How Discreet is the Discrete Log?

Douglas L. Longt
Avi Wigderson}

Department of EECS
Princeton University
Princeton, NJ

Abstract: Blum and Micali [4] showed how to
hide one bit using the discrete logarithm funec-
tion. In this paper we show how to hide
¢-loglog p bits for any constant ¢, where p is

the modulus.

1. Introduction

A tunction f: [1,N] = [1,N] is said to be
one-way if computing f (z) from z is easy, but
computing z from f () is hard. One-way func-
tions are exiremely attractive in crypto-
graphic applications (e.g. see [4], [6). {12},
[13], [14)). However, one should use them with
care. The reason is that while z is hard to com-
pute from f(z), it may be possible to obtain
_almost all bits of = easily. It is clear, however,
that some bits of z are hard to obtain.

In a recent paper, Blum and Micali [4]

This research was partially supported by
1ARO Grant DA AG20-80-K-0090 and Garden State Fel-

lowship
4IBM Fellowship

Permission to copy without fee all or part of this material is granted
provided that the copics are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission,

© 1983 ACM 0-89791-099-0/83/004/0413 $00.75

introduced the notion of hiding a bit in a one-
way function. A _Boolean predicate
B:[1,N] -+ 10,1] is said to be hard for f if an
oracle for B(f (z)) will allow to invert f easily.
They prove that a certain Boolean predicate is
hard for the Discrete Logarithm function, and
show how to use that to construct good pseudo
random number generators.

Some natural questions arise in light of
their work. Given a one-way function b 4

1) What are its hard bits?

2) How many hard bits are there?

S) How many bits are hard simultaneously?
To explain what we mean by the last ques-

tion, consider B, a hard Boolean predicate for

7, and its complement, B. Clearly, F is also
hard for f. However, some partial information
about the pair of bits (B(f (2)). B(r(z))) is
available, namely the information that they
are different. Therefore this two bit predicate
is not hard for f. We say that a k-bit

413

predicate B*: [1,N] » {0,1}* is hard for £ if for
every Boolean predicate B:{0,1}* - (0,1}, an
oracle for B{(B*(f (z))) will allow us to invert f
easily. If such a B* exists, we say that f hides
k bits.

It should be clear that if f is one-way, it
hides more than ¢-log|N| bits for any con-
stant ¢ (|N| is the number of bits in the
binary representation of N). Otherwise it
would be possible to invert f with an algo-
rithm polynomial in |N]. (Just find the easy
bits "easily” and the hard bits by a brute force
enumeration of their possible values.)

The fact that hiding only one bit suffices
for meny applications seem to reduce the
motivation for the questions above. We would
" like to argue that this is not the case. From

, ut= llz,—(iﬂ)

the practical point of viev‘, the ability to hide k& -

bits cuts the computation / communication
per secure bit by a factor of k. One can flip &
coins at a time or generate k bits at a time
with a pseudo random number generator
without hurting security. '

But what really motivates us is the
theoretic point of view. Very little is known
about one-way functions. In particular, a major
open problem is whether they exist. We believe
that discovering and studying the "hard core”
(the collection of hard bits) of functions that
sre believed to be one-way may shed some
light on this problem.

In this paper we focus our attention on
the Discrete Logarithm function, which is
widely believed to be one-way. Our main result
states that the discrete log function hides
¢-log|p| bits for any constant ¢, where p is
the modulus.

Section 2 contains definitions and some
technical lemmas. In sections 3 and 4 we
extend the techniques of [4] to prove our main
result for the case where the oracle is always
correct and the case where it is more correct
than incorrect, respectively. In section 5 we

414

discuss the difficulties i
methods to hide more bits.
yields a polynomial time al; ithm for finding
discrete logarithms when ; : 2™+1, which is
different than the intuitive o..e [10].

extending our
arprisingly, this

2. Definitions and Other Preliminaries

We start with some definitions. From this
point on p will represent a fixed prime, Z, the
group of units mod p, and g a generator of z,.

