � �nds witnesses after interacting with P � By
the witness indistinguishability of P it follows that V � is performing as well regardless on
whether the witness is of the form ��� �� or �	� ��� Combining the programs V � and P with
algorithm D we derive a claw forming algorithm �and hence contradiction�� Speci�cally� the
claw�forming algorithm� on input i � I� uniformly selects � � f�� 	g� randomly generates
r � D��� i�� computes x � �i� f�i �r��� and simulates an interaction of V � with P on common�
input x and auxiliary�input ��� r� to P � If machine V � outputs a witness w � R�x� then�
with probability approximately �

� � we have w � �	��� r�� and a claw is formed �since
f�i �r� � f���i �r�����

Furthermore� every NP relation can be �slightly modi�ed� so that� for the modi�ed re�
lation� witness indistinguishability implies witness hiding� Given a relation R� the modi�ed
relation� denoted R�� is de�ned by

R�
def
� f��x�� x��� w� � jx�j� jx�j 	 �i s�t� �xi� w��Rg

Namely� w is a witness under R� for the instance �x�� x�� if and only if w is a witness under
R for either x� or x��

Proposition ���� Let R and R� be as above� If a machine P is witness indistinguishable
for R� then it is also witness hiding for R� under every distribution of hard instances induced
�see below� by an e�cient algorithm that randomly selects pairs in R�
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Let S be a probabilistic polynomial�time algorithm that on input 	n outputs �x� w� � R so
that jxj� n� Let Xn denotes the distribution induced on the �rst element in the output
of S�	n�� The proposition asserts that if P is witness indistinguishable and fXngn�IN an

ensemble of hard instances for R then P is witness hiding under the ensemble fXngn�IN
where Xn consists of two independent copies of Xn� This assertion is proven by contradic�
tion� Suppose that an interactive machine V � �nds witnesses after interacting with P � By
the witness indistinguishability of P it follows that V � is performing as well regardless on
whether the witness w for �x�� x�� satis�es either �x�� w� � R or �x�� w� � R� Combining
the programs V � and P with algorithm S we derive a algorithm� denoted F �� that �nds
witnesses for R �under the distribution Xn�� On input x � L� algorithm F � generates at
random �x�� w�� � S�	jxj� and sets x � �x� x�� with probability �

� and x � �x�� x� otherwise�
Algorithm F � simulates an interaction of V � with P on common�input x and auxiliary
input w� to P � and when V � outputs a witness w algorithm F � checks whether �x� w� � R�
The reader can easily veri�er that algorithm F � performs well under the instance ensemble
fXng� hence contradicting the hypothesis that Xn is hard for R� �

����	 Applications

Applications for the notions presented in this section are scattered in various places in the
book� In particular� witness�indistinguishable proof systems are used in the construction
of constant�round arguments for NP �see Subsection ������� witness independent proof
systems are used in the zero�knowledge proof for Graph Non�Isomorphism �see Section �����
and witness hiding proof systems are used for the e�cient identi�cation scheme based on
factoring �in Section �����

��� 
 Proofs of Knowledge

This section addresses the concept of �proofs of knowledge�� Loosely speaking� these are
proofs in which the prover asserts �knowledge� of some object �e�g�� a ��coloring of a graph�
and not merely its existence �e�g�� the existence of a ��coloring of the graph� which in turn
imply that the graph is in the language G�C�� But what is meant by saying that a machine
knows something! Indeed the main thrust of this section is in addressing this question�
Before doing so we point out that �proofs of knowledge�� and in particular zero�knowledge
�proofs of knowledge�� have many applications to the design of cryptographic schemes and
cryptographic protocols� Some of these applications are discussed in a special subsection� Of
special interest is the application to identi�cation schemes� which is discussed in a separate
subsection�
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����� De�nition

We start with a motivating discussion�

What does it mean to say that a machine knows something! Any standard
dictionary suggests several meanings to the verb know and most meanings are
phrased with reference to �awareness�� We� however� must look for a behavior�
istic interpretation of the verb� Indeed� it is reasonable to link knowledge with
ability to do something� be it at the least the ability to write down whatever one
knows� Hence� we will say that a machine knows a string 	 if it can output the
string 	� This seems as total nonsense� A machine has a well de�ned output�
either the output equals 	 or it does not� So what can be meant by saying that
a machine can do something� Loosely speaking� it means that the machine can
be modi�ed so that it does whatever is claimed� More precisely� it means that
there exists an e�cient machine which� using the original machine as oracle�
outputs whatever is claimed�

So far for de�ning the �knowledge of machines�� Yet� whatever a machine knows or does
not know is �its own business�� What can be of interest to the outside is the question of
what can be deduced about the knowledge of a machine after interacting with it� Hence�
we are interested in proofs of knowledge �rather than in mere knowledge��

For sake of simplicity let us consider a concrete question� how can a machine prove that
it knows a ��coloring of a graph! An obvious way is just to send the ��coloring to the veri�er�
Yet� we claim that applying Construction ���� �i�e�� the zero�knowledge proof system for
G�C� su�ciently many times results in an alternative way of proving knowledge of a ��
coloring of the graph� Loosely speaking� we say that an interactive machine� V � constitutes
a veri�er for knowledge of ��coloring if the probability that the veri�er is convinced by a
machine P to accept the graph G is inversely proportional to the di�culty of extracting a
��coloring of G when using machine P as a �black box�� Namely� the extraction of the ��
coloring is done by an oracle machine� called an extractor� that is given access to a function
specifying the messages sent by P �in response to particular messages that P receives�� The
�expected� running time of the extractor� on input G and access to an oracle specifying
P �s messages� is inversely related �by a factor polynomial in jGj� to the probability that P
convinces V to accept G� In case P always convinces V to accept G� the extractor runs
in expected polynomial�time� The same holds in case P convinces V to accept with non�
negligible probability� We stress that the latter special cases do not su�ce for a satisfactory
de�nition�

Preliminaries

Let R 
 f�� 	g� � f�� 	g� be a binary relation� Then R�x�
def
� fs � �x� s� � Rg and LR

def
�

fx � �s s�t� �x� s� � Rg� If �x� s� � R then we call s a solution for x� We say that R is
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polynomially bounded if there exists a polynomial p such that jsj � p�jxj� for all �x� s� � R�
We say that R is an NP relation if R is polynomially bounded and� in addition� there exists
a polynomial�time algorithm for deciding membership in R �i�e�� LR � NP�� In the sequel�
we con�ne ourselves to polynomially bounded relations�

We wish to be able to consider in a uniform manner all potential provers� without making
distinction based on their running�time� internal structure� etc� Yet� we observe that these
interactive machine can be given an auxiliary�input which enables them to �know� and to
prove more� Likewise� they may be luck to select a random�input which enables more than
another� Hence� statements concerning the knowledge of the prover refer not only to the
prover�s program but also to the speci�c auxiliary and random inputs it has� Hence� we �x
an interactive machine and all inputs �i�e�� the common�input� the auxiliary�input� and the
random�input� to this machine� and consider both the corresponding accepting probability
�of the veri�er� and the usage of this �prover�inputs� template as an oracle to a �knowledge
extractor�� This motivates the following de�nition�

De�nition ���	 �message speci�cation function�� Denote by Px�y�r�m� the message sent
by machine P on common�input x� auxiliary�input y� and random input r� after receiving
messages m� The function Px�y�r is called the message speci�cation function of machine P
with common�input x� auxiliary�input y� and random input r�

An oracle machine with access to the function Px�y�r will represent the knowledge of machine
P on common�input x� auxiliary�input y� and random input r� This oracle machine� called
the knowledge extractor� will try to �nd a solution to x �i�e�� an s � R�x��� The running
time of the extractor is inversely related to the corresponding accepting probability �of the
veri�er��

Knowledge veri�ers

Now that all the machinery is ready� we present the de�nition of a system for proofs of
knowledge� Actually� the de�nition presented below is a generalization �to be motivated
by the subsequent applications�� At �rst reading� the reader may set the function � to be
identically zero�

De�nition ���
 �System of proofs of knowledge�� Let R be a binary relation� and � � IN�
"�� 	#� We say that an interactive function V is a knowledge veri�er for the relation R with
knowledge error � if the following two conditions hold�

� Non�triviality� There exists an interactive machine P so that for every �x� y� � R

all possible interactions of V with P on common�input x and auxiliary�input y are
accepting�
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� Validity �with error ��� There exists a polynomial q��� and a probabilistic oracle
machine K such that for every interactive function P � every x � LR and every
y� r � f�� 	g�� machine K satis�es the following condition�

Denote by p�x� the probability that the interactive machine V accepts� on
input x� when interacting with the prover speci�ed by Px�y�r� Then if p�x� �
��jxj� then� on input x and access to oracle Px�y�r� machine K outputs a
solution s�R�x� within an expected number of steps bounded by

q�jxj�

p�x�� ��jxj�
�

The oracle machine K is called a universal knowledge extractor�

When ���� is identically zero� we just say that V is a knowledge veri�er for the relation
R� An interactive pair �P� V � so that V is a knowledge veri�er for a relation R and P is a
machine satisfying the non�triviality condition �with respect to V and R� is called a system

for proofs of knowledge for the relation R�

����� Observations

The zero�knowledge proof systems for Graph Isomorphism �i�e�� Construction ��	�� and
for Graph ��Coloring �i�e�� Construction ����� are in fact proofs of knowledge �with some
knowledge error� for the corresponding languages� Speci�cally� Construction ��	� is a proof
of knowledge of an isomorphism with knowledge error �

� � whereas Construction ���� is a
proof of knowledge of a ��coloring with knowledge error 	 � �

jEj �on common input G �

�V�E��� By iterating each construction su�ciently many times we can get the knowledge
error to be exponentially small� �The proofs of all these claims are left as an exercise�� In
fact� we get a proof of knowledge with zero error� since

Proposition ���� Let R be an NP relation� and q��� be a polynomial such that �x� y� � R
implies jyj � q�jxj�� Suppose that �P� V � is a system for proofs of knowledge� for the relation

R� with knowledge error ��n�
def
� ��q�n�� Then �P� V � is a system for proofs of knowledge

for the relation R �with zero knowledge error��

Proof Sketch� Given a knowledge extractor� K� substantiating the hypothesis� we con�
struct a new knowledge extractor which runs K in parallel to conducting an exhaustive
search for a solution� Let p�x� be as in De�nition ��
�� To evaluate the performance of the
new extractor consider two cases�
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Case 	� p�x� � � � ��jxj�� In this case� we use the fact

	

p�x�� ��jxj�
�

�

p�x�

Case 
� p�x� � � � ��jxj�� In this case� we use the fact that exhaustive search of a solution
boils down to �q�jxj� trials� whereas �

p�x� �
�
� � �

q�jxj��

It follows that

Theorem ���� Assuming the existence of �nonuniformly� one�way function� every NP re�
lation has a zero�knowledge system for proofs of knowledge�

����� Applications

We brie�y review some of the applications for �zero�knowledge� proofs of knowledge� Typ�
ically� �zero�knowledge� proofs of knowledge are used for �mutual disclosure� of the same
information� Suppose that Alice and Bob both claim that they know something �e�g�� a
��coloring of a common input� but are each doubtful of the other person�s claim� Employ�
ing a zero�knowledge proof of knowledge in both direction is indeed a �conceptually� simple
solution to the problem of convincing each other of their knowledge�

Non�oblivious commitment schemes

When using a commitment scheme the receiver is guaranteed that after the commit phase
the sender is committed to at most one value �in the sense that it can later �reveal� only
this value�� Yet� the receiver is not guaranteed that the sender �knows� to what value it
is committed� Such a guarantee may be useful in many settings� and can be obtained by
using proof of knowledge� For more details see Subsection ������

Chosen message attacks

An obvious way of protecting against chosen message attacks on a �public�key� encryption
scheme is to augment the ciphertext by a zero�knowledge proof of knowledge of the cleartext�
�For de�nition and alternative constructions of such schemes see Section �missing�enc�strong�sec����
However� one should note that the resulting encryption scheme employs bidirectional com�
munication between the sender and the receiver �of the encrypted message�� It seems
that the use of non�interactive zero�knowledge proofs of knowledge would yield unidirec�
tional �public�key� encryption schemes� Such claims have been made� yet no proof has
ever appeared �and we refrain from expressing an opinion on the issue�� Non�interactive
zero�knowledge proofs are discussed in Section ��	��
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A zero�knowledge proof system for GNI

The interactive proof of Graph Non�Isomorphism �GNI�� presented in Construction ���� is
not zero�knowledge �unless GNI � BPP�� A cheating veri�er may construct a graph H

and learn whether it is isomorphic to the �rst input graph by sending H as query to the
prover� A more appealing refutation can be presented to the claim that Construction ���
is auxiliary�input zero�knowledge �e�g�� the veri�er can check whether its auxiliary�input is
isomorphic to one of the common�input graphs�� We observe however� that Construction ���
�would have been zero�knowledge� if the veri�er always knew the answer to its queries �as
is the case for the honest veri�er�� The idea then is to have the veri�er prove to the
prover that he �i�e�� the veri�er� knows the answer to the query �i�e�� an isomorphism to the
appropriate input graph�� and the prover answers the query only if it is convinced of this
claim� Certainly� the veri�er�s proof of knowledge should not yield the answer �otherwise the
prover can use this information in order to cheat thus foiling the soundness requirement��
If the veri�er�s proof of knowledge is zero�knowledge then certainly it does not yield the
answer� In fact� it su�ces that the veri�er�s proof of knowledge is witness�independent �see
Section �����

����	 Proofs of Identity �Identi�cation schemes�

Identi�cation schemes are useful in large distributed systems in which the users are not
acquainted with one another� A typical� everyday example is the consumer�retailer situa�
tion� In computer systems� a typical example is electronic mail �in communication networks
containing sites allowing too loose local super�user access�� In between� in technological so�
phistication� are the Automatic Teller Machine �ATM� system� In these distributed systems�
one wishes to allow users to be able to authenticate themselves to other users� This goal
is achieved by identi�cation schemes� de�ned below� In the sequel� we shall also see that
identi�cation schemes are intimately related to proofs of knowledge� We just hint that a
person�s identity can be linked to his ability to do something� and in particular to his ability
to prove knowledge of some sort�

De�nition

Loosely speaking� an identi�cation scheme consists of a public �le containing records for
each user and an identi�cation protocol� Each record consists of the name �or identity� of
a user and auxiliary identi�cation information to be used when invoking the identi�cation
protocol �as discussed below�� The public �le is established and maintained by a trusted
party which vouches for the authenticity of the records �i�e�� that each record has been
submitted by the user the name of which is speci�ed in it�� All users have read access to
the public �le at all times� Alternatively� the trusted party can supply each user with a
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signed copy of its public record� Suppose now� that Alice wishes to prove to Bob that it is
indeed her communicating with him� To this end� Alice invokes the identi�cation protocol
with the �public �le� record corresponding to her name as a parameter� Bob veri�es that the
parameter in use indeed matches Alice�s public record and proceeds executing his role in
the protocol� It is required that Alice will always be able to convince Bob �that she is indeed
Alice�� whereas nobody else can fool Bob into believing that she�he is Alice� Furthermore�
Carol should not be able to impersonate as Alice even after receiving polynomially many
proofs of identity from Alice�

Clearly� if the identi�cation information is to be of any use� then Alice must keep in
secret the random coins she has used to generate her record� Furthermore� Alice must use
these stored coins� during the execution of the identi�cation protocol� but this must be done
in a way which does not allow her counterparts to later impersonate her�

Conventions� In the following de�nition we adopt the formalism and notations of interac�
tive machines with auxiliary input �presented in De�nition ��	��� We recall that when M
is an interactive machine� we denote by M�y� the machine which results by �xing y to be
the auxiliary input of machine M � In the following de�nition n is the security parameter�
and we assume with little loss of generality� that the names �i�e�� identities� of the users are
encoded by strings of length n� If A is a probabilistic algorithm and x� r � f�� 	g�� then
Ar�x� denotes the output of algorithm A on input x and random coins r�

Remark� In �rst reading� the reader may ignore algorithm A and the random variable Tn
in the security condition� Doing so� however� yields a weaker condition� that is typically
unsatisfactory�

De�nition ���� �identi�cation scheme�� An identi�cation scheme consists of a pair� �I����
where I is a probabilistic polynomial time algorithm and ���P� V � is a pair of probabilistic
polynomial�time interactive machines satisfying the following conditions

� Viability� For every n � IN� every 	 � f�� 	gn� and every s � f�� 	gpoly�n�

Prob �hP �s�� V i�	� Is�	���	� � 	

� Security� For every pair of probabilistic polynomial�time interactive machines� A and
B� every polynomial p���� all su�ciently large n � IN� every 	 � f�� 	gn� and every z

Prob �hB�z� Tn�� V i�	� ISn�	���	� �
	

p�n�

where Sn is a random variable uniformly distributed over f�� 	gpoly�n�� and Tn is a
random variable describing the output of A�z� after interacting with P �Sn� on common
input 	� for polynomially many times�
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Algorithm I is called the information generating algorithm� and the pair �P� V � is called the
identi�cation protocol�

Hence� to use the identi�cation scheme a user� say Alice� the identity of which is

encoded by the string 	� should �rst uniformly select a secret string s� compute i
def
� Is�	��

ask the trusted party to place the record �	� i� in the public �le� and store the string s in
a safe place� The viability condition asserts that Alice can convince Bob of her identity
by executing the identi�cation� Alice invokes the program P using the stored string s as
auxiliary input� and Bob uses the program V and makes sure that the common input is the
public record containing 	 �which is in the public �le�� Ignoring� for a moment� algorithm
A and the random variable Tn� the security condition yields that it is infeasible for a party
to impersonate Alice if all this party has is the public record of Alice and some unrelated
auxiliary input� However� such a security condition may not su�ce in many applications
since a user wishing to impersonate Alicemay ask her �rst to prover her identity to him�her�
The �full� security condition asserts that even if Alice has proven her identity to Carol

many times in the past� still it is infeasible for Carol to impersonate Alice� We stress that
Carol cannot impersonate Alice to Bob provided that she cannot interact concurrently
with both� In case this condition does not hold then nothing is guaranteed �and indeed
Carol can easily cheat by referring Bob�s questions to Alice and answering as Alice does��

Identi�cation schemes and proofs of knowledge

A natural way of establishing a person�s identity is to ask him�her to supply a proof of
knowledge of a fact that this person is supposed to know� Let us consider a speci�c �and
in fact quite generic� example�

Construction ���� �identi�cation scheme based on a one�way function�� Let f be a func�
tion� On input an identity 	 � f�� 	gn� the information generating algorithm uniformly
selects a string s � f�� 	gn and outputs f�s�� �The pair �	� f�s�� is the public record for
the user with name 	�� The identi�cation protocol consists of a proof of knowledge of the
inverse of the second element in the public record� Namely� in order to prove its identity�
user 	 proves that he knows a string s so that f�s� � r� where �	� r� is a record in the public
�le� �The proof of knowledge in used is allowed to have negligible knowledge error��

Proposition ���� If f is a one�way function and the proof of knowledge in use is zero�
knowledge then Construction 
��
 constitutes an identi�cation scheme�

Hence� identi�cation schemes exist if one�way functions exist� More e�cient identi�ca�
tion schemes can be constructed based on speci�c intractability assumptions� For example�
assuming the intractability of factoring� the so called Fiat�Shamir identi�cation scheme�
which is actually a proof of knowledge of a square root� follows�
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Construction ���� �the Fiat�Shamir identi�cation scheme�� On input an identity 	 �
f�� 	gn� the information generating algorithm uniformly selects a composite number N �
which is the product of two n�bit long primes� a residue s mod N � and outputs the pair
�N� s� mod N�� �The pair �	� �N� s� mod N�� is the public record for user 	�� The iden�
ti�cation protocol consists of a proof of knowledge of the corresponding modular square
root� Namely� in order to prove its identity� user 	 proves that he knows a square root of

r
def
� s� mod N � where �	� �r�N�� is a record in the public �le� �Again� negligible knowledge

error is allowed��

The proof of knowledge of square root is analogous to the proof system for Graph
Isomorphism presented in Construction ��	�� Namely� in order to prove knowledge of a
square root of r � s� �mod N�� the prover repeats the following steps su�ciently many
times�

Construction ���� �atomic proof of knowledge of square root��

� The prover randomly selects a residue� q� modulo N and send t
def
� q� mod N to the

veri�er�

� The veri�er uniformly selects � � f�� 	g and sends it to the prover�

� Motivation� in case � � � the veri�er asks for a square root of t mod N � whereas in
case � � 	 the veri�er asks for a square root of t � r mod N � In the sequel we assume�
without loss of generality� that � � f�� 	g�

� The prover replies with p
def
� q � s� mod N �

� The veri�er accepts �this time� if and only if the messages t and p sent by the prover
satis�es p� � t � r� mod N �

When Construction ���� is repeated k times� either sequentially or in parallel� the result�
ing protocol constitutes a proof of knowledge of modular square root with knowledge error
��k � In case these repetitions are conducted sequentially� then the resulting protocol is
zero�knowledge� Yet� for use in Construction ���
 it su�ces that the proof of knowledge is
witness�hiding� and fortunately even polynomially many parallel executions can be shown
to be witness�hiding �see Section ����� Hence the resulting identi�cation scheme has con�
stant round complexity� We remark that for identi�cation purposes it su�ces to perform
Construction ���� superlogarithmically many times� Furthermore� also less repetitions are
of value� when applying Construction ���� k � O�logn� times� and using the resulting
protocol in Construction ���
� we get a scheme �for identi�cation� in which impersonation
can occur with probability at most ��k�
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Identi�cation schemes and proofs of ability

As hinted above� a proof of knowledge of a string �i�e�� the ability to output the string� is a
special case of a proof of ability to do something� It turns out that identi�cation schemes
can be based also on the more general concept of proofs of ability� We avoid de�ning this
concept� and refrain ourself to two �natural� examples of using a proof of ability as basis
for identi�cation�

It is an everyday practice to identify people by their ability to produce their signature�
This practice can be carried into the digital setting� Speci�cally� the public record of Alice
consists of her name and the veri�cation key corresponding to her secret signing key in a
predetermined signature scheme� The identi�cation protocol consists of Alice signing a
random message chosen by the veri�er�

A second popular means of identi�cation consists of identifying people by their ability to
answer correctly personal questions� A digital analogue to this practice follows� To this end
we use pseudorandom functions �see Section ���� and zero�knowledge proofs �of membership
in a language�� The public record of Alice consists of her name and a �commitment� to
a randomly selected pseudorandom function �e�g�� either via a string�commitment to the
index of the function or via a pair consisting of a random domain element and the value of
the function at this point�� The identi�cation protocol consists of Alice returning the value
of the function at a random location chosen by the veri�er� and supplying a zero�knowledge
proof that the value returned indeed matches the function appearing in the public record�
We remark that the digital implementation o�ers more security than the everyday practice�
In the everyday setting the veri�er is given the list of all possible question and answer pairs
and is trusted not to try to impersonate as the user� Here we replaced the possession of the
correct answers by a zero�knowledge proof that the answer is correct�

��� 
 Computationally�Sound Proofs 
Arguments�

In this section we consider a relaxation of the notion of an interactive proof system� Speci��
cally� we relax the soundness condition of interactive proof systems� Instead of requiring that
it is impossible to fool the veri�er into accepting false statement �with probability greater
than some bound�� we only require that it is infeasible to do so� We call such protocols com�
putationally sound proof systems �or arguments�� The advantage of computationally sound
proof systems is that perfect zero�knowledge computationally sound proof systems can be
constructed� under some reasonable complexity assumptions� for all languages in NP � We
remark that perfect zero�knowledge proof systems are unlikely to exists for all languages in
NP �see section ����� We recall that computational zero�knowledge proof systems do exist
for all languages in NP � provided that one�way functions exist� Hence� the above quoted
positive results exhibit some kind of a trade�o� between the soundness and zero�knowledge
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properties of the zero�knowledge protocols of NP � We remark� however� that this is not
a real trade�o� since the perfect zero�knowledge computationally sound proofs for NP are
constructed under stronger complexity theoretic assumption than the ones used for the
computationally zero�knowledge proofs� It is indeed an interesting research project to try
to construct perfect zero�knowledge computationally sound proofs for NP under weaker
assumptions �and in particular assuming only the existence of one�way functions��

We remark that it seems that computationally�sound proof systems can be much more
e�cient than ordinary proof systems� Speci�cally� under some plausible complexity as�
sumptions� extremely e�cient computationally�sound proof systems �i�e�� requiring only
poly�logarithmic communication and randomness� exist for any language in NP � An analo�
gous result cannot hold for ordinary proof systems� unless NP is contained in deterministic
quasi�polynomial time �i�e�� NP 
 Dtime��polylog���

����� De�nition

The de�nition of computationally sound proof systems follows naturally from the above
discussion� The only issue to consider is that merely replacing the soundness condition of
De�nition ��
 by the following computational soundness condition leads to an unnatural
de�nition� since the computational power of the prover in the completeness condition �in
De�nition ��
� is not restricted�

Computational Soundness� For every polynomial�time interactive machine B�
and for all su�ciently long x �� L

Prob �hB� V i�x��	� �
	

�

Hence� it is natural to restrict the prover in both �completeness and soundness� conditions
to be an e�cient one� It is crucial to interpret e�cient as being probabilistic polynomial�
time given auxiliary input �otherwise only languages in BPP will have such proof systems��
Hence� our starting point is De�nition ��	� �rather than De�nition ��
��

De�nition ���� �computationally sound proof system� �arguments�� A pair of interactive
machines� �P� V �� is called an computationally sound proof system for a language L if both
machines are polynomial�time �with auxiliary inputs� and the following two conditions hold

� Completeness� For every x � L there exists a string y such that for every string z

Prob �hP �y�� V �z�i�x��	� �
�

�
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� Computational Soundness� For every polynomial�time interactive machine B� and for
all su�ciently long x �� L and every y and z

Prob �hB�y�� V �z�i�x��	� �
	

�

As usual� the error probability in the completeness condition can be reduced �from �
��

up to ��poly�jxj�� by repeating the protocol su�ciently many times� The same is not true�
in general� with respect to the error probability in the computational soundness condition
�see Exercise �	�� All one can show is that the error probability can be reduced to be
negligible �i�e�� smaller that 	�p���� for every polynomial p����� Speci�cally� by repeating a
computationally sound proof su�ciently many time �i�e�� superlogarithmically many times�
we get a new veri�er V � for which it holds that

For every polynomial p���� every polynomial�time interactive machine B� and
for all su�ciently long x �� L and every y and z

Prob
�
hB�y�� V ��z�i�x��	

�
�

	

p�jxj�

See Exercise ���

����� Perfect Commitment Schemes

The thrust of the current section is in a method for constructing perfect zero�knowledge
arguments for every language in NP � This method makes essential use of the concept of
commitment schemes with a perfect �or �information theoretic�� secrecy property� Hence�
we start with an exposition of �perfect� commitment schemes� We remark that such schemes
may be useful also in other settings �e�g�� in settings in which the receiver of the commitment
is computationally unbounded� see for example Section �����

The di�erence between commitment scheme �as de�ned in Subsection ��
�	� and perfect
commitment schemes �de�ned below� consists of a switching in scope of the secrecy and
unambiguity requirements� In commitment schemes �see De�nition ������ the secrecy re�
quirement is computational �i�e�� refers only to probabilistic polynomial�time adversaries��
whereas the unambiguity requirement is information theoretic �and makes no reference to
the computational power of the adversary�� On the other hand� in perfect commitment
schemes �see de�nition below�� the secrecy requirement is information theoretic� whereas
the unambiguity requirement is computational �i�e�� refers only to probabilistic polynomial�
time adversaries�� Hence� in some sense calling one of these schemes �perfect� is somewhat
unfair to the other �yet� we do so in order to avoid cumbersome terms as a �perfectly�
secret�computationally�nonambiguous commitment scheme��� We remark that it is impos�
sible to have a commitment scheme in which both the secrecy and unambiguity requirements
are information theoretic �see Exercise ����
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De�nition

Loosely speaking� a perfect commitment scheme is an e�cient two�phase two�party protocol
through which the sender can commit itself to a value so the following two con�icting
requirements are satis�ed�

	� Secrecy� At the end of the commit phase the receiver does not gain any information
of the sender�s value�

�� Unambiguity� It is infeasible for the sender to interact with the receiver so that the
commit phase is successfully terminated and yet later it is feasible for the sender to
perform the reveal phase in two di�erent ways leading the receiver to accept �as legal
�openings�� two di�erent values�

Using analogous conventions to the ones used in Subsection ��
�	� we make the following
de�nition�

De�nition ���	 �perfect bit commitment scheme�� A perfect bit commitment scheme is a
pair of probabilistic polynomial�time interactive machines� denoted �S�R� �for sender and
receiver�� satisfying�

� Input Speci�cation� The common input is an integer n presented in unary �serving
as the security parameter�� The private input to the sender is a bit v�

� Secrecy� For every probabilistic �not necessarily polynomial�time� machine R� inter�
acting with S� the random variables describing the output of R� in the two cases�
namely hS���� R�i�	n� and hS�	�� R�i�	n�� are statistically close�

� Unambiguity�
Preliminaries� For simplicity v � f�� 	g and n � IN are implicit in all notations� Fix
any probabilistic polynomial�time algorithm F ��


 As in De�nition 
�
�� a receiver�s view of an interaction with the sender� denoted
�r�m�� consists of the random coins used by the receiver �r� and the sequence of
messages received from the sender �m�� A sender�s view of the same interac�
tion� denoted �s� $m�� consists of the random coins used by the sender �s� and the
sequence of messages received from the receiver � $m�� A joint view of the interac�
tion is a pair consisting of corresponding receiver and sender views of the same
interaction�


 Let � � f�� 	g� We say that a joint view �of an interaction�� t
def
� ��r�m�� �s� $m���

has a feasible ��opening �with respect to F �� if on input �t� ��� algorithm F � out�
puts �say� with probability � 	��� a string s� such that m describes the messages
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received by R when R uses local coins r and interacts with machine S which uses
local coins s� and input ��� 	n��
�Remark� We stress that s� may� but need not� equal s� The output of algorithm
F � has to satisfy a relation which depends only on the receiver�s view part of the
input� the sender�s view is supplied to algorithm F � as additional help��


 We say that a joint view is ambiguous �with respect to F �� if it has both a feasible
��opening and a feasible 	�opening �w�r�t� F ���

The unambiguity requirement asserts that� for all but a negligible fraction of the coin
tosses of the receiver� it is infeasible for the sender to interact with the receiver so that
the resulting joint view is ambiguous with respect to some probabilistic polynomial�time
algorithm F �� Namely� for every probabilistic polynomial time interactive machine S��
probabilistic polynomial�time algorithm F �� polynomial p���� and all su�ciently large
n� the probability that the joint view of the interaction between R and with S�� on
common input 	n� is ambiguous with respect to F �� is at most 	�p�n��

In the formulation of the unambiguity requirement� S� describes the �cheating� sender
strategy in the commit phase� whereas F � describes its strategy in the reveal phase� Hence�
it is justi�ed �and in fact necessary� to pass the sender�s view of the interaction �between S�

and R� to algorithm F �� The unambiguity requirement asserts that any e�cient strategy S�

will fail to produce a joint view of interaction� which can be latter �e�ciently� opened in two
di�erent ways supporting two di�erent values� As usual� events occurring with negligible
probability are ignored�

As in De�nition ����� the secrecy requirement refers explicitly to the situation at the
end of the commit phase� whereas the unambiguity requirement implicitly assumes that the
reveal phase takes the following form�

	� the sender sends to the receiver its initial private input� v� and the random coins� s�
it has used in the commit phase


�� the receiver veri�es that v and s �together with the coins �r� used by R in the commit
phase� indeed yield the messages thatR has received in the commit phase� Veri�cation
is done in polynomial�time �by running the programs S and R��

Construction based on one�way permutations

Perfect commitment schemes can be constructed using any one�way permutation� The
known scheme� however� involve a linear �in the security parameter� number of rounds�
Hence� it can be used for the purposes of the current section� but not for the construction
in Section ����
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Construction ���
 �perfect bit commitment�� Let f be a permutation� and b�x� y� denote
the inner�product mod 
 of x and y �i�e�� b�x� y� �

Pn
i�� xiyi mod ���

	� commit phase �using security parameter n��

� The receiver randomly selects n � 	 linearly indepndent vectors r�� ���� rn�� �
f�� 	gn� The sender uniformly selects s � f�� 	gn and computes y � f�s�� �So
far no message is exchanged between the parties��

� The parties proceed in n�	 rounds� In the ith round �i � 	� ���� n�	�� the receiver

sends ri to the sender� which replies by computing and sending ci
def
� b�y� ri��

� At this point there are exactly two solutions to the equations b�y� ri� � ci� 	�
i � n � 	� De�ne j � � if y is the lexicographically �rst solution �among the
two�� and j � 	 otherwise� To commit to a value v � f�� 	g� the sender sends

cn
def
� j � v to the receiver�


� reveal phase� In the reveal phase� the sender reveals the string s used in the commit
phase� The receiver accepts the value v if f�s� � y� b�y� ri� � ci for all 	� i�n � 	�
and y is the lexicographically �rst solution to these n� 	 equations i� cn � v�

Proposition ���� Suppose that f is a one�way permutation� Then� the protocol presented
in Construction 
��� constitutes a perfect bit commitment scheme�

It is quite easy to see that Construction ���� satis�es the secrecy condition� The proof
that the unambiguity requirement is satis�ed is quite complex and is omitted for space
considerations�

Construction based on clawfree collections

Perfect commitment schemes �of constant number of rounds� can be constructed using
a strong intractability assumption
 speci�cally� the existence of clawfree collections �see
Subsection ��
���� This assumption implies the existence of one�way functions� but it is not
known whether the converse is true� Nevertheless� clawfree collections can be constructed
under widely believed assumptions such as the intractability of factoring and DLP� Actually�
the construction of perfect commitment schemes� presented below� uses a clawfree collection
with an additional property
 speci�cally� it is assume that the set of indices of the collection
�i�e�� the range of algorithm I� can be e�ciently recognized �i�e�� is in BPP�� We remark that
such collections do exist under the assumption that DLP is intractable �see Subsection ��
����

Construction ���� �perfect bit commitment�� Let �I�D� F � be a triplet of e�cient algo�
rithms�
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	� commit phase� To receive a commitment to a bit �using security parameter n�� the
receiver randomly generates i � I�	n� and sends it to the sender� To commit to value
v � f�� 	g �upon receiving the message i from the receiver�� the sender checks if indeed
i is in the range of I�	n�� and if so the sender randomly generates s � D�i�� computes
c � F �v� i� s�� and sends c to the receiver� �In case i is not in the range of I�	n� the
sender aborts the protocol announcing that the receiver is cheating��


� reveal phase� In the reveal phase� the sender reveals the string s used in the commit
phase� The receiver accepts the value v if F �v� i� s� � c� where �i� c� is the receiver�s
�partial� view of the commit phase�

Proposition ���� Let �I�D� F � be a clawfree collection with a probabilistic polynomial�
time recognizable set of indices �i�e�� range of algorithm I�� Then� the protocol presented in
Construction 
�
� constitutes a perfect bit commitment scheme�

Proof� The secrecy requirement follows directly from Property ��� of a clawfree collection
�combined with the test i � I�	n� conducted by the sender�� The unambiguity requirement
follows from Property ��� of a clawfree collection� using a standard reducibility argument�

We remark that the Factoring Clawfree Collection� presented in Subsection ��
��� can
be used to construct a perfect commitment scheme although this collection is not known to
have an e�ciently recognizable index set� Hence� perfect commitment schemes exists also
under the assumption that factoring Blum integers is intractable� Loosely speaking� this
is done by letting the receiver prove to the sender �in zero�knowledge� that the selected
index� N � satis�es the secrecy requirement� What is actually being proven is that half of
the square roots� of each quadratic residue mod N � have Jacobi symbol 	 �relative to N��
A zero�knowledge proof system of this claim does exist �without assuming anything�� We
remark that the idea just presented can be described as replacing the requirement that
the index set is e�ciently recognizable by a zero�knowledge proof that a string is indeed a
legitimate index�

Commitment Schemes with a posteriori secrecy

We conclude the discussion of perfect commitment schemes by introducing a relaxation
of the secrecy requirement� The resulting scheme cannot be used for the purposes of the
current section� yet it is useful in di�erent settings� The advantage in the relaxation is that
it allows to construct commitment schemes using any clawfree collection� thus waiving the
additional requirement that the index set is e�ciently recognizable�

Loosely speaking� we relax the secrecy requirement of perfect commitment schemes by
requiring that it only holds whenever the receiver follows it prescribed program �denoted
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R�� This seems strange since we don�t really want to assume that the real receiver follows
the prescribed program �but rather allow it to behave arbitrarily�� The point is that a real
receiver may disclose the coin tosses used by it in the commit phase in a later stage� say
even after the reveal phase� and by doing so a posteriori prove that �at least in some weak
sense� it was following the prescribed program� Actually� the receiver only proves that he
behaved in a manner which is consistent with its program�

De�nition ���� �commitment scheme with perfect a posteriori secrecy�� A bit commitment

scheme with perfect a posteriori secrecy is de�ned as in De�nition 
���
� except that the
secrecy requirement is replaced by the following a posteriori secrecy requirement� For every
string r � f�� 	gpoly�n� it holds that hS���� Rri�	

n� and hS�	�� Rri�	
n� are statistically close�

where Rr denotes the execution of the interactive machine R when using internal coin tosses
r�

Proposition ���� Let �I�D� F � be a clawfree collection� Consider a modi�cation of Con�
struction 
�
�� in which the sender�s check� of whether i is in the range of I�	n�� is omitted
�from the commit phase�� Then the resulting protocol constitutes a bit commitment scheme
with perfect a posteriori secrecy�

In contrast to Proposition ���	� here the clawfree collection may not have an e�ciently
recognizable index set� Hence� the veri�er�s check must have been omitted� Yet� the receiver
can later prove that the message sent by it during the commit phase �i�e�� i� is indeed a valid
index by disclosing the random coins it has used in order to generate i �using algorithm I��

Proof� The a posteriori secrecy requirement follows directly from Property ��� of a clawfree
collection �combined with the assumption that i in indeed a valid index�� The unambiguity
requirement follows as in Proposition ���	�

A typical application of commitment scheme with perfect a posteriori secrecy is pre�
sented in Section ���� In that setting the commitment scheme is used inside an interactive
proof with the veri�er playing the role of the sender �and the prover playing the role of
the receiver�� If the veri�er a posteriori learns that the prover has been cheating then the
veri�er rejects the input� Hence� no damage is caused� in this case� by the fact that the
secrecy of the veri�er�s commitments might have been breached�

Nonuniform computational unambiguity

Actually� for the applications to proof�argument systems� both the one below and the
one in Section ���� we need commitment schemes with perfect secrecy and nonuniform
computational unambiguity� �The reasons for this need are analogous to the case of the
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zero�knowledge proof for NP presented in Section ��
�� By nonuniform computational
unambiguity we mean that the unambiguity condition should hold also for �nonuniform�
families of polynomial�size circuits� We stress that all the constructions of perfect com�
mitment schemes possess the nonuniform computational unambiguity� provided that the
underlying clawfree collections foil also nonuniform polynomial�size claw�forming circuits�

In order to prevent the terms of becoming too cumbersome we omit the phrase �nonuni�
form� when referring to the perfect commitment schemes in the description of the two
applications�

����� Perfect Zero�Knowledge Arguments for NP

Having perfect commitment scheme at our disposal� we can construct perfect zero�knowledge
arguments forNP � by modifying the construction of �computational� zero�knowledge proofs
�for NP� in a totally syntactic manner� We recall that in these proof systems �e�g�� Con�
struction ���� for Graph ��Colorability� the prover uses a commitment scheme in order to
commit itself to many values� part of them it later reveals upon the veri�er�s request� All
that is needed is to replace the commitment scheme used by the prover by a perfect commit�
ment scheme� We claim that the resulting protocol is a perfect zero�knowledge argument
�computationally sound proof� for the original language� For sake of concreteness we prove

Proposition ���� Consider a modi�cation of Construction 
�
� so that the commitment
scheme used by the prover is replaced by a perfect commitment scheme� Then the resulting
protocol is a perfect zero�knowledge weak argument for Graph ��Colorability�

By a weak argument we mean a protocol in which the gap between the completeness and the
computational soundness condition is non�negligible� In our case the veri�er always accepts
inputs in G�C� whereas no e�cient prover can fool him into accepting graphs G��V�E� not
in G�C with probability greater than 	� �

�jEj � We remind the reader that by polynomially
many repetitions the error probability can be made negligible�

Proof Sketch� We start by proving that the resulting protocol is perfect zero�knowledge
for G�C� We use the same simulator as in the proof of Proposition ����� However� this
time analyzing the properties of the simulator is much easier since the commitments are
distributed independently of the committed values� and consequently the veri�er acts in
total oblivion of the values� It follows that the simulator outputs a transcript with proba�
bility exactly �

� � and for similar reasons this transcript is distributed identically to the real
interaction� The perfect zero�knowledge property follows�

The completeness condition is obvious as in the proof of Proposition ����� It is left to
prove that the protocol satis�es the computational soundness requirement� This is indeed
the more subtle part of the current proof �in contrast to the proof of Proposition ���� in
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which proving soundness is quite easy�� We use a reducibility argument to show that a
prover�s ability to cheat with too high probability on inputs not in G�C translates to an
algorithm contradicting the unambiguity of the commitment scheme� Details follows�

We assume� to the contradiction� that there exists a �polynomial�time� cheating prover
P �� and an in�nite sequence integers� so that for each integer n there exists graphs Gn �
�Vn� En� �� G�C and a string yn so that P ��yn� leads the veri�er to accept Gn with probabil�

ity � 	� �
�jEnj

� Let k
def
� jVnj� Let c�� ���� ck be the sequence of commitments �to the vertices

colors� sent by the prover in step �P	�� Recall that in the next step� the veri�er sends a
uniformly chosen edge �of En� and the prover must answer by revealing di�erent colors for
its endpoint� otherwise the veri�er rejects� A straightforward calculation shows that� since
Gn is not ��colorable� there must exist a vertex for which the prover is able to reveal at
least two di�erent colors� Hence� we can construct a polynomial�size circuit� incorporating
P �� Gn and yn� that violates the �nonuniform� unambiguity condition� Contradiction to
the hypothesis of the proposition follows� and this completes the proof�

Combining Propositions ���� and ���
� we get

Corollary ���� If non�uniformly one�way permutations exist then every language in NP
has a perfect zero�knowledge argument�

Concluding Remarks

Propositions ���� and ���
 exhibit a kind of a trade�o� between the strength of the soundness
and zero�knowledge properties� The protocol of Proposition ���� o�ers computational zero�
knowledge and �perfect� soundness� whereas the protocol of Proposition ���
 o�ers perfect
zero�knowledge and computational soundness� However� one should note that the two results
are not obtained under the same assumptions� The conclusion of Proposition ���� is valid
as long as any one�way functions exist� whereas the conclusion of Proposition ���
 requires
a �probably much� stronger assumption� Yet� one may ask which of the two protocols
should we prefer� assuming that they are both valid� The answer depends on the setting
�i�e�� application� in which the protocol is to be used� In particular� one should consider the
following issues

� The relative importance attributed to soundness and zero�knowledge in the speci�c
application� In case of clear priori to one of the two properties a choice should be
made accordingly�

� The computational resources of the various users in the application� One of the users
may be known to be in possession of much more substantial computing resources� and
it may be reasonable to require that he�she should not be able to cheat even not in
an information theoretic sense�
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� The soundness requirement refers only to the duration of the execution� whereas in
many applications zero�knowledge may be of concern also for a long time afterwards�
If this is the case then perfect zero�knowledge arguments do o�er a clear advantage
�over zero�knowledge proofs��

����	 Zero�Knowledge Arguments of Polylogarithmic E
ciency

A dramatic improvement in the e�ciency of zero�knowledge arguments for NP � can be
obtained by combining ideas from Chapter �missing�sign�sec�� and a result described
in Section �missing�eff�pcp�sec��� In particular� assuming the existence of very strong
collision�free hashing functions one can construct a computationally�sound �zero�knowledge�
proof� for any language in NP � which uses only polylogarithmic amount of communication
and randomness� The interesting point in the above statement is the mere existence of such
extremely e�cient argument� let alone their zero�knowledge property� Hence� we refrain
ourselves to describing the ideas involved in constructing such arguments� and do not address
the issue of making them zero�knowledge�

By Theorem �missing�np�pcp�thm��� every NP language� L� can be reduced to �SAT
so that non�members of L are mapped into �CNF formulae for which every truth assignment
satis�es at most an 	 � � fraction of the clauses� where � � � is a universal constant� Let
us denote this reduction by f � Now� in order to prove that x � L it su�ces to prove that
the formula f�x� is satis�able� This can be done by supplying a satisfying assignment for
f�x�� The interesting point is that the veri�er need not check that all clauses of f�x� are
satis�ed by the given assignment� Instead� it may uniformly select only polylogarithmically
many clauses and check that the assignment satis�es all of them� If x � L �and the prover
supplies a satisfying assignment to f�x�� then the veri�er will always accept� Yet� if x �� L

then no assignment satis�es more than a 	 � � fraction of the clauses� and consequently
a uniformly chosen clause is not satis�ed with probability at least �� Hence� checking
superlogarithmically many clauses will do�

The above paragraph explains why the randomness complexity is polylogarithmic� but
it does not explain why the same holds for the communication complexity� For this end
we need an additional idea� The idea is to use a special commitment scheme which allows
to commit to a string of length n so that the commitment phase takes polylogarithmic
communication and individual bits of this string can be revealed �and veri�ed correct� at
polylogarithmic communication cost� For constructing such a commitment scheme we use a
collision�free hashing function� The function maps strings of some length to strings of half
the length so that it is �hard� to �nd two strings which are mapped by the function to the
same image�

Let n denote the length of the input string to which the sender wishes to commit itself�
and let k be a parameter �which is later set to be polylogarithmic in n�� Denote by H a
collision�free hashing function mapping strings of length �k into strings of length k� The
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sender partitions its input string intom
def
� n

k consequtive blocks� each of length k� Next� the
sender constructs a binary tree of depth log�m� placing the m blocks in the corresponding
leaves of the tree� In each internal node� the sender places the hash value obtained by
applying the function H to the contents of the children of this node� The only message
sent in the commit phase is the contents of the root �sent by the sender to the receiver��
By doing so� unless the sender can form collisions under H � the sender has �committed�
itself to some n�bit long string� When the receiver wishes to get the value of a speci�c bit
in the string� the sender reveals to the receiver the contents of both children of each node
along the path from the root to the corresponding leaf� The receiver checks that the values
supplied for each node �along the path� match the value obtained by applying H to the
values supplied for the two children�

The protocol for arguing that x � L consists of the prover committing itself to a sat�
isfying assignment for f�x�� using the above scheme� and the veri�er checking individual
clauses by asking the prover to reveal the values assigned to the variables in these clauses�
The protocol can be shown to be computationally�sound provided that it is infeasible to
�nd a pair 	� � � f�� 	g�k so that H�	� � H���� Speci�cally� we need to assume that
forming collisions under H is not possible in subexponential time
 namely� that for some
� � �� forming collisions with probability greater than ��k

�
must take at least �k

�
time� In

such a case� we set k � �logn���
�

� and get a computationally�sound proof of communication
complexity O� logno��� �m �k� � polylog�n�� �Weaker lower bounds for the collision�forming task

may still yield meaningful results by an appropriate setting of the parameter k�� We stress
that collisions can always be formed in time ��k and hence the entire approach fails if the
prover is not computationally bounded �and consequently we cannot get �perfectly�sound�
proof systems this way�� Furthermore� by a simulation argument one may show that� only
languages in Dtime��polylog� have proof systems with polylogarithmic communication and
randomness complexity�

��� 
 Constant Round Zero�Knowledge Proofs

In this section we consider the problem of constructing constant�round zero�knowledge proof
systems with negligible error probability for all languages in NP � To make the rest of the
discussion less cumbersome we de�ne a proof system to be round�e�cient if it is both
constant�round and with negligible error probability�

We present two approaches to the construction of round�e�cient zero�knowledge proofs
for NP �

	� Basing the construction of round�e�cient zero�knowledge proof systems on commit�
ment schemes with perfect secrecy �see Subsection �������
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�� Constructing �round�e�cient zero�knowledge� computationally�sound proof systems
�see Section ���� instead of �round�e�cient zero�knowledge� proof systems�

The advantage of the second approach is that round�e�cient zero�knowledge computationally�
sound proof systems for NP can be constructed using any one�way function� whereas it is
not known whether round�e�cient zero�knowledge proof systems forNP can be constructed
under the same general assumption� In particular� we only know how to construct perfect
commitment schemes by using much stronger assumptions �e�g�� the existence of clawfree
permutations��

Both approaches have one fundamental idea in common� We start with an abstract
exposition of this common idea� Recall that the basic zero�knowledge proof for Graph
��Colorability� presented in Construction ����� consists of a constant number of rounds�
However� this proof system has a non�negligible error probability �in fact the error proba�
bility is very close to 	�� In Section ��
� it was suggested to reduce the error probability
to a negligible one by sequentially applying the proof system su�ciently many times� The
problem is that this yields a proof system with a non�constant number of rounds� A natural
suggestion is to perform the repetitions of the basic proof in parallel� instead of sequentially�
The problem with this �solution� is that it is not known whether that the resulting proof
system is zero�knowledge�

Furthermore� it is known that it is not possible to present� as done in the proof
of Proposition ����� a single simulator which uses every possible veri�er as a
black box �see Section ����� The source of trouble is that� when playing many
versions of Construction ���� in parallel� a cheating veri�er may select the edge
to be inspected �i�e�� step �V	�� in each version depending on the commitments
sent in all versions �i�e�� in step �P	��� Such behaviour of the veri�er defeats a
simulator analogous to the one presented in the proof of Proposition �����

The way to overcome this di�culty is to �switch� the order of steps �P	� and �V	�� But
switching the order of these steps enables the prover to cheat �by sending commitments
in which only the �query� edges are colored correctly�� Hence� a more re�ned approach
is required� The veri�er starts by committing itself to one edge�query for each version
�of Construction ������ then the prover commits itself to the coloring in each version� and
only then the veri�er reveals its queries and the rest of the proof proceeds as before� The
commitment scheme used by the veri�er should prevent the prover from predicting the
sequence of edges committed to by the veri�er� This is the point were the two approaches
di�er�

	� The �rst approach utilizes for this purpose a commitment scheme with perfect secrecy�
The problem with this approach is that such schemes are known to exists only under

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



��� CHAPTER �� ZERO�KNOWLEDGE PROOF SYSTEMS

stronger assumption than merely the existence of one�way function� Yet� such schemes
do exists under assumptions such as the intractability of factoring integers of special
form or the intractability of the discrete logarithm problem�

�� The second approach bounds the computational resources of prospective cheating
provers� Consequently� it su�ces to utilize� �against� these provers �as commitment
receivers�� commitment schemes with computational security� We remark that this
approach utilizes �for the commitments done by the prover� a commitment scheme
with an extra property� Yet� such schemes can be constructed using any one�way
function�

We remark that both approaches lead to protocols that are zero�knowledge in a liberal sense
�i�e�� using expected polynomial�time simulators��

����� Using commitment schemes with perfect secrecy

For sake of clarity� let us start by presenting a detailed description of the constant�round
interactive proof �for Graph ��Colorability �i�e�� G�C�� sketched above� This interactive
proof employs two di�erent commitment schemes� The �rst scheme is the simple commit�
ment scheme �with �computational� secrecy� presented in Construction ���	� We denote
by Cs��� the commitment of the sender� using coins s� to the �ternary� value �� The second
commitment scheme is a commitment scheme with perfect secrecy �see Section ������� For
simplicity� we assume that this scheme has a commit phase in which the receiver sends one
message to the sender which then replies with a single message �e�g�� the schemes presented
in Section ������� Let us denote by Pm�s�	� the commitment of the sender to string 	� upon
receiving message m �from the receiver� and when using coins s�

Construction ���� �A round�e�cient zero�knowledge proof for G�C��

� Common Input� A simple ���colorable� graph G� �V�E�� Let n
def
� jV j� t

def
� n � jEj

and V � f	� ���� ng�

� Auxiliary Input to the Prover� A ��coloring of G� denoted ��

� Prover�s preliminary step �P��� The prover invokes the commit phase of the perfect
commit scheme� which results in sending to the veri�er a message m�

� Veri�er�s preliminary step �V��� The veri�er uniformly and independently selects a

sequence of t edges� E
def
� ��u�� v��� ���� �ut� vt�� � Et� and sends the prover a random

commitment to these edges� Namely� the veri�er uniformly selects s � f�� 	gn and
sends Pm�s�E� to the prover�
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� Motivating Remark� At this point the veri�er is committed to a sequence of t edges�
This commitment is of perfect secrecy�

� Prover�s step �P	�� The prover uniformly and independently selects t permutations�

��� ���� �t� over f	� �� �g� and sets 
j�v�
def
� �j���v��� for each v � V and 	 � j � t�

The prover uses the computational commitment scheme to commit itself to colors of
each of the vertices according to each ��coloring� Namely� the prover uniformly and
independently selects s���� ���� sn�t � f�� 	g

n� computes ci�j � Csi�j �
j�i��� for each i � V
and 	�j� t� and sends c���� ���� cn�t to the veri�er�

� Veri�er�s step �V	�� The veri�er reveals the sequence E � ��u�� v��� ���� �ut� vt�� to the
prover� Namely� the veri�er send �s� E� to the prover�

� Motivating Remark� At this point the entire commitment of the veri�er is revealed�
The veri�er now expects to receive� for each j� the colors assigned by the jth coloring
to vertices uj and vj �the endpoints of the j

th edge in E��

� Prover�s step �P��� The prover checks that the message just received from the veri�
�er is indeed a valid revealing of the commitment made by the veri�er at step �V���
Otherwise the prover halts immediately� Let us denote the sequence of t edges� just
revealed� by �u�� v��� ���� �ut� vt�� The prover uses the reveal phase of the computational
commitment scheme in order to reveal� for each j� the jth coloring of vertices uj and
vj to the veri�er� Namely� the prover sends to the veri�er the sequence of quadruples

�su� ��� 
��u��� sv���� 
��v���� ���� �sut�t� 
t�ut�� svt�t� 
t�vt��

� Veri�er�s step �V��� The veri�er checks whether� for each j� the values in the jth

quadruple constitute a correct revealing of the commitments cuj�j and cvj �j� and whether
the corresponding values are di�erent� Namely� upon receiving �s�� ��� s��� ��� through
�st� �t� s

�
t� �t�� the veri�er checks whether for each j� it holds that cuj�j � Csj��j��

cvj�j � Cs�j
��j�� and �j �� �j �and both are in f	� �� �g�� If all conditions hold then the

veri�er accepts� Otherwise it rejects�

We �rst assert that Construction ���� is indeed an interactive proof for G�C� Clearly�
the veri�er always accepts a common input in G�C� Suppose that the common input graph�
G� �V�E�� is not in G�C� Clearly� each of the �committed colorings� sent by the prover
in step �P	� contains at least one illegally�colored edge� Using the perfect secrecy of the
commitments sent by the veri�er in step �V��� we deduce that at step �P	� the prover has
�no idea� which edges the veri�er asks to see �i�e�� as far as the information available to the
prover is concerned� each possibility is equally likely�� Hence� although the prover sends the
�coloring commitment� after receiving the �edge commitment�� the probability that all the
�committed edges� have legally �committed coloring� is at most�

	�
	

jEj

�t
� e�n � ��n
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We now turn to show that Construction ���� is indeed zero�knowledge �in the liberal
sense allowing expected polynomial�time simulators�� For every probabilistic �expected�
polynomial�time interactive machine� V �� we introduce an expected polynomial�time simu�
lator� denoted M�� The simulator starts by selecting and �xing a random tape� r� for V ��
Given the input graph G and the random tape r� the commitment message of the veri�er
V � is determined� Hence� M� invokes V �� on input G and random tape r� and gets the
corresponding commitment message� denoted CM � The simulator proceeds in two steps�

S	� Extracting the query edges� M� generates a sequence of n � t random commitments
to dummy values �e�g�� all values equal 	�� and feeds it to V �� In case V � replies by
revealing correctly a sequence of t edges� denoted �u�� v��� ���� �ut� vt�� the simulator
records these edges and proceed to the next step� In case the reply of V � is not a
valid revealing of the commitment message CM � the simulator halts outputting the
current view of V � �e�g�� G� r and the commitments to dummy values��

S�� Generating an interaction that satis�es the query edges �oversimpli�ed exposition�� Let
�u�� v��� ���� �ut� vt� denote the sequence of edges recorded in step �S	�� M� generates
a sequence of n � t commitments� c���� ���� cn�t� so that for each j � 	� ���� t� it holds that
cuj�j and cvj�j are random commitments to two di�erent random values in f	� �� �g and
all the other ci�j �s are random commitments to dummy values �e�g�� all values equal 	��
The underlying values are called a pseudo�colorings� The simulator feeds this sequence
of commitments to V �� If V � replies by revealing correctly the �above recorded�
sequence of edges� then M� can complete the simulation of a �real� interaction of
V � �by revealing the colors of the endpoints of these recorded edges�� Otherwise� the
entire step is repeated �until success occurs��

In the rest of the description we ignore the possibility that� when invoked in steps �S	�
and �S��� the veri�er reveals two di�erent edge commitments� Loosely speaking� this prac�
tice is justi�ed by the fact that during expected polynomial�time computations such event
can occur only with negligible probability �since otherwise it contradicts the computational
unambiguity of the commitment scheme used by the veri�er��

To illustrate the behaviour of the simulator assume that the program V � always reveals
correctly the commitment done in step �V��� In such a case� the simulator will �nd out
the query edges in step �S	�� and using them in step �S�� it will simulate the interaction of
V � with the real prover� Using ideas as in Section ��
 one can show that the simulation is
computational indistinguishable from the real interaction� Note that in this case� step �S��
of the simulator is performed only once�

Consider now a more complex case in which� on each possible sequence of internal
coin tosses r� program V � correctly reveals the commitment done in step �V�� only with
probability �

� � The probability in this statement is taken over all possible commitments
generated to the dummy values �in the simulator step �S	��� We �rst observe that the
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probability that V � correctly reveals the commitment done in step �V��� after receiving
a random commitment to a sequence of pseudo�colorings �generated by the simulator in
step �S���� is approximately �

� � �Otherwise� we derive a contradiction to the computational
secrecy of the commitment scheme used by the prover�� Hence� the simulator reaches step
�S�� with probability �

� � and each execution of step �S�� is completed successfully with
probability p � �

� � It follows that the expected number of times that step �S�� is invoked
when running the simulator is �

� �
�
p � 	�

Let us now consider the general case� Let q�G� r� denote the probability that� on in�
put graph G and random tape r� after receiving random commitments to dummy values
�generated in step �S	��� program V � correctly reveals the commitment done in step �V���
Likewise� we denote by p�G� r� the probability that� �on input graph G and random tape r�
after receiving a random commitment to a sequence of pseudo�colorings �generated by the
simulator in step �S���� program V � correctly reveals the commitment done in step �V���
As before the di�erence between q�G� r� and p�G� r� is negligible �in terms of the size of the
graph G�� otherwise one derives contradiction to the computational secrecy of the prover�s
commitment scheme� We conclude that the simulator reaches step �S�� with probability

q
def
� q�G� r�� and each execution of step �S�� is completed successfully with probability

p
def
� p�G� r�� It follows that the expected number of times that step �S�� is invoked when

running the simulator is q � �p � Here are the bad news� we cannot guarantee that q
p is approxi�

mately 	 or even bounded by a polynomial in the input size �e�g�� let p � ��n and q � ��n���
then the di�erence between them is negligible and yet q

p is not bounded by poly�n��� This
is why the above description of the simulator is oversimpli�ed and a modi�cation is indeed
required�

We make the simulator expected polynomial�time by modifying step �S�� as follows�
We add an intermediate step �S	���� to be performed only if the simulator did not halt
in step �S	�� The purpose of step �S	��� is to provide a good estimate of q�G� r�� The
estimate is computed by repeating step �S	� until a �xed �polynomial in jGj� number of
correct V ��reveals are encountered �i�e�� the estimate will be the ratio of the number of
successes divided by the number of trial�� By �xing a su�ciently large polynomial� we can
guarantee that with overwhelmingly high probability �i�e�� 	 � ��poly�jGj�� the estimate is
within a constant factor of q�G� r�� It is easily veri�ed that the estimate can be computed
within expected time poly�jGj��q�G� r�� Step �S�� of the simulator is modi�ed by adding
a bound on the number of times it is performed� and if none of these executions yield a
correct V ��reveal then the simulator outputs a special empty interaction� Speci�cally� step
�S�� will be performed at most poly�jGj��q� where q is the estimate to q�G� r� computed in
step �S	���� It follows that the modi�ed simulator has expected running time bounded by

q�G� r� � poly�jGj�
q�G�r� � poly�jGj��

It is left to analyze the output distribution of the modi�ed simulator� We refrain our�
selves to reducing this analysis to the analysis of the output of the original simulator� by
bounding the probability that the modi�ed simulator outputs a special empty interaction�
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This probability is bounded by

%�G� r�
def
� q�G� r�� q�G� r� �

�
	� �	� p�G� r��poly�jGj��q�G�r�

�
� q�G� r� � �	� p�G� r��poly�jGj��q�G�r�

We claim that %�G� r� is a negligible function of jGj� Assume� to the contrary� that there
exists a polynomial P ���� an in�nite sequence of graphs fGng� and an in�nite sequence of
random tapes frng� such that %�Gn� rn� � 	�P �n�� It follows that for each such n we have
q�Gn� rn� � 	�P �n�� We consider two cases�

Case 	� For in�nitely many n�s� it holds that p�Gn� rn� � q�Gn� rn���� In such a case we
get for these n�s

%�Gn� rn� � �	� p�Gn� rn��
poly�jGnj��q�Gn�rn�

�

�
	�

q�Gn� rn�

�

�poly�jGn j��q�Gn�rn�

� ��poly�jGnj���

which contradicts our hypothesis that %�Gn� rn� � 	�poly�n��

Case �� For in�nitely many n�s� it holds that p�Gn� rn� � q�Gn� rn���� It follows that for
these n�s we have jq�Gn� rn� � p�Gn� rn�j � P �n���� which leads to contradiction of
the computational secrecy of the commitment scheme �used by the prover��

Hence� contradiction follows in both cases�

We remark that one can modify Construction ���� so that weaker forms of perfect
commitment schemes can be used� We refer speci�cally to commitment schemes with perfect
a posteriori secrecy �see Subsection ������� In such schemes the secrecy is only established
a posteriori by the receiver which discloses the coin tosses it has used in the commit phase�
In our case� the prover plays the role of the receiver� and the veri�er plays the role of the
sender� It su�ces to establish the secrecy property a posteriori� since in case secrecy is not
establish the veri�er may reject� In such a case no harm has been caused since the secrecy
of the perfect commitment scheme is used only to establish the soundness of the interactive
proof�

����� Bounding the power of cheating provers

Construction ���� can be modi�ed to yield a zero�knowledge computationally sound proof�
under the �more general� assumption that one�way functions exist� In the modi�ed pro�
tocol� we let the veri�er use a commitment scheme with computational secrecy� instead of
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the commitment scheme with perfect secrecy used in Construction ����� �Hence� both users
commit to their messages using commitment scheme with computational secrecy�� Fur�
thermore� the commitment scheme used by the prover must have the extra property that
it is infeasible to construct a commitment without �knowing� to what value it commits�
Such a commitment scheme is called non�oblivious� We start by de�ning and constructing
non�oblivious commitment schemes�

Non�oblivious commitment schemes

The non�obliviousness of a commitment scheme is intimately related to the de�nition of
proof of knowledge �see Section �����

De�nition ���	 �non�oblivious commitment schemes�� Let �S�R� be a commitment scheme
as in De�nition 
�
�� We say that the commitment scheme is non�oblivious if the prescribed
receiver� R� constitutes a knowledge�veri�er� that is always convinced by S� for the relation

f��	n� r�m�� ��� s�� �m�view
S����n�s�
R��n�r� g

where� as in De�nition 
�
�� view
S����n�s�
R��n�r� denotes the messages received by the interactive

machine R on input 	n and local�coins r� when interactive with machine S �that has input
��� 	n� and uses coins s��

It follows that the receiver prescribed program�R� may accept or rejects at the end of the
commit phase� and that this decision is supposed to re�ect the sender�s ability to later come
up with a legal opening of the commitment �i�e�� successfully complete the reveal phase�� We
stress that non�obliviousness relates mainly to cheating senders� since the prescribed sender
has no di�culty to later successfully complete the reveal phase �and in fact during the
commit phase S always convinces the receiver of this ability�� Hence� any sender program
�not merely the prescribed S� can be modi�ed so that at the end of the commit phase it
�locally� outputs information enabling the reveal phase �i�e�� � and s�� The modi�ed sender
runs in expected time that is inversely proportional to the probability that the commit
phase is completed successfully�

We remark that in an ordinary commitment scheme� at the end of the commit phase�
the receiver does not necessarily �know� whether the sender can later successfully conduct
the reveal phase� For example� a cheating sender in Construction ���	 can �undetectedly�
perform the commit phase without ability to later successfully perform the reveal phase
�e�g�� the sender may just send a uniformly chosen string�� It is only guaranteed that if
the sender follows the prescribed program then the sender can always succeed in the reveal
phase� Furthermore� with respect to the scheme presented in Construction ����� a cheating
sender can �undetectedly� perform the commit phase in a way that it generates a receiver
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view which does not have any corresponding legal opening �and hence the reveal phase is
doomed to fail�� See Exercise 	��

Nevertheless

Theorem ���
 If one�way functions exist then there exist non�oblivious commitment schemes
with constant number of communication rounds�

We recall that �ordinary� commitment schemes can be constructed assuming the ex�
istence of one�way functions �see Proposition ���
 and Theorem ������ Consider the re�
lation corresponding to such a scheme� Using zero�knowledge proofs of knowledge �see
Section ���� for the above relation� we get a non�oblivious commitment scheme� �We re�
mark that such proofs do exist under the same assumptions�� However� the resulting com�
mitment scheme has unbounded number of rounds �due to the round complexity of the
zero�knowledge proof�� We seem to have reached a vicious circle� yet there is a way out�
We can use constant�round witness indistinguishable proofs �see Section ����� instead of
the zero�knowledge proofs� The resulting commitment scheme has the additional prop�
erty that when applied �polynomially� many times in parallel the secrecy property holds
simultaneously in all copies� This fact follows from the Parallel Composition Lemma for
witness indistinguishable proofs �see Section ����� The simultaneous secrecy of many copies
is crucial to the following application�

Modifying Construction ����

We recall that we are referring to a modi�cation of Construction ���� in which the veri�er
uses a commitment scheme �with computational secrecy�� instead of the commitment scheme
with perfect secrecy used in Construction ����� In addition� the commitment scheme used
by the prover is non�oblivious�

We conclude this section by remarking on how to adopt the argument of the �rst ap�
proach �i�e�� of Subsection ����	� to suit our current needs� We start with the claim that the
modi�ed protocol is a computationally�sound proof for G�C� Verifying that the modi�ed
protocol satis�es the completeness condition is easy as usual� We remark that the modi�ed
protocol does not satisfy the �usual� soundness condition �e�g�� a �prover� of exponential
computing power can break the veri�er�s commitment and generate pseudo�colorings that
will later fool the veri�er into accepting�� Nevertheless� we can show that the modi�ed
protocol does satisfy the computational soundness �of De�nition ������ Namely� we show
that for every polynomial p���� every polynomial�time interactive machine B� and for all
su�ciently large graph G �� G�C and every y and z

Prob �hB�y�� VG�C�z�i�x��	� �
	

p�jxj�
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where VG�C is the veri�er program in the modi�ed protocol�

Using the information theoretic unambiguity of the commitment scheme employed by
the prover� we can talk of a unique color assignment which is induced by the prover�s
commitments� Using the fact that this commitment scheme is non�oblivious� it follows that
the prover can be modi�ed so that� in step �P	�� it outputs the values to which it commits
itself at this step� We can now use the computational secrecy of the veri�er�s commitment
scheme to show that the color assignment generated by the prover is almost independent
of the veri�er�s commitment� Hence� the probability that the prover can fool the veri�er
to accept an input not in the language is non�negligibly greater than what it would have
been if the veri�er asked random queries after the prover makes its �color� commitments�
The computational soundness of the �modi�ed� protocol follows� We remark that we do not
know whether the protocol is computationally sound in case the prover uses a commitment
scheme that is not guaranteed to be non�oblivious�

Showing that the �modi�ed� protocol is zero�knowledge is even easier than it was in
the �rst approach �i�e�� in Subsection ����	�� The reason being that when demonstrating
zero�knowledge of such protocols we use the secrecy of the prover�s commitment scheme and
the unambiguity of the veri�er�s commitment scheme� Hence� only these properties of the
commitment schemes are relevant to the zero�knowledge property of the protocols� Yet� the
current �modi�ed� protocol uses commitment schemes with relevant properties which are not
weaker than the ones of the corresponding commitment schemes used in Construction �����
Speci�cally� the prover�s commitment scheme in the modi�ed protocol possess computation�
ally secrecy just like the prover�s commitment scheme in Construction ����� We stress that
this commitment� like the simpler commitment used for the prover in Construction ����� has
the simultaneous secrecy �of many copies� property� Furthermore� the veri�er�s commitment
scheme in the modi�ed protocol possess �information theoretic� unambiguity� whereas the
veri�er�s commitment scheme in Construction ���� is merely computationally unambiguous�

���� 
 Non�Interactive Zero�Knowledge Proofs

Author�s Note� Indeed� this section is missing

������ De�nition

������ Construction

���� 
 Multi�Prover Zero�Knowledge Proofs

In this section we consider an extension of the notion of an interactive proof system� Specif�
ically� we consider the interaction of a veri�er with several �say� two� provers� The provers
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may share an a�priori selected strategy� but it is assumed that they cannot interact with
each other during the time period in which they interact with the veri�er� Intuitively� the
provers can coordinate their strategies prior to� but not during� their interrogation by the
veri�er�

The notion of multi�prover interactive proof plays a fundamental role in complexity the�
ory� This aspect is not addressed here �but rather postponed to Section �missing�eff�pcp�sec����
In the current section we merely address the zero�knowledge aspects of multi�party interac�
tive proofs� Most importantly� the multi�prover model enables the construction of �perfect�
zero�knowledge proof systems for NP � independent of any complexity theoretic �or other�
assumptions� Furthermore� these proof systems can be extremely e�cient� Speci�cally� the
on�line computations of all parties can be performed in polylogarithmic time �on a RAM��

������ De�nitions

For sake of simplicity we consider the two�prover model� We remark that more provers do
not o�er any essential advantages �and speci�cally� none that interest us in this section��
Loosely speaking� a two�prover interactive proof system is a three party protocol� where two
parties are provers and the additional party is a veri�er� The only interaction allowed in
this model is between the veri�er and each of the provers� In particular� a prover does not
�know� the contents of the messages sent by the veri�er to the other prover� The provers
do however share a random input tape� which is �as in the one�prover case� �beyond the
reach� of the veri�er� The two�prover setting is a special case of the two�partner model
described below�

The two�partner model

The two�party model consists of two partners interacting with a third party� called solitary�
The two partners can agree on their strategies beforehand� and in particular agree on a
common uniformly chosen string� Yet� once the interaction with the solitary begins� the
partners can no longer exchange information� The following de�nition of such an interaction
extends De�nitions ��	 and ����

De�nition ���� �two�partner model�� The two�partner model consists of three interactive
machines� two are called partners and the third is called solitary� which are linked and interact
as hereby speci�ed�

� The input�tapes of all three parties coincide� and its contents is called the common

input�

� The random�tapes of the two partners coincide� and is called the partners	 random�tape�
�The solitary has a separate random�tape��
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� The solitary has two pairs of communication�tapes and two switch�tapes� instead of a
single pair of communication�tapes and a single switch�tape �as in De�nition 
�	��

� Both partners have the same identity and the solitary has an opposite identity �see
De�nitions 
�	 and 
�
��

� The �rst �resp�� second� switch�tape of the solitary coincides with the switch�tape of
the �rst �resp�� second� partner� the �rst �resp�� second� read�only communication�tape
of the solitary coincides with the write�only communication�tape of the �rst �resp��
second� partner and vice versa�

� The joint computation of the three parties� on a common input x� is a sequence of
triplets� Each triplet consists of the local con�guration of each of the three machines�
The behaviour of each partner�solitary pair is as in the de�nition of the joint compu�
tation of a pair of interactive machines�

� Notation� We denote by hP�� P�� Si�x� the output of the solitary S after interacting
with the partners P� and P�� on common input x�

Two�prover interactive proofs

A two�prover interactive proof system is now de�ned analogously to the one�prover case
�see De�nitions ��
 and �����

De�nition ��	� �two�prover interactive proof system�� A triplet of interactive machines�
�P�� P�� V �� in the two�partner model is called an proof system for a language L if the machine
V �called veri�er� is probabilistic polynomial�time and the following two conditions hold

� Completeness� For every x � L

Prob �hP�� P�� V i�x��	� �
�

�

� Soundness� For every x �� L and every pair of partners �B�� B���

Prob �hB�� B�� V i�x��	� �
	

�

As usual� the error probability in the completeness condition can be reduced �from �
��

up to ��poly�jxj�� by sequentially repeating the protocol su�ciently many times� We stress
that error reduction via parallel repetitions is not known to work in general�

The notion of zero�knowledge �for multi�prove systems� remains exactly as in the one�
prover case� Actually� the de�nition of perfect zero�knowledge may even be made more
strict by requiring that the simulator never fails �i�e�� never outputs the special symbol 
��
Namely�
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De�nition ��	� We say that a �two�prover� proof system �P�� P�� V � for a language L
is perfect zero�knowledge if for every probabilistic polynomial�time interactive machine V �

there exists a probabilistic polynomial�time algorithm M� such that for every x � L the
random variables hP�� P�� V

�i�x� and M��x� are identically distributed�

Extension to the auxiliary�input �zero�knowledge� model is straightforward�

������ Two�Senders Commitment Schemes

The thrust of the current section is in a method for constructing perfect zero�knowledge
two�prover proof systems for every language in NP � This method makes essential use of a
commitment scheme for two senders and one receiver that posses �information theoretic�
secrecy and unambiguity properties� We stress that it is impossible to simultaneously
achieve �information theoretic� secrecy and unambiguity properties in the single sender
model�

A De�nition

Loosely speaking� a two�sender commitment scheme is an e�cient two�phase protocol for
the two�partner model� through which the partners� called senders� can commit themselves
to a value so that the following two con�icting requirements are satis�ed�

	� Secrecy� At the end of the commit phase the solitary� called receiver� does not gain
any information of the senders� value�

�� Unambiguity� Suppose that the commit phase is successfully terminated� Then if later
the senders can perform the reveal phase so that the receiver accepts the value � with
probability p then they cannot perform the reveal phase so that the receiver accepts
the value 	 with probability substantially bigger than 	 � p� �Due to the secrecy
requirement and the fact that the senders are computationally unbounded� for every
p� the senders can always conduct the commit phase so that they can later reveal the
value � with probability p and the value 	 with probability 	� p��

Instead of presenting a general de�nition� we restrict our attention to the special case of
two�sender commitment schemes in which only the �rst sender �and the receiver� takes
part in the commit phase� whereas only the second sender takes part in the reveal phase�
Furthermore� we assume� without loss of generality� that in the reveal phase the �second�
sender sends the contents of the joint random�tape �used by the �rst sender in the commit
phase� to the receiver�
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De�nition ��	� �two�sender bit commitment�� A two�sender bit commitment scheme is
a triplet of probabilistic polynomial�time interactive machines� denoted �S�� S�� R�� for the
two�partner model satisfying�

� Input Speci�cation� The common input is an integer n presented in unary� called the
security parameter� The two partners� called the senders� have an auxiliary private
input v � f�� 	g�

� Secrecy� The ��commitment and the 	�commitment are identically distributed� Namely�
for every probabilistic �not necessarily polynomial�time� machine R� interacting with
the �rst sender �i�e�� S��� the random variables hS����� R

�i�	n� and hS��	�� R
�i�	n�

are identically distributed�

� Unambiguity� Preliminaries� For simplicity v � f�� 	g and n � IN are implicit in all
notations�


 As in De�nition 
�
�� a receiver�s view of an interaction with the ��rst� sender�
denoted �r�m�� consists of the random coins used by the receiver� denoted r� and
the sequence of messages received from the ��rst� sender� denoted m�


 Let � � f�� 	g� We say that the string s is a possible ��opening of the receiver�s
view �r�m� if m describes the messages received by R when R uses local coins r
and interacts with machine S� which uses local coins s and input ��� 	n��


 Let S�
� be an arbitrary program for the �rst sender� Let p be a real� and � � f�� 	g�

We say that p is an upper bound on the probability of a ��opening of the receiver	s

view of the interaction with S�
� if for every random variableX� which is statistically

independent of the receiver�s coin tosses� the probability that X is a possible ��
opening of the receiver�s view of an interaction with S�

� is at most p�
�The probability is taken over the coin tosses of the receiver� the strategy S�

� and
the random variable X ��


 Let S�
� be as above� and� for each � � f�� 	g� let p� be an upper bound on the

probability of a ��opening of the interaction with S�
�� We say that the receiver	s

view of the interaction with S�
� is unambiguous if p� � p� � 	 � ��n�

The unambiguity requirement asserts that� for every program for the �rst sender� S�
��

the receiver�s interaction with S�
� is unambiguous�

In the formulation of the unambiguity requirement� the random variables X represent pos�
sible strategies of the second sender� These strategies may depend on the random input
that is shared by the two senders� but is independent of the receiver�s random coins �since
information on these coins� if at all� is only sent to the �rst sender�� Actually� the highest
possible value of p� � p� is attainable by deterministic strategies for both senders� Thus�
it su�ces to consider an arbitrary deterministic strategy S�

� for the �rst sender and a �xed
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��opening� denoted s� � for the second sender �for each � � f�� 	g�� In this case� the prob�
ability is taken only over the receiver coin tosses and we can strengthen the unambiguity
condition as follows�

�strong unambiguity condition� for every deterministic strategy S�
�� and every pair

of strings �s�� s��� the probability that for both � � �� 	 the string s� is a ��
opening of the receiver�s view of the interaction with S�

� is bounded above by
��n�

In general� in case the sender employ randomized strategies� they determine for each possible
coin�tossing of the receiver a pair of probabilities corresponding to their success in a ��
opening and a 	�opening� The unambiguity condition asserts that the average of these
pairs� taken over all possible receiver�s coin tosses is a pair which sums�up to at most
	 � ��n� Intuitively� this means that the senders cannot do more harm than deciding at
random �possibly based also on the receiver�s message to the �rst sender� whether to commit
to � or to 	� Both secrecy and unambiguity requirements are information theoretic �in the
sense that no computational restrictions are placed on the adversarial strategies�� We stress
that we have implicitly assumed that the reveal phase takes the following form�

	� the second sender sends to the receiver the initial private input� v� and the random
coins� s� used by the �rst sender in the commit phase


�� the receiver veri�es that v and s �together with the private coins �r� used by R in the
commit phase� indeed yield the messages that R has received in the commit phase�
Veri�cation is done in polynomial�time �by running the programs S� and R��

A Construction

By the above conventions� it su�ces to explicitly describe the commit phase �in which only
the �rst sender takes part��

Construction ��	� �two�sender bit commitment��

� Preliminaries� Let ��� �� denote two permutations over f�� 	� �g so that �� is the
identity permutation and �� is a permutation consisting of a single transposition� say
�	� ��� Namely� ���	���� ������	 and ��������

� Common input� the security parameter n �in unary��

� A convention� Suppose that the contents of the senders� random�tape encodes a uni�
formly selected s�s� � � �sn � f�� 	� �gn�
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� Commit Phase�

	� The receiver uniformly selects r � r� � � �rn � f�� 	gn and sends r to the �rst
sender�


� To commit to a bit �� the �rst sender computes ci
def
� �ri�si�� � mod �� for each

i� and sends c� � � �cn to the receiver�

We remark that the second sender could have opened the commitment either way if he had
known r �sent by the receiver to the �rst sender�� The point is that the second sender does
not �know� r� and this fact drastically limits its ability to cheat�

Proposition ��	� Construction 
��� constitutes a two�sender bit commitment scheme�

Proof� The security property follows by observing that for every choice of r � f�� 	gn� the
message sent by the �rst sender is uniformly distributed over f�� 	� �gn�

The unambiguity property is proven by contradiction� As a motivation� we �rst consider
the execution of the above protocol when n equals 	 and show that it is impossible for the
two senders to be always able to open the commitments both ways� Consider two messages�
��� s�� and �	� s��� sent by the second sender in the reveal phase so that s� is a possible ��
opening and s� is a possible 	�opening� both with respect to the receiver�s view� We stress
that these messages are sent obliviously of the random coins of the receiver� and hence
must match all possible receiver�s views �or else the opening does not always succeed�� It
follows that for each r � f�� 	g� both �r�s

�� and �r�s
�� � 	 mod � must �t the message

received by the receiver �in the commit phase� in response to message r sent by it� Hence�
�r�s

�� � �r�s
�� � 	 �mod �� holds� for each r � f�� 	g� Contradiction follows since no two

s�� s� � f�� 	� �g can satisfy both ���s�� � ���s�� � 	 �mod �� and ���s�� � ���s�� � 	
�mod ��� �The reason being that the �rst equality implies s� � s� � 	 �mod �� which
combined with the second equality yields ���s��	 mod �� � ���s���	 �mod ��� whereas
for every s � f�� 	� �g it holds that ���s� 	 mod �� �� ���s� � 	 �mod ����

We now turn to the actual proof of the unambiguity property� We �rst observe that
if there exists a program S�

� so that the receiver�s interaction with S�
� is ambiguous� then

there exists also such a deterministic program� Actually� the program is merely a function�
denoted f � mapping n�bit long strings into sequences in f�� 	� �gn� Likewise� the ���opening
and 	�opening� strategies for the second sender can be assumed� without loss of generality�
to be deterministic� Consequently� both strategies consist of constant sequences� denoted
s� and s�� and both can be assumed �with no loss of generality� to be in f�� 	� �gn�

For each � � f�� 	g� let p� denote the probability that the sequence s� is a possible ��
opening of the receiver�s view �Un� f�Un��� where Un denotes a random variable uniformly
distributed over f�� 	gn� The contradiction hypothesis implies that p� � p� � 	 � ��n� Put
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in other words� jR�j� jR�j � �n � �� where R� denotes the set of all strings r � f�� 	gn for
which the sequence s� is a possible ��opening of the receiver�s view �r� f�r��� Namely�

R� � fr � ��i� fi�r���ri�s
�
i � � � �mod ��g

where r � r� � � �rn� s
� � s�� � � �s

�
n� and f�r� � f��r� � � �fn�r�� We are going to refute the

contradiction hypothesis by showing that the intersection of the sets R� and R� cannot
contain more than a single element�

Claim ���
��� Let R� and R� as de�ned above� Then jR� �R�j � 	�

proof� Suppose� on the contrary� that 	� � � R� � R� �and 	 �� ��� Then� there exist an i
such that 	i �� �i� and without loss of generality 	i � � �and �i � 	�� By the de�nition of
R� it follows that

fi�	� � ���s
�
i � �mod ��

fi��� � ���s
�
i � �mod ��

fi�	� � ���s
�
i � � 	 �mod ��

fi��� � ���s
�
i � � 	 �mod ��

Contradiction follows as in the motivating discussion� �

This completes the proof of the proposition�

We remark that Claim ���
�	 actually yields the strong unambiguity condition �presented
in the discussion following De�nition ������ More importantly� we remark that the proof
extends easily to the case in which many instances of the protocol are executed in parallel

namely� the parallel protocol constitutes a two�sender multi�value �i�e�� string� commitment
scheme�

Author�s Note� The last remark should be elaborated signi�cantly� In addition�
it should be stressed that the claim holds also when the second sender is asked
to reveal only some of the commitments� as long as this request is indepdendent
of the coin tosses used by the receiver during the commit phase�

������ Perfect Zero�Knowledge for NP

Two�prover perfect zero�knowledge proof systems for any language in NP follow easily by
modifying Construction ����� The modi�cation consists of replacing the bit commitment
scheme� used in Construction ����� by the two�sender bit commitment scheme of Construc�
tion ����� Speci�cally� the modi�ed proof system for Graph Coloring proceeds as follows�

Two�prover atomic proof of Graph Coloring

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



����� 	 MULTI�PROVER ZERO�KNOWLEDGE PROOFS �
�

� The �rst prover uses the prover�s random tape to determine a permutation of the
coloring� In order to commit to each of the resulting colors� the �rst prover invokes
�the commit phase of� a two�sender bit commitment� setting the security parameter
to be the number of vertices in the graph� �The �rst prover plays the role of the �rst
sender whereas the veri�er plays the role of the receiver��

� The veri�er uniformly selects an edge and sends it to the second prover�

� The second prover reveals the colors of the endpoints of the required edge� by sending
the portions of the prover�s random�tape used in the corresponding instance of the
commit phase�

We now remark on the properties of the above protocol� As usual� one can see that
the provers can always convince the veri�er of valid claims �i�e�� the completeness condition
hold�� Using the unambiguity property of the two�sender commitment scheme we can think
of the �rst prover as selecting at random� with arbitrary probability distribution� a color
assignment to the vertices of the graph� We stress that this claim holds although many
instances of the commit protocol are performed concurrently �see remark above�� If the
graph is not ��colored than each of the possible color assignments chosen by the �rst prover
is illegal� and a weak soundness property follows� Yet� by executing the above protocol
polynomially many times� even in parallel� we derive a protocol satisfying the soundness re�
quirement� We stress that the fact that parallelism is e�ective here �as means for decreasing
error probability� follows from the unambiguity property of two�sender commitment scheme
and not from a general �parallel composition lemma� �which is not valid in the two�prover
setting��

Author�s Note� The last sentence refers to a false claim by which the error
probability of a protocol in which a basic protocol is repeated t times in parallel
is at most pt� where p is the error probability of the basic protocol� Interestingly�
Ran Raz has recently proven a general �parallel composition lemma� of slightly
weaker form� the error probability indeed decreases exponentially in t �but the
base is indeed bigger than p��

We now turn to the zero�knowledge aspects of the above protocol� It turns out that this
part is much easier to handle than in all previous cases we have seen� In the construction
of the simulator we take advantage on the fact that it is playing the role of both provers
and hence the unambiguity of the commitment scheme does not apply� Speci�cally� the
simulator� playing the role of both senders� can easily open each commitment any way it
wants� �Here we take advantage on the speci�c structure of the commitment scheme of
Construction ������ Details follow�

Simulation of the atomic proof of Graph Coloring
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� The simulator generates random �commitments to nothing�� Namely� the simulator
invokes the veri�er and answers its messages by uniformly chosen strings�

� Upon receiving the query�egde �u� v� from the veri�er� the simulator uniformly selects
two di�erent colours� 
u and 
v� and opens the corresponding commitments so that
to reveal this values� The simulator has no di�culty to do so since� unlike the second
prover� it knows the messages sent by the veri�er in the commit phase� �Given the
receiver�s view� �r� � � �rn� c� � � �cn�� of the commit phase� a ��opening is computed by
setting si � ���

ri
�ci� whereas a 	�opening is computed by setting si � ���

ri
�ci � 	�� for

all i��

We now remark that the entire argument extends trivially to the case in which polynomially
many instances of the protocol are performed concurrently�

E�ciency improvement

A dramatic improvement in the e�ciency of two�prover �perfect� zero�knowledge proofs for
NP � can be obtained by using the techniques described in Section �missing�eff�pcp�sec���
In particular� such a proof system with constant error probability� can be implemented in
probabilistic polynomial�time� so that the number of bits exchanged in the interaction is
logarithmic� Furthermore� the veri�er is only required to use logarithmically many coin
tosses� The error can be reduced to ��k by repeating the protocol sequentially for k times�
In particular negligible error probability is achieved in polylogarithmic communication com�
plexity� We stress again that error reduction via parallel repetitions is not known to work
in general� and in particular is not known to work in this speci�c case�

Author�s Note� Again� the last statement is out of date and recent results do
allow to reduce the error probability without increasing the number of rounds�

�����	 Applications

Multi�prover interactive proofs are useful only in settings in which the �proving entity�
can be separated and its parts kept ignorant of one another during the proving process�
In such cases we get perfect zero�knowledge proofs without having to rely on complexity
theoretic assumptions� In other words� general widely believed mathematical assumptions
are replaced by physical assumptions concerning the speci�c setting�

A natural application is to the problem of identi�cation� and speci�cally the identi��
cation of a user at some station� In Section ��� we discuss how to reduce identi�cation to
a zero�knowledge proof of knowledge �for some NP relation�� The idea is to supply each
user with two smart�cards� implementing the two provers in a two�prover zero�knowledge
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proof of knowledge� These two smart�cards have to be inserted in two di�erent slots of the
station� and this guarantees that the smart�cards cannot communicate one with another�
The station will play the role of the veri�er in the zero�knowledge proof of knowledge� This
way the station is protected against impersonation� whereas the users are protected against
pirate stations which may try to extract knowledge from the smart�cards �so to enable
impersonation by its agents��

���� Miscellaneous

������ Historical Notes

Interactive proof systems were introduced by Goldwasser� Micali and Racko� �GMR����
�Earlier versions of this paper date to early 	���� Yet� the paper� being rejected three
times from major conferences� has �rst appeared in public only in 	���� concurrently to
the paper of Babai �B����� A restricted form of interactive proofs� known by the name
Arthur Merlin Games� was introduced by Babai �B���� �The restricted form turned out to
be equivalent in power � see Section �missing�eff�ip�sec���� The interactive proof for
Graph Non�Isomorphism is due to Goldreich� Micali and Wigderson �GMW����

The concept of zero�knowledge has been introduced by Goldwasser� Micali and Rack�
o�� in the same paper quoted above �GMR���� Their paper contained also a perfect zero�
knowledge proof for Quadratic Non Residuousity� The perfect zero�knowledge proof system
for Graph Isomorphism is due to Goldreich� Micali and Wigderson �GMW���� The latter
paper is also the source to the zero�knowledge proof systems for all languages in NP � using
any �nonunifomly� one�way function� �Brassard and Cr&epeau have later constructed alter�
native zero�knowledge proof systems for NP � using a stronger intractability assumption�
speci�cally the intractability of the Quadratic Residuousity Problem��

The cryptographic applications of zero�knowledge proofs were the very motivation for
their presentation in �GMR���� Zero�knowledge proofs were applied to solve cryptographic
problems in �FMRW��� and �CF���� However� many more applications were possible once
it was shown how to construct zero�knowledge proof systems for every language in NP �
In particular� general methodologies for the construction of cryptographic protocols have
appeared in �GMW��	GMW�
��

Credits for the advanced sections

The results providing upper bounds on the complexity of languages with perfect zero�
knowledge proofs �i�e�� Theorem ����� are from Fortnow �For�
� and Aiello and Hastad
�AH�
�� The results indicating that one�way functions are necessary for non�trivial zero�
knowledge are from Ostrovsky and Wigderson �OWistcs���� The negative results con�
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cerning parallel composition of zero�knowledge proof systems �i�e�� Proposition ���� and
Theorem ����� are from �GKr��b��

The notions of witness indistinguishability and witness hiding� were introduced and
developed by Feige and Shamir �FSwitness��

Author�s Note� FSwitness has appeared in STOC���

The concept of proofs of knowledge originates from the paper of Goldwasser� Micali and
Racko� �GMR���� First attempts to provide a de�nition to this concept appear in Fiat�
Feige and Shamir �FFS�
� and Tompa and Woll �TW�
�� However� the de�nitions provided
in both �FFS�
	TW�
� are not satisfactory� The issue of de�ning proofs of knowledge has
been extensively investigated by Bellare and Goldreich �BGknow�� and we follow their sug�
gestions� The application of zero�knowledge proofs of knowledge to identi�cation schemes
was discovered by Feige� Fiat and Shamir �FFS�
��

Computationally sound proof systems �i�e�� arguments� were introduced by Brassard�
Chaum� and Cr&epeau �BCC�
�� Their paper also presents perfect zero�knowledge arguments
for NP based on the intractability of factoring� Naor et� al� �NOVY�
� showed how to
construct perfect zero�knowledge arguments forNP based on any one�way permutation� and
Construction ���� is taken from their paper� The polylogarithmic�communication argument
system for NP �of Subsection ����
� is due to Kilian �K�
��

Author�s Note� NOVY�
 has appeared in Crypto�
� and K�
 in STOC�
�

Author�s Note�Micali�s model of CS�proofs was intended for the missing chap�
ter on complexity theory�

The round�e�cient zero�knowledge proof systems for NP � based on any clawfree collec�
tion� is taken from Goldreich and Kahan �GKa���� The round�e�cient zero�knowledge ar�
guments for NP � based on any one�way function� uses ideas of Feige and Shamir �FSconst�
�yet� their original construction is di�erent��

Author�s Note� NIZK credits� BFM and others

Multi�prover interactive proofs were introduced by Ben�Or� Goldwasser� Kilian and
Wigderson �BGKW���� Their paper also presents a perfect zero�knowledge two�prover proof
system for NP � The perfect zero�knowledge two�prover proof for NP � presented in Sec�
tion ��		� follows their ideas but explicitly states the properties of the two�sender commit�
ment scheme in use� Consequently� we observe that this proof system can be applied in
parallel to decease the error probability to a negligible one�

Author�s Note� This observation escaped Feige� Lapidot and Shamir�
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������ Suggestion for Further Reading