Let k be an integer such that k<log p. Let S,

be the set of integers 1 to p—1. This set is
divided into 2* intervals If = [II Ut] for ¢ from

ler‘lu

This is a partition at the KD

0 to -1 where

level. For z€S, let I*(z) be the interval which
contains z, i.e. the integer © such that zelp. .

Let R* = l The lower indices of I} are

ie., I'Y, means
I:'“(m".) In general all numbers in this

paper are taken modulo their range.

computed modulo 2%,

Dcﬂniﬁm?.l. Suppose zeS, The index of z,
index(z), is the unique z€S, such that
zmg?(modp). 2 is also known the
discrete logarithm of 5. '

In order to hide the k bits representing
the integer §, 0s{<2*, choose a random z€l}
and compute g*(modp). Thus an integer

s €S, hides the bits which represent the inter- -

val of its index.

We need the following lemmas which are
given without prool.

Lemma 21. |I}| = R® or R*+1.
(The intervals have almost the same size.)

Lemma 2.2. L} = Lk, U1 = Uka.
(Each interval in the (k—1)'* level contains two -
intervals of the k® level.)

Throughout this paper, given an element
£€[1,p-1], we will apply the operations
wezg® wevE (z is a quadratic residue),
and w+zg~! (z is a non-residue). The eflect of
these operations on the index of z is shifting
by a multiple of R*, dividing it by two (when
even), and subtracting one (when odd), respec-
tively. The following lemmas show into which
intervals the new index may fall.

Lemma 2.3.
1<i<2h —1

(l) z#-iR‘EIf;,. or

() =z+tR* = L}, for some 0st <i. .

Proaof. By inductionont.

i=1. From Lemma 2.1 2+R*cl} if and only if
|}|=R*+1 and z=L}.

>1. Let z'=z+(i—-1)R*. If 2'£1},y_, then case
(2) holds for 2’ and therefore for z. Otherwise
z'eltyy so z+iR*=z'+R* and the lemma fol-
lows by the same argument as for i=1. s

Let zel}. Then for every

Lemma 2.4. If 2z€lf}, then

(1) zelfor zel:“.-,, or

() 2z =L} 'or2z=U,

Proof. Suppose zszg—l. (The case z>éLlis
analogous.) Assume L} <2z.

-1, ' -1,
%,—-e,j&z. So 1'?—2; <2z and

[Estef2sty<a

Therefore L}=1+

Then 1+

25—‘;]5:. Similarly i
&<Ubol then < w. -

Lemma 2.5. If z€l} (and z is 0dd), then either
(1) (z-1)el}, or
@ =z=1L}

We cen easily determine if z=g'" or

l.
g=g 7 and thereby find index(z) by maintain-
ing a sorted list of these values. There are

415

0(2*) values to maintain so sorting will cost
0(k2*) time and each query O(k) time. If z is
not one of these values then the above opera-
tions will result in the index of 2 !alling in the
intervals given in case (1) of lemmaes 2.3; 2.4,
or 2.5. Henceforth, we will assume that when-
ever one of these operations takes place a test
for case (2) of lemmas 2.3, 24, or 2.5 is per-
formed. To make the O(k2") cost of the sort-
ing operation polynomial in |p| we must res-
trict ourselves to k=0(log|p}).

Definition 2.2. A decision on k bits, d, is a
nonconstant function d:[0,2%~1]-+{0,1).

Definition 2.3. The period of a decision, d, is
the smallest positive integer, ¢, such that
d{i)=d(i+t) for all ie[0,2*~1).

Clearly t = 2* for some I, 1sl<k.

Lemma 2.8 Let d be a decision with period 2.
Then there éxists an ¢ such that
d(i)nd(i+2'-1). Moreover, such an i can be
found in O(2*) time by linear search.

Proof. Immediate from Definition 2.3. e

8. The Oracle is Always Correct

We introduce the concept of an oracle for
a decision.

Definition 3.1. Let d be a decision on k bits.
We say that 8y is an aracle for d on S, if for all

2€S,, B4(g*) = d(I*(x)).

In this definition the oracle is correct for -

every g* that it is given. This section considers
what happens if we have such an oracle. In the
next section we will consider what happens if
the oracle is allowed to make mistakes.

Definition 3.2 Let 2 be a quadratic residue
mod p and 2s the unique index of z such that
2s€[1,p-1). Then g* will be called the princi-
pal square root of z, and g**®-1/2 the non
principal root of £. (This definition is taken

from [4].)

In [4] it was shown that determining prin-
cipal square roots is as hard as inverting the
discrete log. In the following we will show how
to use the information provided by any deci-
sion on k bits to solve the principal square
root problem. For every J, 1<j<k, consider
the partition of the set of intervals {i{} into
two types, even and odd, depending on
whether i is even or odd. Our method is based
on the following observation. The roots of qua-
dratic residues in even (odd) intervals at level
§ foll in even (odd) intervals at level j+1
(except at interval boundaries). Note that
principal square roots all belong to the even
jnterval, IJ , and non principal roots all belong
to the odd interval, I}. A decision gives us

information about the ihtervals at some level.

To translate this information to information
about the first level we repeatedly take square
roots as shown by procedure REDUCE and the
following lemmas.

For z€[1,p—1] and 0si<k define the pro-
cedure REDUCE(z 1) es follows:

procedure REDUCE(z.!)
wez
fori=1tok-l do
if w is a nonresidue then w+uy™!
we«Va (either root)
endfor
return(w)

Since a quadratic nonresidue, g, is known, the
extraction of square roots in the above pro-

cedure can be performed in time O(lp|®) .

([1].(6]). REDUCE takes time polynomial in
Ip | (including boundary tests).

Lemma 8.1. Let ze[lp-1] and let w =
REDUCE(z,l). Let z = index(z) and y =
index(w). If I*(z)=m0(mod2*-!) then
I%(3)=0(mod 2Y). :

Prool. The case =k is clear. Assume the
lemma is true for l+1. Let w' =
REDUCE(g,l+1) and ' = index(w'). If ¢’ is

odd let w' = w'g~! and y' = y'~1. (This opera-
tion does not change /*(y') by lemma 2.5.) Let
w=Vw' oand y = index(w). (Le
w=REDUCE(s.l) and y'=2y(modp-1)). By
induction we have I*(y')=0(mod2'). Then
y'=2y(mod p—1) so by Lemma 2.4

1*(y)=lﬂgl-')-l orI* @):lﬂg-'llw-a

Therefore I*(y)=0{ mod 2~%). w

The next lemma shows how to solve the . -
principal square root problem for integers

with index in I§.

Lemma 3.2. Let zefg®|2zelf}, and d be &

decision with period 2!. Suppose we are given "

0. an oracle for d. Then we can find the prin-
cipal squere root of z in time polynomial in
Ipl. A -
Proof. By Lemma 2.6 we can choose an i such j"T:.
that d(i)wd(i+2'"?) and 0si<2™), Let zo be

one of the square roots of z. let w =. »

REDUCE(20.l) and wp = wg'®". We will show
that if 84(wg) =a(i) then the principal square
root of & is zg otherwise it is zgg® V2. Let 2o
= Index(zy), ¥ = index(w), and yo = index{wo).
Since 2zoelf, I*(zg)=0(mod2*”') and
P*(y)=0(mod 2*™!), so I*(y)=0(mod 2 or
Py)=2-}(mod2'). This implies either
I*(yo)=i (mod 2) or I*(yo)=i+2"(mod 2).
Since 8¢(wo) =d(I*(yo)) =d (/s (yo) mod 2),
then % is the principal square root of # if and
only if 8(wg)=d(i). The time is dominated by
the REDUCE procedure which takes polynomial
time. »

The next lemma shows how to actually
fnd the index, if we know that the index is in
8.