For further details on interactive proof systems see Section �missing�eff�ip�sec���

A uniform�complexity treatment of zero�knowledge was given by Goldreich �Guniform��
In particular� it is shown how to use �uniformly� one�way functions to construct interactive
proof systems for NP so that it is infeasible to �nd instances on which the prover leaks
knowledge�

Zero�knowledge proof systems for any language in IP � based on �nonuniformly� one�way
functions� were constructed by Impagliazzo and Yung �IY�
� �yet� their paper contains no
details�� An alternative construction is presented by Ben�Or et� al� �Betal����

Further reading related to the advanced sections

Additional negative results concerning zero�knowledge proofs of restricted types appear in
Goldreich and Oren �GO�
�� The interested reader is also directed to Boppana� Hastad and
Zachos �BHZ�
� for a proof that if every language in coNP has a constant�round interactive
proof system then the Polynomial�Time Hierarchy collapses to its second level�

Round�e�cient perfect zero�knowledge arguments for NP � based on the intractability of
the Discrete Logarithm Problem� appears in a paper by Brassard� Cr&epeau and Yung �BCY��
A round�e�cient perfect zero�knowledge proof system for Graph Isomorphism appears in a
paper by Bellare� Micali and Ostrovsky �BMO����

Author�s Note� NIZK suggestions

An extremely e�cient perfect zero�knowledge two�prover proof system for NP � appears
in a paper by Dwork et� al� �DFKNS�� Speci�cally� only logarithmic randomness and commu�
nication complexities are required to get a constant error probability� This result uses the
characterization of NP in terms of low complexity multi�prover interactive proof systems�
which is further discussed in Section �missing�eff�pcp�sec���

The paper by Goldwasser� Micali and Racko� �GMR��� contains also a suggestion for a
general measure of �knowledge� revealed by a prover� of which zero�knowledge is merely a
special case� For further details see Goldreich and Petrank �GPkc��

Author�s Note� GPkc has appeared in FOCS�	� See also a recent work by
Goldreich� Ostrovsky and Petrank in STOC���

Author�s Note� The discussion of knowledge complexity is better �t into the
missing chapter on complexity�
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������ Open Problems

Our formulations of zero�knowledge �e�g�� perfect zero�knowledge as de�ned in De�ni�
tion ��		� is di�erent from the standard de�nition used in the literature �e�g�� De�ni�
tion ��	��� The standard de�nition refers to expected polynomial�time machines rather
to strictly �probabilistic� polynomial�time machines� Clearly� De�nition ��		 implies De��
nition ��	� �see Exercise ��� but it is open whether the converse hold�

Author�s Note� Base nizk and arguments on �more� general assumptions�

�����	 Exercises

Exercise �� decreasing the error probability in interactive proofs�
Prove Proposition ����
�Guideline� Execute the weaker interactive proof su�ciently many times� using inde�
pendently chosen coin tosses for each execution� and rule by an appropriate threshold�
Observe that the bounds on completeness and soundness need to be e�ciently com�
putable� Be careful when demonstrating the soundness of the resulting veri�er� The
statement remains valid regardless of whether these repetitions are executed sequen�
tially or �in parallel�� yet demonstrating that the soundness condition is satis�ed is
much easier in the �rst case��

Exercise �� the role of randomization in interactive proofs � part 	� Prove that if L has
an interactive proof system in which the veri�er is deterministic then L � NP�
�Guideline� Note that if the veri�er is deterministic then the entire interaction between
the prover and the veri�er is determined by the prover� Hence� a modi�ed prover
can just precompute the interaction and send it to the modi�ed veri�er as the only
message� The modi�ed veri�er checks that the interaction is consistent with the
message that the original veri�er would have sent�

Exercise �� the role of randomization in interactive proofs � part 
� Prove that if L has an
interactive proof system then it has one in which the prover is deterministic� Further�
more� prove that for every �probabilistic� interactive machine V there exists a deter�
ministic interactive machine P so that for every x the probability Prob �hP� V i�x��	�
equals the supremum of Prob �hB� V i�x��	� taken over all interactive machines B�
�Guideline� for each possible pre�x of interaction� the prover can determine a message
which maximizes the accepting probability of the veri�er V ��

Exercise �� the role of randomization in interactive proofs � part �� Consider a modi��
cation� to the de�nition of an interactive machine� in which the random�tapes of the
prover and veri�er coincide �i�e�� intuitively� both use the same sequence of coin tosses
which is known to both of them�� Prove that every language having such a modi�ed
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interactive proof system has also an interactive proof system �of the original kind� in
which the prover sends a single message�

Exercise �� the role of error in interactive proofs� Prove that if L has an interactive proof
system in which the veri�er never �not even with negligible probability� accepts a
string not in the language L then L � NP �
�Guideline� De�ne a relation RL such that �x� y� � RL if y is a full transcript of an
interaction leading the veri�er to accept the input x� We stress that y contains the
veri�er�s coin tosses and all the messages received from the prover��

Exercise �� error in perfect zero�knowledge simulators � part 	� Consider modi�cations of
De�nition ��		 in which condition 	 is replaced by requiring� for some function q����
that Prob�M��x� � 
� � q�jxj�� Assume that q��� is polynomial�time computable�
Show that if for some polynomials� p���� and p����� and all su�ciently large n�s� q�n� �
	�p��n� and q�n� � 	���p��n� then the modi�ed de�nition is equivalent to the original
one� Justify the bounds placed on the function q����
�Guideline� the idea is to repeatedly execute the simulator su�ciently many time��

Exercise 	� error in perfect zero�knowledge simulators � part 
� Consider the following al�
ternative to De�nition ��		� by which we say that �P� V � is perfect zero�knowledge if for
every probabilistic polynomial�time interactive machine V � there exists a probabilistic
polynomial�time algorithm M� so that the following two ensembles are statistically
close �i�e�� their statistical di�erence is negligible as a function of jxj�

� fhP� V �i�x�gx�L

� fM��x�gx�L

Prove that De�nition ��		 implies the new de�nition�

Exercise 
� �E� error in perfect zero�knowledge simulators � part �� Prove that De�ni�
tion ��		 implies De�nition ��	��

Exercise �� error in computational zero�knowledge simulators� Consider an alternative to
De�nition ��	�� by which the simulator is allowed to output the symbol 
 �with prob�
ability bounded above by� say� �

�� and its output distribution is considered conditioned
on its not being 
 �as done in De�nition ��		�� Prove that this alternative de�nition
is equivalent to the original one �i�e�� to De�nition ��	���

Exercise ��� alternative formulation of zero�knowledge � simulating the interaction� Prove
the equivalence of De�nitions ��	� and ��	��

Exercise ��� Present a simple probabilistic polynomial�time algorithm which simulates
the view of the interaction of the veri�er described in Construction ��	� with the
prover de�ned there� The simulator� on input x � GI � should have output which is
distributed identically to viewPGI

VGI
�x��
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Exercise ��� Prove that the existence of bit commitment schemes implies the existence of
one�way functions�
�Guideline� following the notations of De�nition ����� consider the mapping of �v� s� r�
to the receiver�s view �r�m�� Observe that by the unambiguity requirement range
elements are very unlikely to have inverses with both possible values of v� The mapping
is polynomial�time computable and an algorithm that inverts it� even with success
probability that is not negligible� can be used to contradict the secrecy requirement��

Exercise ��� Considering the commitment scheme of Construction ����� suggest a cheating
sender that induces a receiver�view �of the commit phase� being both

� indistinguishable from the receiver�view in interactions with the prescribed sender


� with very high probability� neither a possible ��commitment nor a possible 	�
commitment�

�Hint� the sender just replies with a uniformly chosen string��

Exercise ��� using Construction 
�
� as a commitment scheme in Construction 
�
��
Prove that when the commitment scheme of Construction ���� is used in the G�C
protocol then resulting scheme remains zero�knowledge� Consider the modi�cations
required to prove Claim �������

Exercise ��� more e�cient zero�knowledge proofs for NP � Following is an outline for a
constant�round zero�knowledge proof for the Hamiltonian Circuit Problem �HCP��
with acceptance gap �

� �between inputs inside and outside of the language��

� Common Input� a graph G��V�E�


� Auxiliary Input �to the prover�� a permutation �� over V � representing the order
of vertices along a Hamiltonian Circuit


� Prover�s �rst step� Generates a random isomorphic copy of G� denoted G� �
�V�E��� �Let � denote the permutation between G and G��� For each pair �i� j� �
V �� the prover sets ei�j � 	 if �i� j� � E� and ei�j � � otherwise� The prover
computes a random commitment to each ei�j � Namely� it uniformly chooses
si�j � f�� 	gn and computes ci�j � Csi�j�ei�j�� The prover sends all the ci�j�s to
the veri�er


� Veri�er�s �rst step� Uniformly selects � � f�� 	g and sends it to the prover


� Prover�s second step� Let � be the message received from the veri�er� If � � 	
then the prover reveals all the jV j� commitments to the veri�er �by reveal�
ing all si�j �s�� and sends along also the permutation �� If � � � then the
prover reveals only jV j commitments to the veri�er� speci�cally those corre�
sponding to the Hamiltonian circuit in G� �i�e�� the prover sends s	����	�
�����
s	����	�
���������s	�n����	�
�n��� s	�n��	�
������
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Complete the description of the above interactive proof� evaluate its acceptance proba�
bilities� and provide a sketch of the proof of the zero�knowledge property �i�e�� describe
the simulator�� If you are really serious provide a full proof of the zero�knowledge
property�

Exercise ��� strong reductions� Let L� and L� be two languages in NP � and let R� and R�

be binary relations characterizing L� and L�� respectively� We say that the relation
R� is Levin�reducible to the relation R� if there exist two polynomial�time computable
functions f and g such that the following two conditions hold�

	� standard requirement� x � L� if and only if f�x� � L��

�� additional requirement� For every �x� w� � R�� it holds that �f�x�� g�w�� � R��

We call the above reduction after Levin� who upon discovering� independently of
Cook and Karp� the existence of NP�complete problem� made a stronger de�nition
of a reduction which implies the above� Prove the following statements

	� Let L � NP and let LR be the generic relation characterizing L �i�e�� �x a non�
deterministic machine ML and let �x� w� � RL if w is an accepting computation
of ML on input x�� Let RSAT be the standard relation characterizing SAT �i�e��
�x� w� � RSAT if w is a truth assignment satisfying the CNF formula x�� Prove
that RL is Levin�reducible to RSAT �

�� Let RSAT be as above� and let R�SAT be de�ned analogously for �SAT � Prove
that RSAT is Levin�reducible to R�SAT �

�� Let R�SAT be as above� and let RG�C be the standard relation characterizing
G�C �i�e�� �x� w� � RG�C if w is a ��coloring of the graph x�� Prove that R�SAT

is Levin�reducible to RG�C �


� Levin�reductions are transitive�

Exercise �	� Prove the existence of a Karp�reduction of L to SAT that� when considered
as a function� can be inverted in polynomial�time� Same for the reduction of SAT to
�SAT and the reduction of �SAT to G�C� �In fact� the standard Karp�reductions
have this property��

Exercise �
� applications of Theorem 
�
�� Assuming the existence of non�uniformly one�
way functions� present solutions to the following cryptographic problems�

	� Suppose that party R received over a public channel a message encrypted using
its own public�key encryption� Suppose that the message consists of two parts
and party R wishes to reveal to everybody the �rst part of the message but not
the second� Further suppose that the other parties want a proof that R indeed
revealed the correct contents of the �rst part of its message�
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�� Suppose that party S wishes to send party R a signature to a publicly known
document so that only R gets the signature but everybody else can verify that
such a signature was indeed sent by S� �We assume that all parties share a public
channel��

�� Suppose that party S wishes to send party R a commitment to a partially speci�
�ed statement so that R remains oblivious of the unspeci�ed part� For example�
S may wish to commit itself to some standard o�er while keeping the amount
o�ered secret�

Exercise ��� on knowledge tightness� Evaluate the knowledge tightness of Construction �����
when applied logarithmically many times in parallel�

Exercise ��� error reduction in computationally sound proofs � part 	� Given a computa�
tionally sound proof �with error probability �

�� for a language L construct a compu�
tationally sound proof with negligible error probability �for L��

Exercise ��� error reduction in computationally sound proofs � part 
� Construct a compu�
tationally sound proof that has negligible error probability �i�e�� smaller than 	�p�jxj�
for every polynomial p��� and su�ciently long inputs x� but when repeated sequentially
jxj times has error probability greater than ��jxj� We refer to the error probability in
the �computational� soundness condition�

Exercise ��� commitment schemes � an impossibility result� Prove that there exists no
two�party protocol which simultaneously satis�es the perfect secrecy requirement of
De�nition ���� and the �information theoretic� unambiguity requirement of De�ni�
tion �����

Exercise ��� alternative formulation of black�box zero�knowledge� We say that a proba�
bilistic polynomial�time oracle machine M is a black�box simulator for the prover P
and the language L if for every �not necessarily uniform� polynomial�size circuit family
fBngn�IN� the ensembles fhP�Bjxji�x�gx�L and fMBjxj�x�gx�L are indistinguishable
by �non�uniform� polynomial�size circuits� Namely� for every polynomial�size circuit
family fDngn�IN� every polynomial p���� all su�ciently large n and x � f�� 	gn � L�

jProb �Dn�hP�Bni�x���	�� Prob
�
Dn�M

Bn�x���	
�
j �

	

p�n�

Prove that the current formulation is equivalent to the one presented in De�nition �����

Exercise ��� Prove that the protocol presented in Construction ���� is indeed a black�box
zero�knowledge proof system for G�C�
�Guideline� use the formulation presented above��
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