Lemma 3.3. Let zefg® |z}, and suppose 84
is an oracle for a decision, d. Then we can find
index(s) in time polynomial in |p|.

Proof. Find the bits of the index from right to
left as in [4], using lemma 3.2. Note that each

time we find a principal root its index remains
in 1§, so we can apply lemma 3.2 repeatedly.
The algorithm follows:

procedure INDEX(z)
yez
indez +¢ (empty string)
while y #1 do
if y is a quadratic residue mod p then
tndez +0indez (concatenate O to indez)
else
yeyg
indez +1indez (concatenate 1 to indez)
endif
¢ « the principal aquare root of ¥
e .

L gt

Each use of Lemma 3.2 to extract the principal
square root takes polynomial time. There are
at most |p| iterations so the total time is

38~ again polynomialin |p|. =

We are now ready for the main theorem.

Theorem 3.1. Let 83 be an oracle for some
decision & on k bits, where k=0(loglpl).
Then for every z€[1,0—1] we can determine
index(z) in time polynomial in ip| (including
boundary tests).
Proof. By Lemma 3.3 we can find the index if
it is in the first interval. To do the same for
every z we "guess" the intervel to which
index(z) belongs, shift it to the first interval
and‘apply Lemma 3.3. The algorithm {ollows:
fori =0 to2*~1do
. wezg*®* (Guess that index(z) eI%)
candidate ~INDEX(w)—iR*
if ge™ddals =z then stop.
endfor

Each iteration can be implemented in polyno-
mial' time. There are most a polynomial
number of iterations, so the total time is poly-

nomialin |pl. =

417

4. An Oracle which is Sometimes Wrong

Now we consider what happens if the ora-
cle is sometimes wrong. If the oracle is
correct more often than it is wrong, e.g.
answers correctly for 51% of inputs, then our
result still holds. ‘We will redefine an oracle as
follows:

Definition 4.1. Let d be a decision on k bits -
and O<esY. 04 is en c-aracle for 4, if
04(g*)=d(I*(z)) for 1—¢ of the z's in I*(z).

Note that this definition requires the e-
oracle to more correct than incorrect on
every interval and not over the whole range
[1p~1). This is a stronger assumption than
the cne used in [4), and in fact stronger than
what we need. This definition can be modified
s0 that for k=1 it gives the definition in [4]. To
simplify the presentation, we first use the
stronger version.

How can we find d(/*(2)), given only g*
and an e-oracle that makes mistakes? We use
the technique of "concentrating a stochestic
advantage” developed in [4]. It is based on the
weak law of large numbers.

If y1.Ys - - ' Ym ere m independent 0-1
variables so that y(=1 with probability a,
oand Sp=y1+yet+ * * * +Um, then for posi-

1
tive real numbers and ¢, Mm>—=
14 ® e

implies that Pr(>Y)<ep.

Smo_a
m

Define trials(y,¢)= Z-;‘?-

Lemma 4.1. Let n=trials(e8). Let
Z1.Zs . . . » 2y be randomly chosen elements of
I}. Let s;=g™. Then given 8, we can find d(j)
with probability 1-4.

Proof. (Sketch) Let a=majority{84(2()}. By
the weak law of large numbers a=d(j) with
probability 1-6. =

Since we don't know where g=g?® is in the

T Femmiell .

N

‘Lemma 4.2 Let n=trials(c,8).

interval, we face the, problem of generating
random 2z in /*(z) without falling into neigh-
boring intervals. This can be solved by assum-
ing for the moment that z is in the "begin-
ning" of I*(z). Later we will consider what to
do if it isn't.

Suppose
scig?| [psz<L}+R*/n] for some i. Then we
can find d({) using 84 with probability 1-4 in
time polynomial in &~ and ¢71.

Prool. (Sketch) Pick n random elements in
[1.R*]), 1888x. Let x =zgMt=g""",
Since the s; are uniformly distributed and % is
in the beginning of I}, very few of them (in
fact, the expected number is one) will cause
z+si€l}y;. Therefore we can still use lemma
4.1 to obtain d (i) with probability 1—6. =

Lemma 4.3. Let n =trials(e,8). Let
xcig® |0=2z<R*/n | (i.e. 2z is in the begin-
ning of the first interval). Then we can find the
principal root of z with probability 1-4.

Proadl. (Sket:ch) The proof is the same as for
jemma 3.2 except we use lemma 4.2 to evalu-
ote d(i). =

Lemma 44 Let n=trials(e,dlp|™"). Let
zeig®|0sz<R*/n). Then index(z) can be
computed with probability 1-4 in time polyno-
mialin &1, 67, and |p|.

Proof. (Sketch) Same as lemma 3.3 except we
use lemma 4.3 to evaluate the principal square

root. Since we find principal squere roots at

most |p| times, and the probability of success
in each is greater than 1-&|p|~, the total
probability of success is greater than
(1-6]p |~H)IPi>1-8.

Theorem 4.1. Let 84 be an z-oracle for some
decision d on k bits, where k=0(loglpl).
Then for any 2€[1,p—1] we can find index(s) in
time polynomial in £71, 6%, and |p| with pro-
bability 1-4. »

418

" endfor

Proof. Let n =trials(¢,5]p|™). By Lemma 4.4
we can find index(z) for & with index in the
"beginning” of the first interval. For other g,
we first guess the interval of index(z) and shift
it into the first interval as in Theorem 3.1,
Then we break the first interval into n subin-

tervals of size roughly IR'/ n] each, and guess

to which subinterval the index belongs. This -

subinterval is then shifted to the first subin-:
terval. The algorithm follows: ‘ i

fori =0to2*~1do .
wesg® (Guess that index(s) €/%)
forj =0 ton-1do

wezg®® /M (Guess which subjnterval) ¢ i:
-candidate émozx(w)w.jl%] :

i y"""“""=z then stop.
endlor -

.

e

We use the procedure INDEX from the previous : |

section with the modifications outlined in this)

section for finding the principle square roots..

The total time is polynomial in |p|, £71, and; -

la

‘We conclude this section with a weaker
definition of an ¢-oracle.

Definition 4.2 Let d be decision on k bits with’
period 2, and let ¢ be so that d(i)wd(i+2'™). ‘
Let T be the union of the intervals [} such
that j=fi(mod 2Y). 8 is an z-aracle for d if’
84(g*)=d(/*(z)) for 1-z of 2 in the set T.

" We leave it to the reader to show that for
the cese k=1 this definition is equivalent to
the one given in [4], and that all the results in .
this section hold with this definition of an &-
oracle.

§. Discussion

Consider again the case where the oracle :

is elways correct. The algorithm in theorem. . '

9.1 essentially gives an oracle reduction from
the discrete log problem to the problem of

ecaluaticg ary decisicr on the k bits which
encode the ruraber of the interval. This redues
lion takes polynomial time in Ipl only it
k=0(log|p |). Is it possible to bave a polyno-
mial time reduction for higher velues of k?
There are two places in the algorithm in which
polynomial time in the number of intervals
(=2*) is required:
(1) Mainteining a list of the boundaries of the
intervals. This is done in order to avoid
case 2 of lemmas 2.3, 2.4 and 2.5.

(2) A linear search over all intervals to
"guess” in which of them the index is.
This is done since lemma 3.2 holds only if
the index is in the first interval.

Is there a way around doing (1) and (2)?

We can not answer this question in general.

There are, however, special cases in which (1)

and (2) are not needed.

The problem with the boundaries is
simpler when all intervals are of exactly the
same size. In particular, if p=2™+1, then case
1 holds in all lemmas 2.3, 2.4 and 2.5 if k>1.

When can we avoid enumerating the inter-
vals? Let d be a decision with period 2'.
Lemma 2.8 stated that there must be an inter-
val § for which d(i)»d(£+2!"1). However, there
may be very few such intervals, and in arder to
use lemma 3.2 we had to know where w was, so
that we could shift it to ¢ or to i+2'~1, Call 2
decision complementary if for every ¢,
d(i)md(i+2'). If d is complementary, there
is no need to shift w at all, and so lemma 3.2
would hold for every element in Z;. Then there
is no need for the linear search over the inter-
vals in the algorithm.

Of course, we cannot use the above to
show that the discrete log hides more bits,
since not all primes and decisions share those
properties. On the other hand, & reduction is a
two-way tool: if we could show that there is a

4 partition of S, into intervals and a comple-

mertary decision on \he tervals which s
eaty o eveluate, we would tave & ot
time algorithm for the discrete log in the cese
p=2"+1. But this is easy to do. Partition 5,
into 2™ intervals, .e. each % is in an interval
by itself. Our complementary decision will be
d(z)=1 if and only if £ is odd. d(z) is easily
evaluated from g* by the Euler Criterion.
Therefore, by the discussion above, the algo-
rithm of theorem 3.1 can be made polynomial
inipl. ' ,
This elgorithm is somewhat strenge and

. far less natural than the one given in [10].

However it shows that the reduction can be
used to solve the discrete log in special cases
when an easy bit (z is odd) reveals a hard bit
(z is in the first half of S,). Are there any
other cases where this happens?

We conclude by noting that there is noth-
ing magic in partitioning [1,p~1] into 2* con-
tiguous intervals. Other partitions may yield
other hard bits.

[1] L. Adleman, K. Manders, G. Miller, "On
Taking Roots in Finite Fields", 18th FOCS
(1977), 175-178.

{2] L. Adlemen, "A Subexponential Algorithm
for the Discrete Logarithm Problem with
Applications to Cryptography”, 20th
FOCS (1979), 55-60.

[3] E. Berlekamp, "Factoring Polynomials
Over Large Finite Fields", Mathematics of
Computation, 24, (1970), 713-735.

{4] M. Blum & S. Miceli, "How To Generate
Cryptographically Strong Sequences Of
Pseudo Random Bits”, 23rd FOCS (1982),
112-117,

[5] W. Diffie & M. Hellman, "New Directions in
Cryptography”, IEEE Transactions on
Information Theory, IT-22, 6 (1976), 644-
654.

(8] J. Finn, “Probabilistic Methods in
‘Number-Theoretic Algorithms and Digital
Signature Schemes”, Ph.D. Dissertation,
Princeton University, (June 1882).

[7) S. Goldwasser & S. Micali, *Probabilistic
Encryption and How to Play Mental Poker
Keeping Secret all Partial Information”,
14th STOC (1882), 365-377.

[6] K Ireland & M. Rosen, Remants of

Number Theory, Bogden & Quigly, Inc.,
New York, 1872.

[9] R. Lipton, "How to Cheat at Mental
" Poker”, Unpublished Manuscript, 1879.

[10] S. Pohlig & M. Hellman, * An Improved

Algorithm for Computing Logarithms

over GF(p) end Its Cryptographic

Significance”, IEEE Transactions on

Information Theory, IT-24, 1 (1878), 106-

" 110. A

(11] M. Rabin, "Probabilistic Algorithms in Fin-

" ite Fields", SIAM Journal of Computing,
No. 2, (May 1980), 273-280.

[12) A. Shamir, R Rivest, L. Adleman, "llentq

Poker”, MIT Technical Report (Feb. 1879)

[13] A Yeo, "Theory and Applications of 'rnp-
door Functions”, 23rd FOCS (1882), 80-91. :

A

