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Chapter �

Computational Di�culty

In this chapter we present several variants of the de�nition of one�way functions� In par�
ticular� we de�ne strong and weak one�way functions� We prove that the existence of weak
one�way functions imply the existence of strong ones� The proof provides a simple example
of a case where a computational statement is much harder to prove than its �information
theoretic analogue�� Next� we de�ne hard�core predicates� and prove that every one�way
function �has� a hard�core predicate�

Organizaton� In Section ��� we motivate the de�nition of one�way functions by arguing
imformally that it is implict in various natural cryptographic primitives� The basic de��
nitions are given in Section ��� and in Section ��	 we show that weak one�way functions
can be used to construct strong ones� A more e
cient construction� for certain cases� is
postponed to Section ���� In Section ��� we de�ne hard�core predicates and show how to
construct them from one�way functions�

��� One�Way Functions� Motivation

As stated in the introduction chapter� modern cryptography is based on a gap between
e
cient algorithms guaranteed for the legitimate user versus the computational infeasibility
of retrieving protected information for an adversary� To illustrate this� we concentrate on
the cryptographic task of secure data communication� namely encryption schemes�

In secure encryption schemes� the legitimate user should be able to easily decipher the
messages using some private information available to him� yet an adversary �not having this
private information
 should not be able to decrypt the ciphertext e
ciently �i�e�� in prob�
abilistic polynomial�time
� On the other hand� a non�deterministic machine can quickly
decrypt the ciphertext �e�g�� by guessing the private information
� Hence� the existence of
secure encryption schemes implies that there are tasks �e�g�� �breaking� encryption schemes

that can be performed by non�deterministic polynomial�time machines� yet cannot be per�
formed by deterministic �or even randomized
 polynomial�time machines� In other words�

��
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�� CHAPTER �� COMPUTATIONAL DIFFICULTY

a necessary condition for the existence of secure encryption schemes is that NP is not
contained in BPP �and thus P �� NP
�

Although P �� NP is a necessary condition it is not a su
cient one� P �� NP implies
that the encryption scheme is hard to break in the worst case� It does not rule�out the
possibility that the encryption scheme is easy to break almost always� Indeed� one can
construct �encryption schemes� for which the breaking problem is NP�complete� and yet
there exist an e
cient breaking algorithm that succeeds ��� of the time� Hence� worst�
case hardness is a poor measure of security� Security requires hardness on most cases or at
least �average�case hardness�� A necessary condition for the existence of secure encryption
schemes is thus the existence of languages in NP which are hard on the average� It is not
known whether P �� NP implies the existence of languages in NP which are hard on the
average�

The mere existence of problems �in NP
 which are hard on the average does not su
ce
either� In order to be able to use such hard�on�the�average problems we must be able to
generate hard instances together with auxiliary information which enable to solve these
instances fast� Otherwise� these hard instances will be hard also for the legitimate users�
and consequently the legitimate users gain no computational advantage over the adversary�
Hence� the existence of secure encryption schemes implies the existence of an e
cient way
�i�e� probabilistic polynomial�time algorithm
 of generating instances with corresponding
auxiliary input so that

�� it is easy to solve these instances given the auxiliary input� and

�� it is hard on the average to solve these instances �when not given the auxiliary input
�

The above requirement is captured by the de�nition of one�way functions presented in
the next subsection� For further details see Exercise ��

��� One�Way Functions� De�nitions

In this section� we present several de�nitions of one�way functions� The �rst version� here�
after referred to as strong one�way function �or just one�way function
� is the most popular
one� We also present weak one�way functions� non�uniformly one�way functions� and plau�
sible candidates for such functions�

����� Strong One�Way Functions

Loosely speaking� a one�way function is a function which is easy to compute but hard to
invert� The �rst condition is quite clear� saying that a function f is easy to compute means
that there exists a polynomial�time algorithm that on input x outputs f�x
� The second
condition requires more elaboration� Saying that a function f is hard to invert means
that every probabilistic polynomial�time algorithm trying� on input y to �nd an inverse of
y under f � may succeed only with negligible �in jyj
 probability� A sequence fsngn�N is
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���� ONE�WAY FUNCTIONS� DEFINITIONS ��

called negligible in n if for every polynomial p��
 and all su
ciently large n�s it holds that
sn �

�
p�n�

� Further discussion proceeds the de�nition�

De�nition ����� �strong one�way functions
� A function f � f�� �g� �� f�� �g� is called
�strongly� one�way if the following two conditions hold

�� easy to compute� There exists a �deterministic� polynomial�time algorithm� A� so that
on input x algorithm A outputs f�x
 �i�e�� A�x
 � f�x
��

�� hard to invert� For every probabilistic polynomial�time algorithm� A�� every polynomial
p��
� and all su�ciently large n�s

Pr
�
A��f�Un
� �

n
�f��f�Un

�
�

�

p�n


Recall that Un denotes a random variable uniformly distributed over f�� �gn� Hence� the
probability in the second condition is taken over all the possible values assigned to Un and
all possible internal coin tosses of A�� with uniform probability distribution� In addition
to an input in the range of f � the inverting algorithm is also given the desired length of
the output �in unary notation
� The main reason for this convention is to rule out the
possibility that a function is consider one�way merely because the inverting algorithm does
not have enough time to print the output� Consider for example the function flen de�ned by
flen�x
 � y where y is the binary representation of the length of x �i�e�� flen�x
 � jxj
� Since
jflen�x
j � log� jxj no algorithm can invert flen�x
 in time polynomial in jflen�x
j� yet there
exists an obvious algorithm which inverts flen�x
 in time polynomial in jxj� In general�
the auxiliary input �jxj� provided in conjunction to the input f�x
� allows the inverting
algorithm to run in time polynomial in the total length of the input and the desired output�
Note that in the special case of length preserving functions f �i�e�� jf�x
j � jxj for all x�s
�
the auxiliary input is redundant�

Hardness to invert is interpreted as an upper bound on the success probability of e
cient
inverting algorithms� The probability is measured with respect to both the random choices
of the inverting algorithm and the distribution of the �main
 input to this algorithm �i�e��
f�x

� The input distribution to the inverting algorithm is obtained by applying f to a
uniformly selected x � f�� �gn� If f induces a permutation on f�� �gn then the input to
the inverting algorithm is uniformly distributed over f�� �gn� However� in the general case
where f is not necessarily a one�to�one function� the input distribution to the inverting
algorithm may di�er substantially from the uniform one� In any case� it is required that the
success probability� de�ned over the above probability space� is negligible �as a function of
the length of x
� where negligible means being bounded above by all functions of the form

�
poly�n� � To further clarify the condition made on the success probability� we consider the
following examples�
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	� CHAPTER �� COMPUTATIONAL DIFFICULTY

Consider� an algorithm A� that on input �y� �n
 randomly selects and outputs a string
of length n� In case f is a ��� function� we have

Pr
�
A��f�Un
� �

n
�f��f�Un

�
�

�

�n

since for every x the probability that A��f�x

 equals x is exactly ��n� Hence� the success
probability of A� on any ��� function A� is negligible� On the other hand� for every function
f � the success probability of A� on input f�Un
 is never zero �speci�cally it is at least ��n
�
In case f is constant over strings of the same length �e�g�� f�x
 � �jxj
� we have

Pr
�
A��f�Un
� �

n
�f��f�Un

�
� �

since every x � f�� �gn is a preimage of �n under f � It follows that a one�way function
cannot be constant on strings of the same length� Another trivial algorithm� denoted A��
is one that computes a function which is constant on all inputs of the same length �e�g��
A��y� �n
 � �n
� For every function f we have

Pr
�
A��f�Un
� �

n
�f��f�Un

� � �

�n

�with equality in case f��n
 has a single preimage under f
� Hence� the success probability
of A� on any ��� function is negligible� On the other hand� if Pr�f�Un
 � f��n

 is non�
negligible then so is the success probability of algorithm A��

A few words� concerning the notion of negligible probability� are in place� The above
de�nition and discussion considers the success probability of an algorithm to be negligible
if� as a function of the input length� the success probability is bounded above by every
polynomial fraction� It follows that repeating the algorithm polynomially �in the input
length
 many times yields a new algorithm that also has a negligible success probability� In
other words� events which occur with negligible �in n
 probability remain negligible even if
the experiment is repeated for polynomially �in n
 many times� Hence� de�ning negligible
success as �occurring with probability smaller than any polynomial fraction� is naturally
coupled with de�ning feasible as �computed within polynomial time��

A �strong negation� of the notion of a negligible fraction�probability is the notion of a
non�negligible fraction�probability� We say that a function � is non�negligible if there exists
a polynomial p��
 such that for all su
ciently large n�s it holds that ��n
 � �

p�n�
� Note that

functions may be neither negligible nor non�negligible�

����� Weak One�Way Functions

One�way functions as de�ned above� are one�way in a very strong sense� Namely� any
e
cient inverting algorithm has negligible success in inverting them� A much weaker de��
nition� presented below� only requires that all e
cient inverting algorithm fails with some
non�negligible probability�
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���� ONE�WAY FUNCTIONS� DEFINITIONS 	�

De�nition ����� �weak one�way functions
� A function f �f�� �g� ��f�� �g� is called weakly
one�way if the following two conditions hold

�� easy to compute� as in the de	nition of strong one�way function�

�� slightly�hard to invert� There exists a polynomial p��
 such that for every probabilistic
polynomial�time algorithm� A�� and all su�ciently large n�s

Pr
�
A��f�Un
� �

n
 ��f��f�Un

�
�

�

p�n


����� Two Useful Length Conventions

In the sequel it will be convenient to use the following two conventions regarding the length
of the of the preimages and images of a one�way function� In the current subsection we
justify the used of these conventions�

������� One�way functions de�ned only for some lengths

In many cases it is more convenient to consider one�way functions with domain partial to
the set of all strings� In particular� this facilitates the introduction of some structure in
the domain of the function� A particularly important case� used throughout the rest of this
section� is that of functions with domain �n�N f�� �gp�n�� where p��
 is some polynomial� Let
I � N� and denote by sI�n
 the successor of n with respect to I � namely� sI�n
 is the smallest

integer that is both greater than n and in the set I �i�e�� sI�n

def
� minfi�I � i�ng
� A set

I � N is called polynomial�time enumerable if there exists an algorithm that on input n� halts
within poly�n
 steps and outputs �sI �n�� �The unary output forces sI�n
 � poly�n
�
 Let I
be a polynomial�time enumerable set and f be a function with domain �n�If�� �gn� We call
f strongly �resp� weakly
 one�way on lengths in I if f is polynomial�time computable and
is hard to invert over n�s in I � Such one�way functions can be easily modi�ed into function
with the set of all strings as domain� while preserving one�wayness and some other properties
of the original function� In particular� for any function f with domain �n�If�� �gn� we can
construct a function g � f�� �g� ��f�� �g� by letting

g�x

def
� f�x�


where x� is the longest pre�x of x with length in I � �In case the function f is length
preserving� see de�nition below� we can preserve this property by modifying the construction

so that g�x

def
� f�x�
x�� where x � x�x��� and x� is the longest pre�x of x with length in I �

The following proposition remains valid also in this case� with a minor modi�cation in the
proof�


Proposition ����� � Let I be a polynomial�time enumerable set� and f be strongly �resp�
weakly� one�way on lengths in I� Then g �constructed above� is strongly �resp� weakly�
one�way �in the ordinary sense��
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Although the validity of the above proposition is very appealing� we urge the reader not to
skip the following proof� The proof� which is indeed quite simple� uses for the �rst time in
this book an argument that is used extensively in the sequel� The argument used to prove the
�hardness to invert� property of the function g proceeds by assuming� to the contradiction�
that g can be e
ciently inverted with unallowable success probability� Contradiction is
derived by deducing that f can be e
ciently inverted with unallowable success probability�
In other words� inverting f is �reduced� to inverting g� The term �reduction� is used here
in a non�standard sense� which preserves the success probability of the algorithms� This
kind of an argument is called a reducibility argument�

Proof� We �rst prove that g can be computed in polynomial�time� To this end we use the
fact that I is a polynomial�time enumerable set� It follows that on input x one can �nd
in polynomial�time the largest m � jxj that satis�es m � I � Computing g�x
 amounts to
�nding this m� and applying the function f to the m�bit pre�x of x�

We next prove that g maintains the �hardness to invert� property of f � For sake of
concreteness we present here only the proof for the case that f is strongly one�way� The
proof for the case that f is weakly one�way is analogous�

The prove proceeds by contradiction� We assume� on contrary to the claim �of the
proposition
� that there exists an e
cient algorithm that inverts g with success probabil�
ity that is not negligible� We use this inverting algorithm �for g
 to construct an e
cient
algorithm that inverts f with success probability that is not negligible� hence deriving a
contradiction �to the hypothesis of the proposition
� In other words� we show that inverting
f �with unallowable success probability
 is e
ciently reducible to inverting g �with unallow�
able success probability
� and hence conclude that the latter is not feasible� The reduction
is based on the observation that inverting g on images of arbitrary length yields inverting
g also on images of length in I � and that on such lengths g collides with f � Details follow�

Given an algorithm� B�� for inverting g we construct an algorithm� A�� for inverting f
so that A� has complexity and success probability related to that of B�� Algorithm A� uses
algorithm B� as a subroutine and proceeds as follows� On input y and �n �supposedly y is in

the range of f�Un
 and n � I
 algorithm A� �rst computes sI�n
 and sets k
def
� sI�n
	n	 ��

For every � � i � k� algorithm A� initiates algorithm B�� on input �y� �n�i
� obtaining
zi 
 B��y� �n�i
� and checks if g�zi
 � y� In case one of the zi�s satis�es the above condition�
algorithm A� outputs the n�bit long pre�x of zi� This pre�x is in the preimage of y under
f �since g�x�x��
 � f�x�
 for all x� � f�� �gn and jx��j � k
� Clearly� if B� is a probabilistic
polynomial�time algorithm then so is A�� We now analyze the success probability of A�

�showing that if B� inverts g with unallowable success probability then A� inverts f with
unallowable success probability
�

Suppose now� on the contrary to our claim� that g is not strongly one�way� and let
B� be an algorithm demonstrating this contradiction hypothesis� Namely� there exists a
polynomial p��
 so that for in�nitely many m�s the probability that B� inverts g on g�Um

is at least �

p�m� � Let us denote the set of these m�s by M � De�ne a function �I �N �� I so
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that �I�m
 is the largest lower bound of m in I �i�e�� �I�m

def
� maxfi�I � i�mg
� Clearly�

m � sI��I�m

	 � for every m� The following two claims relate the success probability of
algorithm A� with that of algorithm B��

Claim �������� Let m be an integer and n � �I�m
� Then

Pr
�
A��f�Un
� �

n
�f��f�Un

� � Pr

�
B��g�Um
� �

m
�g��g�Um

�

�Namely� the success probability of algorithm A� on f�U�I�m�
 is bounded below by the
success probability of algorithm B� on g�Um
�

Proof� By construction of A�� on input �f�x�
� �n
� where x��f�� �gn� algorithm A� obtains
the value B��f�x�
� �t
� for every t � sI�n
 	 �� In particular� since m � sI��I�m

	 � �
sI�n
 	 �� it follows that algorithm A� obtains the value B��f�x�
� �m
� By de�nition of g�
for all x���f�� �gm�n� it holds that f�x�
 � g�x�x��
� The claim follows� �

Claim �������� There exists a polynomial q��
 such that m � q��I�m

� for all m�s�

Hence� the set S
def
� f�I�m
 �m�Mg is in�nite�

Proof� Using the polynomial�time enumerability of I � we get sI�n
 � poly�n
� for every n�
Therefore� for every m� we have m � sI��I�m

 � poly��I�m

� Furthermore� S must be
in�nite� otherwise for n upper�bounding S we get m � q�n
 for every m�M ��

Using Claims ����	�� and ����	��� it follows that� for every n � �I�m
 � S� the probability
that A� inverts f on f�Un
 is at least

�
p�m�

� �
p�q�n��

� �
poly�n�

� It follows that f is not strongly
one�way� in contradiction to the proposition�s hypothesis�

������� Length�regular and length�preserving one�way functions

A second useful convention is to assume that the function� f � we consider is length regular
in the sense that� for every x� y � f�� �g�� if jxj � jyj then jf�x
j � jf�y
j� We point
out that the transformation presented above preserves length regularity� A special case of
length regularity� preserved by a the modi�ed transformation presented above� is of length
preserving functions�

De�nition ����� �length preserving functions
� A function f is length preserving if for
every x � f�� �g� it holds that jf�x
j � jxj�

Given a strongly �resp� weakly
 one�way function f � we can construct a strongly �resp�
weakly
 one�way function h which is length preserving� as follows� Let p be a polynomial
bounding the length expansion of f �i�e�� jf�x
j � p�jxj

� Such a polynomial must exist
since f is polynomial�time computable� We �rst construct a length regular function g by
de�ning

g�x

def
� f�x
��p�jxj��jf�x�j

�We use a padding of the form ��� in order to facilitate the parsing of g�x
 into f�x
 and
the �leftover� padding�
 Next� we de�ne h only on strings of length p�n
 � �� for n � N� by
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letting

h�x�x��
 def
� g�x�
 � where jx�x��j � p�jx�j
 � �

Clearly� h is length preserving�

Proposition ����� � If f is a strongly �resp� weakly� one�way function then so are g and
h �constructed above��

Proof Sketch� It is quite easy to see that both g and h are polynomial�time computable�
Using �reducibility arguments� analogous to the one used in the previous proof� we can
establish the hardness�to�invert of both g and h� For example� given an algorithm B� for
inverting g� we construct an algorithm A� for inverting f as follows� On input y and �n �sup�
posedly y is in the range of f�Un

� algorithm A� halts with output B��y��p�n��jyj� �p�n���
�

The reader can easily verify that if f is length preserving then it is redundant to provide
the inverting algorithm with the auxiliary input �jxj �in addition to f�x

� The same holds
if f is length regular and does not shrink its input by more than a polynomial factor �i�e��
there exists a polynomial p��
 such that p�jf�x
j
 � jxj for all x
� In the sequel� we will
only deal with one�way functions that are length regular and does not shrink their its input
by more that a polynomial factor� Furthermore� we will mostly deal with length preserving
functions� Hence� in these cases� we assume� without loss of generality� that the inverting
algorithm is only given f�x
 as input�

Functions which are length preserving are not necessarily ���� Furthermore� the assump�
tion that ��� one�way functions exist seems stronger than the assumption that arbitrary �and
hence length preserving
 one�way functions exist� For further discussion see Section ����

����� Candidates for One�Way Functions

Following are several candidates for one�way functions� Clearly� it is not known whether
these functions are indeed one�way� This is only a conjecture supported by extensive research
which has so far failed to produce an e
cient inverting algorithm �having non�negligible
success probability
�

������� Integer factorization

In spite of the extensive research directed towards the construction of e
cient �integer

factoring algorithms� the best algorithms known for factoring an integer N � run in time

L�P 

def
� �O�

p
logP log logP �� where P is the second biggest prime factor of N � Hence it is

reasonable to believe that the function fmult� which partitions its input string into two parts
and returns the �binary representation of the
 integer resulting by multiplying �the integers
represented by
 these parts� is one�way� Namely� let

fmult�x� y
 � x � y

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



���� ONE�WAY FUNCTIONS� DEFINITIONS 	�

where jxj� jyj and x � y denotes �the string representing
 the integer resulting by multiply�
ing the integers �represented by the strings
 x and y� Clearly� fmult can be computed in
polynomial�time� Assuming the intractability of factoring and using the �density of primes�
theorem �which guarantees that at least N

log� N
of the integers smaller than N are primes


it follows that fmult is at least weakly one�way� Using a more sophisticated argument� one
can show that fmult is strongly one�way� Other popular functions �e�g� the RSA
 related to
integer factorization are discussed in Subsection ����	�

������� Decoding of random linear codes

One of the most outstanding open problems in the area of error correcting codes is that of
presenting e
cient decoding algorithms for random linear codes� Of particular interest are
random linear codes with constant information rate which can correct a constant fraction
of errors� An �n� k� d
�linear�code is a k�by�n binary matrix in which the vector sum �mod
�
 of any non�empty subset of rows results in a vector with at least d one�entries� �A k�
bit long message is encoded by multiplying it with the k�by�n matrix� and the resulting
n�bit long vector has a unique preimage even when �ipping up to d

�
of its entries�
 The

Gilbert�Varshanov Bound for linear codes guarantees the existence of such a code� provided

that k
n
� �	H��

d
n

� where H��p


def
� 	p log� p	 ��	 p
 log���	 p
 if p � �

� and H��p

def
� �

otherwise �i�e�� H���
 is a modi�cation of the binary entropy function
� Similarly� if for some
� � � it holds that k

n
� � 	 H��

�����d
n


 then almost all k�by�n binary matrices constitute
�n� k� d
�linear�codes� Consider three constants �� �� � � � satisfying � � � 	H���� � �
�
�
The function fcode� hereafter de�ned� seems a plausible candidate for a one�way function�

fcode�C� x� i

def
� �C� xC � e�i



where C is an �n�by�n binary matrix� x is a �n�dimensional binary vector� i is the index of an
n�dimensional binary vector having at most �n

�
one�entries �the string itself is denoted e�i

�

and the arithmetic is in the n�dimensional binary vector space� Clearly� fcode is polynomial�
time computable� An e
cient algorithm for inverting fcode would yield an e
cient algorithm
for inverting a non�negligible fraction of the linear codes �an earthshaking result in coding
theory
�

������� The subset sum problem

Consider the function fss de�nes as follows�

fss�x�� 			� xn� I
 � �x�� 			� xn�
X
i�I

xi


where jx�j� � � �� jxnj�n� and I�f�� �� 			� ng� Clearly� fss is polynomial�time computable�
The fact that the subset�sum problem is NP�complete cannot serve as evidence to the one�
wayness of fss� On the other hand� the fact that the subset�sum problem is easy for special
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cases �such as having �hidden structure� and�or �low density�
 can not serve as evidence
for the weakness of this proposal� The conjecture that fss is one�way is based on the failure
of known algorithm to handle random �high density� instances �i�e�� instances in which the
length of the elements is not greater than their number
� Yet� one has to admit that the
evidence in favour of this candidate is much weaker than the evidence in favour of the two
previous ones�

����� Non�Uniformly One�Way Functions

In the above two de�nitions of one�way functions the inverting algorithm is probabilistic
polynomial�time� Stronger versions of both de�nitions require that the functions cannot be
inverted even by non�uniform families of polynomial�size circuits� We stress that the �easy
to compute� condition is still stated in terms of uniform algorithms� For example� following
is a non�uniform version of the de�nition of strong �length�preserving
 one�way functions�

De�nition ����	 �non�uniformly strong one�way functions
� A function f � f�� �g� ��
f�� �g� is called non�uniformly one�way if the following two conditions hold

�� easy to compute� There exists a �deterministic� polynomial�time algorithm� A� so that
on input x algorithm A outputs f�x
 �i�e�� A�x
 � f�x
��

�� hard to invert� For every �even non�uniform� family of polynomial�size circuits�
fCngn�N � every polynomial p��
� and all su�ciently large n�s

Pr
�
Cn�f�Un

�f��f�Un


�
�

�

p�n


The probability in the second condition is taken only over all the possible values of Un�

It can be shown that if f is non�uniformly one�way then it is one�way �i�e�� in the
uniform sense
� The proof follows by converting any �uniform
 probabilistic polynomial�time
inverting algorithm into a non�uniform family of polynomial�size circuits� without decreasing
the success probability� Details follow� Let A� be a probabilistic polynomial�time �inverting

algorithm� Let rn denote a sequence of coin tosses for A� maximizing the success probability
of A�� Namely� rn satis�es Pr�A

�
rn
�f�Un
�f��f�Un

 � Pr�A�f�Un
�f��f�Un

� where the

�rst probability is taken only over all possible values of Un and the second probability is
also over all possible coin tosses for A�� �Recall that A�

r�y
 denotes the output of algorithm
A� on input y and internal coin tosses r�
 The desired circuit Cn incorporates the code of
algorithm A� and the sequence rn �which is of length polynomial in n
�

It is possible that one�way functions exist �in the uniform sense
 and yet there are
no non�uniformly one�way functions� However� such a possibility is considered not very
plausible�
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���� WEAK ONE�WAY FUNCTIONS IMPLY STRONG ONES 	�

��� Weak One�Way Functions Imply Strong Ones

We �rst remark that not every weak one�way function is necessarily a strong one� Consider
for example a one�way function f �which without loss of generality is length preserving
�
Modify f into a function g so that g�x� p
 � �f�x
� p
 if p starts with log� jxj zeros and
g�x� p
 � �x� p
 otherwise� where �in both cases
 jxj� jpj� We claim that g is a weak one�
way function but not a strong one� Clearly� g can not be a strong one�way function �since
for all but a �

n
fraction of the strings of length �n the function g coincides with the identity

function
� To prove that g is weakly one�way we use a �reducibility argument�� Details
follow�

Proposition ����� Let f be a one�way function �even in the weak sense�� Then g� con�
structed above� is a weakly one�way function�

Proof� Intuitively� inverting g on inputs on which it does not e�ect the identity transforma�
tion is related to inverting f � If g is inverted� on inputs of length �n� with probabiliy which
is noticeablly greater than �	 �

n
then it must be inverted on inputs as above with noticeable

probability� Thus� if g is not weakly one�way then so is f � The full� straightforward and
tedious proof follows�

Given a probabilistic polynomial�time algorithm� B�� for inverting g� we construct a
probabilistic polynomial�time algorithm A� which inverts f with �related� success proba�

bility� Following is the description of algorithm A�� On input y� algorithm A� sets n def
� jyj

and l
def
� log� n� selects p

� uniformly in f�� �gn�l� computes z
def
� B��y� �lp�
� and halts with

output the n�bit pre�x of z� Let S�n denote the sets of all �n�bit long strings which start

with log� n zeros �i�e�� s�n
def
� f�log� n
 � 
 � f�� �g�n�log� ng
� Then� by construction of A�

and g� we have

Pr
�
A��f�Un

�f��f�Un


� � Pr
�
B��f�Un
� �

lUn�l
��f��f�Un
� �
lUn�l


�
� Pr

�
B��g�U�n

�g��g�U�n
 jU�n�S�n

�
� Pr �B��g�U�n

�g��g�U�n

	 Pr �U�n ��S�n


Pr �U�n�S�n

�

�

n
�
�
Pr
�
B��g�U�n

�g��g�U�n


�	 ��	 �

n

��
� �	 n � ��	 Pr

�
B��g�U�n

�g��g�U�n


��
�For the second inequality� we used Pr�AjB
 � Pr�A�B�

Pr�B�
and Pr�A � B
 � Pr�A
 	 Pr�B
�


It should not come as a surprise that the above expression is meaningful only in case
Pr�B��g�U�n

�g��g�U�n

 � �	 �

n
�

It follows that� for every polynomial p��
 and every integer n� if B� inverts g on g�U�n

with probability greater than �	 �

p��n�
then A� inverts f on f�Un
 with probability greater

than �	 n
p��n� � Hence� if g is not weakly one�way �i�e�� for every polynomial p��
 there exist
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	� CHAPTER �� COMPUTATIONAL DIFFICULTY

in�nitely many m�s such that g can be inverted on g�Um
 with probability � � 	 ��p�m


then also f is not weakly one�way �i�e�� for every polynomial q��
 there exist in�nitely many
n�s such that f can be inverted on f�Un
 with probability � �	 ��q�n

� This contradicts
our hypothesis �that f is one�way
�

We have just shown that� unless no one�way functions exist� there exist weak one�way
functions which are not strong ones� Fortunately� we can rule out the possibility that all
one�way functions are only weak ones� In particular� the existence of weak one�way functions
implies the existence of strong ones�

Theorem ����� � Weak one�way functions exist if and only if strong one�way functions
exist�

We strongly recommend to the reader not to skip the following proof� since we believe that
the proof is very instructive to the rest of the book� In particular� the proof demonstrates
that ampli�cation of computational di
culty is much more involved than ampli�cation of
an analogous probabilistic event�

Proof� Let f be a weak one�way function� and let p be the polynomial guaranteed by
the de�nition of a weak one�way function� Namely� every probabilistic polynomial�time
algorithm fails to invert f on f�Un
 with probability at least

�
p�n� � We assume� for simplicity�

that f is length preserving �i�e� jf�x
j � jxj for all x�s
� This assumption� which is not
really essential� is justi�ed by Proposition ������ We de�ne a function g as follows

g�x�� 			� xt�n�

def
� f�x�
� 			� f�xt�n�


where jx�j � jxt�n�j � n and t�n

def
� n � p�n
� Namely� the n�p�n
�bit long input of g is

partitioned into t�n
 blocks each of length n� and f is applied to each block�
Clearly� g can be computed in polynomial�time �by an algorithm which breaks the input

into blocks and applies f to each block
� Furthermore� it is easy to see that inverting g on
g�x�� 			� xt�n�
 requires �nding a preimage to each f�xi
� One may be tempted to deduce that
it is also clear that g is a strongly one�way function� An naive argument� assumes implicitly
�with no justi�cation
 that the inverting algorithm works separately on each f�xi
� If this
were indeed the case then the probability that an inverting algorithm successfully inverts
all f�xi
�s is at most ��	 �

p�n�

n�p�n� � ��n �which is negligible also as a function of n�p�n

�

However� the assumption that an algorithm trying to invert g works independently on each
f�xi
 cannot be justi�ed� Hence� a more complex argument is required�

Following is an outline of our proof� The proof that g is strongly one�way proceeds
by a contradiction argument� We assume on the contrary that g is not strongly one�
way� namely� we assume that there exists a polynomial�time algorithm that inverts g with
probability which is not negligible� We derive a contradiction by presenting a polynomial�
time algorithm which� for in�nitely many n�s� inverts f on f�Un
 with probability greater
than � 	 �

p�n� �in contradiction to our hypothesis
� The inverting algorithm for f uses the
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���� WEAK ONE�WAY FUNCTIONS IMPLY STRONG ONES 	�

inverting algorithm for g as a subroutine �without assuming anything about the manner in
which the latter algorithm operates
� Details follow�

Suppose that g is not strongly one�way� By de�nition� it follows that there exists a
probabilistic polynomial�time algorithm B� and a polynomial q��
 so that for in�nitely many
m�s

Pr
�
B��g�Um

�g��g�Um


�
�

�

q�m


Let us denote by M �� the in�nite set of integers for which the above holds� Let N � denote
the in�nite set of n�s for which n� � p�n
 �M � �note that all m�s considered are of the form
n� � p�n
� for some integer n
�

We now present a probabilistic polynomial�time algorithm� A�� for inverting f � On input
y �supposedly in the range f
 algorithm A� proceeds by applying the following probabilistic
procedure� denoted I � on input y for a�jyj
 times� where a��
 is a polynomial depends on

the polynomials p and q �speci�cally� we set a�n

def
� �n� � p�n
 � q�n�p�n


�

Procedure I
Input� y �denote n

def
� jyj
�

For i � � to t�n
 do begin

�� Select uniformly and independently a sequence of strings x�� 			� xt�n� � f�� �gn�
�� Compute

�z�� 			� zt�n�

 B��f�x�
� 			� f�xi��
� y� f�xi��
� 			� f�xt�n�



�Note that y is placed in the ith position instead of f�xi
�


	� If f�zi
 � y then halt and output y�
�This is considered a success
�

end

We now present a lower bound on the success probability of algorithm A�� To this end we
de�ne a set Sn� which contains all n�bit strings on which the procedure I succeeds with
non�negligible probability �speci�cally greater than n

a�n�
� �The probability is taken only

over the coin tosses of algorithm A�
� Namely�

Sn
def
�

�
x � Pr

�
I�f�x

�f��f�x
�� n

a�n


�

In the next two claims we shall show that Sn contains all but a �
�p�n� fraction of the strings

of length n � N �� and that for each string x �Sn the algorithm A� inverts f on f�x
 with
probability exponentially close to �� It will follow that A� inverts f on f�Un
� for n �N ��
with probability greater than �	 �

p�n� � in contradiction to our hypothesis�
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Claim �������� For every x �Sn

Pr
�
A��f�x
�f��f�x
� � �	 �

�n

Proof� By de�nition of the set Sn� the procedure I inverts f�x
 with probability at least
n

a�n� � Algorithm A� merely repeats I for a�n
 times� and hence

Pr
�
A��f�x
 ��f��f�x
� � �

�	 n

a�n


�a�n�
�

�

�n

The claim follows� �

Claim �������� For every n � N ��

jSnj �
�
�	 �

�p�n


�
� �n

Proof� We assume� to the contrary� that jSnj � ��	 �
�p�n�


��n� We shall reach a contradiction
to our hypothesis concerning the success probability of B�� Recall that by this hypothesis

s�n

def
� Pr

�
B��g�Un�p�n�

�g��g�Un�p�n�


�
�

�

q�n�p�n



Let U ���
n � 			� U �n�p�n��

n denote the n�bit long blocks in the random variable Un�p�n� �i�e�� these
U �i�
n �s are independent random variables each uniformly distributed in f�� �gn
� Clearly�

s�n
 is the sum of s��n
 and s��n
 de�ned by

s��n

def
� Pr

�
B��g�Un�p�n�

�g��g�Un�p�n�
 �

�

i s�t� U �i�

n ��Sn
��

and

s��n

def
� Pr

�
B��g�Un�p�n�

�g��g�Un�p�n�
 �

�
�i � U �i�

n �Sn
��

�Use Pr�A
 � Pr�A � B
 � Pr�A � �B
�
 We derive a contradiction to the lower bound on
s�n
 by presenting upper bounds for both s��n
 and s��n
 �which sum up to less
�

First� we present an upper bound on s��n
� By the construction of algorithm I it follows
that� for every x�f�� �gn and every �� i�n � p�n
� the probability that I inverts f on f�x

in the ith iteration equals the probability that B� inverts g on g�Un�p�n�
 when U �i�

n � x� It
follows that� for every x�f�� �gn and every �� i�n � p�n
�

Pr
�
I�f�x

�f��f�x
� � Pr

�
B��g�Un�p�n�

�g��g�Un�p�n�
 jU �i�

n �x
�
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Using trivial probabilistic inequalities �such as Pr�
i Ai
 �
P

i Pr�Ai
 and Pr�A � B
 �
Pr�A jB

� it follows that

s��n
 �
n�p�n�X
i��

Pr
�
B��g�Un�p�n�

�g��g�Un�p�n�
 � U �i�

n ��Sn
�

�
n�p�n�X
i��

Pr
�
B��g�Un�p�n�

�g��g�Un�p�n�
 jU �i�

n ��Sn
�

�
n�p�n�X
i��

Pr
�
I�f�Un

�f��f�Un
 jUn ��Sn

�
� n � p�n
 � n

a�n


�The last inequality uses the de�nition of Sn�

We now present an upper bound on s��n
� Recall that by the contradiction hypothesis�

jSnj � ��	 �
�p�n�


 � �n� It follows that

s��n
 � Pr
�
�i � U �i�

n �Sn
�

�
�
�	 �

�p�n


�n�p�n�

�
�

�
n
�

Hence� on one hand s��n
 � s��n
 �
�n��p�n�
a�n� � �

q�n�p�n�� �equality by de�nition of a�n

�

Yet� on the other hand s��n
 � s��n
 � s�n
 � �
q�n�p�n��

� Contradiction is reached and the
claim follows� �

Combining Claims ��	���� and ��	����� It follows that the probabilistic polynomial�time
algorithm� A�� inverts f on f�Un
� for n �N �� with probability greater than � 	 �

p�n�
� in

contradiction to our hypothesis �that f cannot be e
ciently inverted with such success
probability
� The theorem follows�

Let us summarize the structure of the proof of Theorem ��	��� Given a weak one�way
function f � we �rst constructed a polynomial�time computable function g� This was done
with the intention of later proving that g is strongly one�way� To prove that g is strongly
one�way we used a �reducibility argument�� The argument transforms e
cient algorithms
which supposedly contradict the strong one�wayness of g into e
cient algorithms which
contradict the hypothesis that f is weakly one�way� Hence g must be strongly one�way� We
stress that our algorithmic transformation� which is in fact a randomized Cook reduction�
makes no implicit or explicit assumptions about the structure of the prospective algorithms
for inverting g� Such assumptions� as the �natural� assumption that the inverter of g
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works independently on each block� cannot be justi�ed �at least not at the current state of
understanding of the nature of e
cient computations
�

Theorem ��	�� has a natural information theoretic �or �probabilistic�
 analogue which
asserts that repeating an experiment� which has a non�negligible success probability� su
�
ciently many times yields success with very high probability� The reader is probably con�
vinced at this stage that the proof of Theorem ��	�� is much more complex that the proof of
the information theoretic analogue� In the information theoretic context the repeated events
are independent by de�nition� whereas in our computational context no such independence
can be guaranteed� Another indication to the di�erence between the two settings follows�
In the information theoretic setting the probability that none of the events occur decreases
exponentially in the number of repetitions� However� in the computational setting we can
only reach a negligible bounds on the inverting probabilities of polynomial�time algorithms�
Furthermore� it may be the case that g constructed in the proof of Theorem ��	�� can be e
�
ciently inverted on g�Un�p�n�
 with success probability which is subexponentially decreasing

�e�g�� with probability �� log��m
� whereas the analogous information theoretic experiment
fails with probability at most ��n�

By Theorem ��	��� whenever assuming the existence of one�way functions� there is no
need to specify whether we refer to weak or strong ones� Thus� as far as the mere existence
of one�way function goes� the notions of weak and strong one�way functions are equivalent�
However� as far as e
ciency considerations are concerned the two notions are not really
equivalent� since the above transformation of weak one�way functions into strong ones is
not practical� An alternative transformation which is much more e
cient does exist for
the case of one�way permutations and other speci�c classes of one�way functions� Further
details are presented in Section ����

��� One�Way Functions� Variations

In this section� we discuss several issues concerning one�way functions� In the �rst sub�
section� we present a function that is �strongly
 one�way� provided that one�way functions
exist� The construction of this function is of strict abstract interest� In contrast� the issues
discussed in the other subsections are of practical importance� First� we present a formu�
lation which is better suited for describing many natural candidates for one�way functions�
and use it in order to describe popular candidates for one�way functions� Next� we use this
formulation to present one�way functions with additional properties� speci�cally� �one�way

trapdoor permutations� and clawfree functions� We remark that these additional properties
are used in several constructions �e�g�� trapdoor permutations are used in the construction
of public�key encryption schemes whereas clawfree permutations are used in the construc�
tion of collision�free hashing
� We conclude this section with remarks addressing the �art�
of proposing candidates for one�way functions�
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����� � Universal One�Way Function

Using the result of the previous section and the notion of a universal machine it is possible
to prove the existence of a universal one�way function�

Proposition ����� There exists a polynomial�time computable function which is �strongly�
one�way if and only if one�way functions exist�

Proof� A key observation is that there exist one�way functions if and only if there exist
one�way functions which can be evaluated by a quadratic time algorithm� �The choice of
the speci�c time bound is immaterial� what is important is that such a speci�c time bound
exists�
 This statement is proven using a padding argument� Details follow�

Let f be an arbitrary one�way function� and let p��
 be a polynomial bounding the time

complexity of an algorithm for computing f � De�ne g�x�x��
 def
� f�x�
x��� where jx�x��j �

p�jx�j
� An algorithm computing g �rst parses the input into x� and x�� so that jx�x��j �
p�jx�j
� and then applies f on x�� The parsing and the other overhead operations can
be implemented in quadratic time �in jx�x��j
� whereas computing f�x�
 is done within time
p�jx�j
 � jx�x��j �which is linear in the input length
� Hence� g can be computed �by a Turing
machine
 in quadratic time� The reader can verify that g is one�way using a �reducibility
argument� analogous to the one used in the proof of Proposition ������

We now present a �universal one�way
 function� denoted funi �

funi�desc�M
� x

def
� �desc�M
�M�x



where desc�M
 is a description of Turing machine M � and M�x
 is de�ned as the output
of M on input x if M runs at most quadratic time on x� and as x otherwise� Clearly� funi
can be computed in polynomial�time by a universal machine which uses a step counter� To
show that funi is one�way we use a �reducibility argument�� By the above observation� we
know that there exist a one�way function g which is computed in quadratic time� LetMg be
the quadratic time machine computing g� Clearly� an �e
cient
 algorithm inverting funi on
inputs of the form funi�desc�Mg
� Un
� with probability ��n
� can be easily modi�ed into an
�e
cient
 algorithm inverting g on inputs of the form g�Un
� with probability ��n
� It follows
that an algorithm inverting funi with probability ��n
� on strings of length jdesc�Mg
j� n�
yields an algorithm inverting g with probability ��n�

�jdesc�Mg�j on strings of length n� Hence� if
funi is not weakly one�way then also g cannot be weakly one�way�

Using Theorem ��	��� the proposition follows�

The observation� that it su
ces to consider one�way functions which can be evaluated
within a speci�c time bound� is crucial to the construction of funi� The reason being�
that it is not possible to construct a polynomial�time machine which is universal for the
class of polynomial�time machines �i�e�� a polynomial�time machine that can �simulate� all
polynomial�time machines
� It is however possible to construct� for every polynomial p��
�
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a polynomial�time machine that is universal for the class of machines with running�time
bounded by p��
�

The impracticality of the suggestion to use funi as a one�way function stems from the
fact that funi is likely to be hard to invert only on huge input lengths�

����� One�Way Functions as Collections

The formulation of one�way functions� used in so far� is suitable for an abstract discussion�
However� for describing many natural candidates for one�way functions� the following for�
mulation �although being more cumbersome
 is more adequate� Instead of viewing one�way
functions as functions operating on an in�nite domain �i�e�� f�� �g�
� we consider in�nite
collections of of functions each operating on a �nite domain� The functions in the collec�
tion share a single evaluating algorithm� that given as input a succint representation of a
function and an element in its domain� return the value of the speci�ed function at the
given point� The formulation of a collection of functions is also useful for the presentation
of trapdoor permutations and clawfree functions �see the next two subsections
� We start
with the following de�nition�

De�nition ����� �collection of functions
� A collection of functions consists of an in	nite
set of indices� denoted I� a 	nite set Di� for each i � I� and a function fi de	ned over Di�

We will only be interested in collections of functions that can be applied� As hinted
above� a necessary condition for applying a collection of functions is the existence of an
e
cient function�evaluating algorithm �denoted F 
 that� on input i � I and x� returns
fi�x
� Yet� this condition by itself does not su
ce� We need to be able to �randomly
 select
an index� specifying a function over a su
ciently large domain� as well as to be able to
�randomly
 select an element of the domain �when given the domain�s index
� The sampling
property of the index set is captured by an e
cient algorithm �denoted I
 that on input
an integer n �presented in unary
 randomly selects an poly�n
�bit long index� specifying
a function and its associated domain� �As usual unary presentation is used to enhence
the standard association of e
cient algorithms with those running in time polynomial in
their length�
 The sampling property of the domains is captured by an e
cient algorithm
�denoted D
 that on input an index i randomly selects an element in Di� The one�way
property of the collection is captured by requiring that every e
cient algorithm� when
given an index of a function and an element in its range� fails to invert the function� except
for with negligible probability� The probability is taken over the distribution induced by
the sampling algorithms I and D�

De�nition ����� �collection of one�way functions
� A collection of functions� ffi �Di ��
f�� �g�gi�I� is called strongly �resp�� weakly
 one�way if there exists three probabilistic polynomial�
time algorithms� I� D and F � so that the following two conditions hold
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�� easy to sample and compute� The output distribution of algorithm I� on input �n� is
a random variable assigned values in the set I � f�� �gn� The output distribution of
algorithm D� on input i � I� is a random variable assigned values in Di� On input
i � I and x � Di� algorithm F always outputs fi�x
�

�� hard to invert �version for strongly one�way
� For every probabilistic polynomial�time
algorithm� A�� every polynomial p��
� and all su�ciently large n�s

Pr
�
A��fIn�Xn
� In
�f��In

fIn�Xn

�
�

�

p�n


where In is a random variable describing the output distribution of algorithm I on
input �n� and Xn is a random variable describing the output of algorithm D on input
�random variable� In�
�The version for weakly one�way collections is analogous��

We may relate to a collection of one�way functions by indicating the corresponding triplet
of algorithms� Hence� we may say that a triplet of probabilistic polynomial�time algorithms�
�I�D� F 
� constitutes a collection of one�way functions if there exists a collection of functions
for which these algorithms satisfy the above two conditions�

We stress that the output of algorithm I � on input �n� is not necessarily distributed
uniformly over I � f�� �gn� Furthermore� it is not even required that I��n
 is not entirely
concentrated on one single string� Likewise� the output of algorithm D� on input i� is not
necessarily distributed uniformly overDi� Yet� the hardness�to�invert condition implies that
D�i
 cannot be mainly concentrated on polynomially many �in jij
 strings� We stress that
the collection is hard to invert with respect to the distribution induced by the algorithms I
and D �in addition to depending as usual on the mapping induced by the function itself
�
Clearly� a collection of one�way functions can be represented as a one�way function and vice
versa �see Exercise ��
� yet each formulation has its advantages� In the sequel we use the
formulation of a collection of one�way functions in order to present popular candidates of
one�way functions�

To allow less cumbersome presentation of natural candidates of one�way collections
�of functions
� we relax De�nition ����	 in two ways� First� we allow the index sampling
algorithm to output� on input �n� indices of length p�n
� where p��
 is some polynomial�
Secondly� we allow all algorithms to fail with negligible probability� Most importantly�
we allow the index sampler I to output strings not in I as long as the probability that
I��n
 �� I �f�� �gp�n� is a negligible function in n� �The same relaxations can be made when
discussing trapdoor permutations and clawfree functions�


����� Examples of One�way Collections �RSA	 Factoring	 DLP


In this subsection we present several popular collections of one�way functions� based on
computation number theory �e�g�� RSA and Discrete Exponentiation
� In the exposition
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�� CHAPTER �� COMPUTATIONAL DIFFICULTY

which follows� we assume some knowledge of elementary number theory and some famil�
iarity with simple number theoretic algorithms� Further discussion of the relevant number
theoretic material is presented in Appendix �missing�app�cnt��

������� The RSA function

The RSA collection of functions has an index set consisting of pairs �N� e
� where N is a
product of two ��

�
� log�N
�bit primes� denoted P and Q� and e is an integer smaller than N

and relatively prime to �P 	�
 ��Q	�
� The function of index �N� e
� has domain f�� 			� Ng
and maps the domain element x to xe mod N � Using the fact that e is relatively prime to
�P 	 �
 � �Q	 �
� it can be shown that the fuction is in fact a permutation over its domain�
Hence� the RSA collection is a collection of permutations�

We �rst substantiate the fact that the RSA collection satis�es the �rst condition of the
de�nition of a one�way collection �i�e�� that it is easy to sample and compute
� To this end�
we present the triplet of algorithms �IRSA� DRSA� FRSA
�

On input �n� algorithm IRSA selects uniformly two primes� P and Q� such that �n���
P � Q��n� and an integer e such that e is relatively prime to �P 	 �
 � �Q	 �
� Algorithm
IRSA terminates with output �N� e
� where N � P � Q� For an e
cient implementation
of IRSA� we need a probabilistic polynomial�time algorithms for generating uniformly dis�
tributed primes� Such an algorithm does exist� However� it is more e
cient to generate
two primes by selecting two integers uniformly in the interval ��n��� �n 	 �� and checking
via a fast randomized primality test whether these are indeed primes �this way we get�
with exponentially small probability� an output which is not of the desired form
� For more
details concerning the uniform generation of primes see Appendix �missing�app�cnt���

As for algorithm DRSA� on input �N� e
� it selects �almost
 uniformly an element in the

set DN�e
def
� f�� 			� Ng� The output of FRSA� on input ��N� e
� x
� is

RSAN�e�x

def
� xe mod N

It is not known whether factoring N can be reduced to inverting RSAN�e� and in fact this
is a well�known open problem� We remark that the best algorithms known for inverting
RSAN�e proceed by �explicitly or implicitly
 factoring N � In any case it is widely believed
that the RSA collection is hard to invert�

In the above description DN�e corresponds to the additive group mod N �and hence
contain N elements
� Alternatively� the domain DN�e can be restricted to the elements of
the multiplicative group modulo N �and hence contain �P 	 �
 � �Q	 �
 � N 	 �

p
N � N

elements
� A modi�ed domain sampler may work by selecting an element in f�� 			� Ng
and discarding the unlikely cases in which the selected element is not relatively prime to
N � The function RSAN�e de�ned above indues a permutation on the multiplicative group
modulo N � The resulting collection is as hard to invert as the original one� �A proof of this
statement is left as an exercise to the reader�
 The question which formulation to prefer
seems to be a matter of personal taste�
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������� The Rabin function

The Rabin collection of functions is de�ned analogously to the RSA collection� except that
the function is squaring modulo N �instead of raising to the power e mod N
� Namely�

RabinN�x

def
� x� mod N

This function� however� does not induces a permutation on the multiplicative group modulo
N � but is rather a ��to�� mapping on the multiplicative group modulo N �

It can be shown that extracting square roots modulo N is computationally equivalent
to factoring N �i�e�� the two tasks are reducible to one another via probabilistic polynomial�
time reductions
� For details see Exercise ��� Hence� squaring modulo a composite is a
collection of one�way functions if and only if factoring is intractable� We remind the reader
that it is generally believed that integer factorization is intractable�

������� The Factoring Permutations

For a special subclass of the integers� known by the name of Blum Integers� the function
RabinN��
 de�ned above induces a permutation on the quadratic residues modulo N � We
say that r is a quadratic residue mod N if there exists an integer x such that r � x� mod N �
We denote by QN the set of quadratic residues in the multiplicative group mod N � For
purposes of this paragraph� we say thatN is a Blum Integer if it is the product of two primes�
each congruent to 	 mod �� It can be shown that when N is a Blum integer� each element in
QN has a unique square root which is also in QN � and it follows that in this case the function
RabinN��
 induces a permutation over QN � This leads to the introduction of the following

collection� SQR
def
� �IBI � DQR� FSQR
� of permutations� On input �n� algorithm IBI selects

uniformly two primes� P and Q� such that �n���P � Q� �n and P � Q � 	 mod �� and
outputs N � P � Q� It is assumed that the density of such primes is non�negligible and
thus that this step can be e
ciently implemented� On input N � algorithm DQR� uniformly
selects an element of QN � by uniformly selecting an element of the multiplicative group
modulo N � and squaring it mod N � Algorithm FSQR is de�ned exactly as in the Rabin
collection� The resulting collection is one�way� provided that factoring is intractable also
for the set of Blum integers �de�ned above
�

������� Discrete Logarithms

Another computational number theoretic problem which is widely believed to be intractable
is that of extracting discrete logarithms in a �nite �eld �and in particular of prime cardi�
nality
� The DLP collection of functions� borrowing its name �and one�wayness
 from the
Discrete Logarithm Problem� is de�ned by the triplet of algorithms �IDLP� DDLP� FDLP
�

On input �n� algorithm IDLP selects uniformly a prime� P � such that �n���P ��n� and
a primitive element G in the multiplicative group modulo P �i�e�� a generator of this cyclic
group
� and terminates with output �P�G
� There exists a probabilistic polynomial�time
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�� CHAPTER �� COMPUTATIONAL DIFFICULTY

algorithm for uniformly generating primes together with the prime factorization of P 	 ��
where P is the prime generated �see Appendix �missing�app�cnt��
� Alternatively� one
may uniformly generate a prime P of the form �Q��� where Q is also a prime� �In the latter
case� however� one has to assume the intractability of DLP with respect to such primes�
We remark that such primes are commonly believed to be the hardest for DLP�
 Using the
factorization of P 	 � one can �nd a primitive element by selecting an element of the group
at random and checking whether it has order P 	� �by raising to powers which non�trivially
divide P 	 �
�

Algorithm DDLP� on input �P�G
� selects uniformly a residue modulo P 	 �� Algorithm
FDLP� on input ��P�G
� x
� halts outputting

DLPP�G�x

def
� Gx mod P

Hence� inverting DLPP�G amounts to extracting the discrete logarithm �to base G
 modulo
P � For every �P�G
 of the above form� the function DLPP�G induces a ��� and onto mapping
from the additive group mod P 	 � to the multiplicative group mod P � Hence� DLPP�G
induces a permutation on the the set f�� 			� P 	 �g�

Exponentiation in other groups is also a reasonable candidate for a one�way function�
provided that the discrete logarithm problem for the group is believed to be hard� For
example� it is believed that the logarithm problem is hard in the group of points on an
Elliptic curve�

Author�s Note� �ll�in more details

����� Trapdoor one�way permutations

������� The De�nition

The formulation of collections of one�way functions is convenient as a starting point to
the de�nition of trapdoor permutations� Loosely speaking� these are collections of one�way
permutations� ffig� with the extra property that fi is e
ciently inverted once given as
auxiliary input a �trapdoor� for the index i� The trapdoor of index i� denoted by t�i
�
can not be e
ciently computed from i� yet one can e
ciently generate corresponding pairs
�i� t�i

�

De�nition ����� �collection of trapdoor permutations
� Let I be a probabilistic algorithm�
and let I���

n
 �resp� I���
n
� denote the 	rst �resp� second� half of the output of I��n
�

A triple of algorithms� �I�D� F 
� is called a collection of strong �resp� weak
 trapdoor
permutations if the following two conditions hold

�� the algorithms induce a collection of one�way permutations� The triple �I�� D� F 

constitutes a collection of one�way permutations�
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�� easy to invert with trapdoor� There exists a �deterministic� polynomial�time algo�
rithm� denoted F��� so that for every �i� t
 in the range of I and for every x �Di� it
holds that F���t� F �i� x

 � x�

A useful relaxation of the above conditions is to require that they are satis�ed with over�
whelmingly high probability� Namely� the index generating algorithm� I � is allowed to
output� with negligible probability� pairs �i� t
 for which either fi is not a permutation or
F���t� F �i� x

 � x does not hold for all x � Di� On the other hand� one typically requires
that the domain sampling algorithm �i�e�� D
� produces almost uniform distribution on the
corresponding domain� Putting all these modi�cations together� we obtain the following
version� �We also take the oppertunity to present a slightly di�erent formulation�


De�nition ����� �collection of trapdoor permutations� revisited
� Let I � f�� �g�� A
collection of permutations with indices in I� is a set ffi � Di �� Digi�I so that each fi is ���
on the corresponding Di� Such a collection is called a trapdoor permutation if there exists

 probabilistic polynomial�time algorithms I�D� F� F�� so that the following 	ve conditions
hold�

�� �index and trapdoor selection
� For every n�

Pr�I��n
 � I � f�� �g�
 � �	 ��n

�� �selection in domain
� For every i � I�

�a� Pr�D�i
 � Di
 � �	 ��n� Thus� without loss of generality� Di � f�� �gpoly�jij��
�b� Conditioned on D�i
 � Di� the output is uniformly distributed in Di� That is�

for every x � Di�

Pr�D�i
 � x jD�i
 � Di
 �
�

jDij
�� �e
cient evaluation
� For every i � I and x � Di�

Pr�F �i� x
 � fi�x

 � �	 ��n


� �hard to invert
� For every family of polynomial�size circuits� fCngn�N � every positive
polynomial p��
� and all su�ciently large n�s

Pr �Cn�fIn�Xn
� In
 � Xn
 �
�

p�n


where In is a random variable describing the distribution of the 	rst element in the

output of I��n
� and Xn
def
� D�In
�

�� �inverting with trapdoor
� For every pair �i� t
 in the range of I� and every x � Di�

Pr�F���t� fi�x

 � x
 � �	 ��n
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������� The RSA 
or factoring� Trapdoor

The RSA collection presented above can be easily modi�ed to have the trapdoor property�
To this end algorithm IRSA should be modi�ed so that it outputs both the index �N� e
 and
the trapdoor �N� d
� where d is the multiplicative inverse of e modulo �P 	 �
��Q	 �
 �note
that e has such inverse since it has been chosen to be relatively prime to �P 	 �
��Q	 �

�
The inverting algorithm F��

RSA is identical to the algorithm FRSA �i�e�� F��
RSA��N� d
� y
 �

yd mod N
� The reader can easily verify that

FRSA ��N� d
� FRSA ��N� e
� x

 � xed mod N

indeed equals x for every x in the multiplicative group modulo N � In fact� one can show
that xed � x �mod N
 for every x �even in case x is not relatively prime to N
�

We remark that the Rabin collection presented above can be easily modi�ed in an
analogous manner� enabling to e
ciently compute all � square roots of a given quadratic
residue �mod N
� The square roots mod N can be computed by extracting a square root
modulo each of the primes factors ofN and combining the result using the Chinese Reminder
Theorem� E
cient algorithms for extracting square root modulo a given prime are known�
Furthermore� in case the prime� P � is congruent to 	 mod �� the square roots of x mod P
can be computed by raising x to the power P��

�
�while reducing the intermediate results

mod P 
� Furthermore� in case N is a Blum integer� the collection SQR� presented above�
forms a collection of trapdoor permutations �provided of course that factoring is hard
�

����� � Clawfree Functions

������� The De�nition

Loosely speaking� a clawfree collection consists of a set of pairs of functions which are easy
to evaluate� both have the same range� and yet it is infeasible to �nd a range element
together with preimages of it under each of these functions�

De�nition ����	 �clawfree collection
� A collection of pairs of functions consists of an
in	nite set of indices� denoted I� two 	nite sets D�

i and D
�
i � for each i � I� and two functions

f�i and f�i de	ned over D�
i and D�

i � respectively� Such a collection is called clawfree if there
exists three probabilistic polynomial�time algorithms� I� D and F � so that the following
conditions hold

�� easy to sample and compute� The random variable I��n
 is assigned values in the set
I � f�� �gn� For each i � I and � � f�� �g� the random variable D��� i
 is distributed
over D�

i and F ��� i� x
 � f�i �x
�

�� identical range distribution� For every i in the index set I� the random variables
f�i �D��� i

 and f�i �D��� i

 are identically distributed�
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�� hard to form claws� A pair �x� y
 satisfying f�i �x
 � f�i �y
 is called a claw for index
i� Let Ci denote the set of claws for index i� It is required that for every probabilistic
polynomial�time algorithm� A�� every polynomial p��
� and all su�ciently large n�s

Pr �A��In
 � CIn
 �
�

p�n


where In is a random variable describing the output distribution of algorithm I on
input �n�

The �rst requirement in De�nition ����� is analogous to what appears in De�nition ����	�
The other two requirements �in De�nition �����
 are kind of con�icting� On one hand�
it is required that that claws do exist �to say the least
� whereas on the other hand it is
required that calws cannot be e
ciently found� Clearly� a clawfree collection of functions
yields a collection of strong one�way functions �see Exercise ��
� A special case of interest

is when both domains are identical �i�e�� Di
def
� D�

i � D�
i 
� the random variable D��� i


is uniformly distributed over Di� and the functions� f�i and f�i � are permutations over Di�
Such a collection is called a collection of �clawfree
 permutations�

Again� a useful relaxation of the conditions of De�nition ����� is obtained by allowing
the algorithms �i�e�� I � D and F 
 to fail with negligible probability�

An additional property that a �clawfree
 collection may �or may not
 have is an e
ciently
recognizable index set �i�e�� an probabilistic polynomial�time algorithm for determining
whether a give string is I
� This property is useful in some applications of clawfree collections
�hence this discussion
� E
cient recognition of the index set may be important since the
function�evaluating algorithm F may induce functions also in case its second input �which
is supposedly an index
 is not in I � In this case it is no longer guaranteed that the induced
pair of functions has identical range distribution� In some applications �e�g�� see section ���
�
dishonest parties may choose� on purpose� an illegal index and try to capitalize on the induce
functions having di�erent range distributions�

������� The DLP Clawfree Collection

We now turn to show that clawfree collections do exists under speci�c reasonable intractabil�
ity assumptions� We start by presenting such a collection under the assumption that the
Discrete Logarithm Problem �DLP
 for �elds of prime cardinality is intractable�

Following is the description a collection of clawfree permutations �based on the above
assumption
� The index sets consists of triples� P�G� Z
� where P is a prime� G is a primitive
element mod P � and Z is an element in the �eld �of residues mod P 
� The index sampling
algorithm� selects P and G as in the DLP collection presented in Subsection ����	� and Z

is selected uniformly among the residues mod P � The domain of both functions with index
�P�G� Z
 is identical� and equals the set f�� 			� P 	 �g� and the domain sampling algorithm
selects uniformly from this set� As for the functions themselves� we set

f�P�G�Z�x

def
� Z� �Gx mod P
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The reader can easily verify that both functions are permutations over f�� 			� P 	 �g� Also�
the ability to form a claw for the index �P�G� Z
 yields the ability to �nd the discrete
logarithm of Z mod P to base G �since Gx � Z � Gy mod P yields Gx�y � Z mod P 
�
Hence� ability to form claws for a non�negligible fraction of the index set translates to a
contradiction to the DLP intractability assumption�

The above collection does not have the additional property of having an e
ciently rec�
ognizable index set� since it is not known how to e
ciently recognize primitive elements
modulo a prime� This can be amended by making a slightly stronger assumption concern�
ing the intractability of DLP� Speci�cally� we assume that DLP is intractable even if one
is given the factorization of the size of the multiplicative group �i�e�� the factorization of
P 	 �
 as additional input� Such an assumption allows to add the factorization of P 	 �
into the description of the index� This makes the index set e
ciently recognizable �since
one can �rst test P for primality� as usual� and next test whether G is a primitive element
by raising it to powers of the form �P 	 �
�Q where Q is a prime factor of P 	 �
� If DLP
is hard also for primes of the form �Q� �� where Q is also a prime� life is even easier� To
test whether G is a primitive element mod P one just computes G� �mod P 
 and G�P�����

�mod P 
� and checks whether either of them equals ��

������� The Factoring Clawfree Collection

We now show that a clawfree collection �of functions
 does exists under the assumption
that integer factorization is infeasible for integers which are the product of two primes each
congruent to 	 mod �� Such composite numbers� hereafter referred to as Blum integers�
have the property that the Jacobi symbol of 	� �relative to them
 is � and half of the
square roots of each quadratic residue� in the corresponding multiplicative group �modulo
this composite
� have Jacobi symbol � �see Appendix �missing�app�cnt��
�

The index set of the collection consists of all Blum integers which are composed of
two primes of equal length� The index selecting algorithm� on input �n� uniformly select
such an integers� by uniformly selecting two �n�bit
 primes each congruent to 	 mod ��
and outputting their product� denoted N � Let J��

N �respectively� J��N 
 denote the set of
residues in the multiplicative group modulo N with Jacobi Symbol �� �resp�� 	�
� The
functions of index N � denoted f�N and f�N � consist both of squaring modulo N � but their
corresponding domains are disjoint� The domain of function f�N equals the set J �����

N � The
domain sampling algorithm� denoted D� uniformly selects an element of the corresponding
domain as follows� Speci�cally� on input ���N
 algorithm D uniformly selects polynomially
many residues mod N � and outputs the �rst residue with Jacobi Symbol �	�
��

The reader can easily verify that both f�N �D��� N

 and f�N�D��� N

 are uniformly
distributed over the set of quadratic residues mod N � The di
cult of forming claws follows
from the fact that a claw yield two residues� x � J��

N and y � J��N such that x� � y�

�mod N
� Since 	� � J��
N � it follows that x �� �y and the gcd of x � y and N yields a

factorization of N �
The above collection does not have the additional property of having an e
ciently rec�
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ognizable index set� since it is not even known how to e
ciently distinguish products of two
primes from products of more than two primes�

����� On Proposing Candidates

Although we do believe that one�way functions exist� their mere existence does not su
ce
for practical applications� Typically� an application which is based on one�way functions
requires the speci�cation of a concrete �candidate one�way
 function� As explained above�
the observation concerning the existence of a universal one�way function is of little practical
signi�cance� Hence� the problem of proposing reasonable candidates for one�way functions
is of great practical importance� Everyone understands that such a reasonable candidate
�for a one�way function
 should have a very e
cient algorithm for evaluating the func�
tion� �In case the �function� is presented as a collection of one�way functions� especially
the domain sampler and function�evaluation algorithm should be very e
cient�
 However�
people seem less careful in seriously considering the di
culty of inverting the candidates
that they propose� We stress that the candidate has to be di
cult to invert on �the av�
erage� and not only on the worst case� and that �the average� is taken with respect to
the instance�distribution determined by the candidate function� Furthermore� �hardness on
the average� �unlike worst case analysis
 is extremely sensitive to the instance�distribution�
Hence� one has to be extremely careful in deducing average�case complexity with respect
to one distribution from the average�case complexity with respect to another distribution�
The short history of the �eld contains several cases in which this point has been ignored
and consequently bad suggestions has been made�

Consider for example the following suggestion to base one�way functions on the con�
jectured di
culty of the Graph Isomorphism problem� Let fGI�G� 

 � �G� 
G
� where G
is an undirected graph� 
 is a permutation on its vertex set� and 
G denotes the graph
resulting by renaming the vertices of G using 
 �i�e�� �
�u
� 
�v

 is an edge in 
G i� �u� v

is an edge in G
� Although it is indeed believed that Graph Isomorphism cannot be solved
in polynomial�time� it is easy to see that FGI is easy to invert on most instances �e�g�� use
vertex degree statistics to determine the isomorphism
�

��� Hard�Core Predicates

Loosely speaking� saying that a function f is one�way means that given y it is infeasible
to �nd a preimage of y under f � This does not mean that it is infeasible to �nd out
partial information about the preimage of y under f � Speci�cally it may be easy to retrieve
half of the bits of the preimage �e�g�� given a one�way function f consider the function g

de�ned by g�x� r

def
� �f�x
� r
� for every jxj� jrj
� The fact that one�way functions do not

necessarily hide partial information about their preimage limits their �direct applicability�
to tasks as secure encryption� Fortunately� assuming the existence of one�way functions� it is
possible to construct one�way functions which hide speci�c partial information about their
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preimage �which is easy to compute from the preimage itself
� This partial information can
be considered as a �hard core� of the di
culty of inverting f �

����� De�nition

A polynomial�time predicate b� is called a hard�core of a function f if all e
cient algorithm�
given f�x
� can guess b�x
 only with success probability which is negligibly better than half�

De�nition ����� �hard�core predicate
� A polynomial�time computable predicate b � f�� �g� ��
f�� �g is called a hard�core of a function f if for every probabilistic polynomial�time algorithm
A�� every polynomial p��
� and all su�ciently large n�s

Pr �A��f�Un

�b�Un

 �
�

�
�

�

p�n


It follows that if b is a hard�core predicate �for any function
 then b�Un
 should be
almost unbiased �i�e�� jPr�b�Un
 � �
 	 Pr�b�Un
 � �
j must be a negligible function in n
�
As b itself is polynomial�time computable the failure of e
cient algorithms to approximate
b�x
 from f�x
 �with success probability signi�cantly more than half
 must be due to either
an information loss of f �i�e�� f not being one�to�one
 or to the di
culty of inverting f �

For example� the predicate b��

 � � is a hard�core of the function f��


def
� �
� where

��f�� �g and 
�f�� �g�� Hence� in this case the fact that b is a hard�core of the function
f is due to the fact that f losses information �speci�cally the �rst bit �
� On the other
hand� in case f losses no information �i�e�� f is one�to�one
 hard�cores for f exist only if f
is one�way �see Exercise ��
� Finally� we note that for every b and f � there exist obvious
algorithms which guess b�Un
 from f�Un
 with success probability at least half �e�g�� either
an algorithm A� that regardless of its input answers with a uniformly chosen bit� or� in case

b is not biased towards �� the constant algorithm A��x

def
� �
�

Simple hard�core predicates are known for the RSA� Rabin� and DLP collections �pre�
sented in Subsection ����	
� provided that the corresponding collections are one�way� Specif�
ically� the least signi�cant bit is a hard�core for the RSA collection� provided that the RSA
collection is one�way� Namely� assuming that the RSA collection is one�way� it is infeasible
to guess �with success probability signi�cantly greater than half
 the least signi�cant bit
of x from RSAN�e�x
 � xe mod N � Likewise� assuming that the DLP collection is one�way�
it is infeasible to guess whether x � P

�
when given DLPP�G�x
 � Gx mod P � In the next

subsection we present a general result of the kind�

����� Hard�Core Predicates for any One�Way Function

Actually� the title is inaccurate� as we are going to present hard�core predicates only for
�strong
 one�way functions of special form� However� every �strong
 one�way function can
be easily transformed into a function of the required form� with no substantial loss in either
�security� or �e
ciency��
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Theorem ����� Let f be an arbitrary strong one�way function� and let g be de	ned by

g�x� r

def
� �f�x
� r
� where jxj� jrj� Let b�x� r
 denote the inner�product mod � of the binary

vectors x and r� Then the predicate b is a hard�core of the function g�

In other words� the theorem states that if f is strongly one�way then it is infeasible to
guess the exclusive�or of a random subset of the bits of x when given f�x
 and the subset
itself� We stress that the theorem requires that f is strongly one�way and that the conclusion
is false if f is only weakly one�way �see Exercise ��
� We point out that g maintains
properties of f such as being length�preserving and being one�to�one� Furthermore� an
analogous statement holds for collections of one�way functions with�without trapdoor etc�

Proof� The proof uses a �reducibility argument�� This time inverting the function f
is reduced to predicting b�x� r
 from �f�x
� r
� Hence� we assume �for contradiction
 the
existence of an e
cient algorithm predicting the inner�product with advantage which is not
negligible� and derive an algorithm that inverts f with related �i�e� not negligible
 success
probability� This contradicts the hypothesis that f is a one�way function�

Let G be a �probabilistic polynomial�time
 algorithm that on input f�x
 and r tries to
predict the inner�product �mod �
 of x and r� Denote by �G�n
 the �overall
 advantage of
algorithm G in predicting b�x� r
 from f�x
 and r� where x and r are uniformly chosen in
f�� �gn� Namely�

�G�n

def
� Pr �G�f�Xn
� Rn
 � b�Xn� Rn

	 �

�

where here and in the sequel Xn and Rn denote two independent random variables� each
uniformly distributed over f�� �gn� Assuming� to the contradiction� that b is not a hard�core
of g means that exists an e
cient algorithm G� a polynomial p��
 and an in�nite set N so
that for every n�N it holds that �G�n
 �

�
p�n�

� We restrict our attention to this algorithm
G and to n�s in this set N � In the sequel we shorthand �G by ��

Our �rst observation is that� on at least an ��n�
�

fraction of the x�s of length n� algorithm

G has an ��n�
�

advantage in predicting b�x�Rn
 from f�x
 and Rn� Namely�

Claim ��	����� there exists a set Sn � f�� �gn of cardinality at least ��n�
�
� �n such that for

every x �Sn� it holds that

s�x

def
� Pr�G�f�x
� Rn
�b�x�Rn

 � �

�
�
��n


�

This time the probability is taken over all possible values of Rn and all internal coin tosses
of algorithm G� whereas x is �xed�
Proof� The observation follows by an averaging argument� Namely� write E�s�Xn

 �
�
�
� ��n
� and apply Markov Inequality��

In the sequel we restrict our attention to x�s in Sn� We will show an e
cient algorithm
that on every input y� with y � f�x
 and x � Sn� �nds x with very high probability�
Contradiction to the �strong
 one�wayness of f will follow by noting that Pr�Un�Sn
 � ��n�

�
�
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The next three paragraphs consist of a motivating discussion� The inverting algorithm�
that uses algorithm G as subroutine� will be formally described and analyzed later�

A motivating discussion
Consider a �xed x�Sn� By de�nition s�x
 � �

�
���n�

�
� �

�
� �

�p�n�
� Suppose� for a moment�

that s�x
 � �
�
� �

�p�n�
� Of course there is no reason to believe that this is the case� we are just

doing a mental experiment� In this case �i�e�� of s�x
 � �
�
� �

poly�jxj�
 retrieving x from f�x


is quite easy� To retrieve the ith bit of x� denoted xi� we randomly select r � f�� �gn� and
compute G�f�x
� r
 and G�f�x
� r�ei
� where ei is an n�dimensional binary vector with � in
the ith component and � in all the others� and v�u denotes the addition mod � of the binary
vectors v and u� Clearly� if both G�f�x
� r
 � b�x� r
 and G�f�x
� r� ei
 � b�x� r� ei
� then

G�f�x
� r
�G�f�x
� r� ei
 � b�x� r
� b�x� r� ei


� b�x� ei


� xi

since b�x� r
� b�x� s
 � Pn
i�� xiri �

Pn
i�� xisi �

Pn
i�� xi�ri � si
 � b�x� r� s
 mod �� The

probability that both equalities hold �i�e�� both G�f�x
� r
� b�x� r
 and G�f�x
� r � ei
 �
b�x� r�ei

 is at least �	� ���

�
	 �

poly�jxj�
 � �	 �
poly�jxj� � Hence� repeating the above procedure

su
ciently many times and ruling by majority we retrieve xi with very high probability�
Similarly� we can retrieve all the bits of x� and hence invert f on f�x
� However� the entire
analysis was conducted under �the unjusti�able
 assumption that s�x
 � �

��
�

�p�jxj� � whereas

we only know that s�x
 � �
�
� �

�p�jxj� �
The problem with the above procedure is that it doubles the original error probability

of algorithm G on inputs of form �f�x
� �
� Under the unrealistic assumption� that the G�s
error on such inputs is signi�cantly smaller than �

�
� the �error�doubling� phenomenon raises

no problems� However� in general �and even in the special case where G�s error is exactly
�
�
 the above procedure is unlikely to invert f � Note that the error probability of G can
not be decreased by repeating G several times �e�g�� G may always answer correctly on
three quarters of the inputs� and always err on the remaining quarter
� What is required
is an alternative way of using the algorithm G� a way which does not double the original
error probability of G� The key idea is to generate the r�s in a way which requires applying
algorithm G only once per each r �and i
� instead of twice� Speci�cally� we used algorithm
G to obtain a �guess� for b�x� r�ei
 and obtain b�x� r
 in a di�erent way� The good news are
that the error probability is no longer doubled� since we only need to use G to get a �guess�
of b�x� r�ei
� The bad news are that we still need to know b�x� r
� and it is not clear how we
can know b�x� r
 without applying G� The answer is that we can guess b�x� r
 by ourselves�
This is �ne if we only need to guess b�x� r
 for one r �or logarithmically in jxj many r�s
�
but the problem is that we need to know �and hence guess
 b�x� r
 for polynomially many
r�s� An obvious way of guessing these b�x� r
�s yields an exponentially vanishing success
probability� The solution is to generate these polynomially many r�s so that� on one hand
they are �su
ciently random� whereas on the other hand we can guess all the b�x� r
�s with
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���� HARD�CORE PREDICATES ��

non�negligible success probability� Speci�cally� generating the r�s in a particular pairwise
independent manner will satisfy both �seemingly contradictory
 requirements� We stress
that in case we are successful �in our guesses for the b�x� r
�s
� we can retrieve x with high
probability� Hence� we retrieve x with non�negligible probability�

A word about the way in which the pairwise independent r�s are generated �and the
corresponding b�x� r
�s are guessed
 is indeed in place� To generate m � poly�n
 many

r�s� we uniformly �and independently
 select l
def
� log��m � �
 strings in f�� �gn� Let us

denote these strings by s�� 			� sl� We then guess b�x� s�
 through b�x� sl
� Let use denote
these guesses� which are uniformly �and independently
 chosen in f�� �g� by �� through �l�
Hence� the probability that all our guesses for the b�x� si
�s are correct is ��l � �

poly�n�
�

The di�erent r�s correspond to the di�erent non�empty subsets of f�� �� 			� lg� We compute

rJ
def
� �j�Jsj � The reader can easily verify that the rJ �s are pairwise independent and each

is uniformly distributed in f�� �gn� The key observation is that

b�x� rJ
 � b�x��j�Js
j
 � �j�Jb�x� s

j


Hence� our guess for the b�x� rJ
�s is �j�J�j � and with non�negligible probability all our
guesses are correct�

Back to the formal argument
Following is a formal description of the inverting algorithm� denoted A� We assume�

for simplicity that f is length preserving �yet this assumption is not essential
� On input y

�supposedly in the range of f
� algorithm A sets n
def
� jyj� and l def� dlog���n�p�n
���
e� where

p��
 is the polynomial guaranteed above �i�e�� ��n
 � �
p�n� for the in�nitely many n�s in N
�

Algorithm A uniformly and independently select s�� 			� sl � f�� �gn� and ��� 			� �l � f�� �g�
It then computes� for every non�empty set J � f�� �� 			� lg� a string rJ 
 �j�Jsj and a
bit �J 
 �j�J�j� For every i� f�� 			� ng and every non�empty J � f�� 		� lg� algorithm A

computes zJi 
 �J �G�y� rJ � ei
� Finally� algorithm A sets zi to be the majority of the zJi
values� and outputs z � z� � � �zn� �Remark� in an alternative implementation of the ideas�
the inverting algorithm� denoted A�� tries all possible values for ��� 			� �l� and outputs only
one of resulting strings z� with an obvious preference to a string z satisfying f�z
 � y�


Following is a detailed analysis of the success probability of algorithm A on inputs of
the form f�x
� for x � Sn� where n � N � We start by showing that� in case the �j�s are
correct� then the with constant probability� zi � xi for all i� f�� 			� ng� This is proven by
bounding from below the probability that the majority of the zJi �s equals xi�

Claim ��	����� For every x � Sn and every �� i�n�

Pr

�
jfJ � b�x� rJ
�G�f�x
� rJ � ei
 � xigj � �

�
� ��l 	 �


�
� �	 �

�n

where rJ
def
� �j�Jsj and the sj �s are independently and uniformly chosen in f�� �gn�

Proof� For every J � de�ne a ��� random variable �J � so that �J equals � if and only if
b�x� rJ
�G�f�x
� rJ � ei
 � xi� The reader can easily verify that each rJ is uniformly

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



�� CHAPTER �� COMPUTATIONAL DIFFICULTY

distributed in f�� �gn� It follows that each �J equals � with probability s�x
� which by
x�Sn� is at least �

�
� �

�p�n�
� We show that the �J �s are pairwise independent by showing that

the rJ �s are pairwise independent� For every J �� K we have� without loss of generality�
j � J and k � K 	 J � Hence� for every 
� � � f�� �gn� we have

Pr
�
rK�� j rJ�


�
� Pr

�
sk�� j sj�


�
� Pr

�
sk��

�
� Pr

�
rK��

�
and pairwise independence of the rJ �s follows� Let m

def
� �l	 �� Using Chebyshev�s Inequal�

ity� we get

Pr

�X
J

�J � �

�
�m
	

� Pr

�
j
X
J

�J 	 �
�

�
�

�

�p�n


 �mj � �

�p�n

�m
	

�
Var��f�g


� �
�p�n�


� � ��n � p�n
�


�
�
�

� �
�p�n�


� � ��n � p�n
�


�
�

�n

The claim now follows� �

Recall that if �j � b�x� sj
� for all j�s� then �J � b�x� rJ
 for all non�empty J �s� In this case z
output by algorithm A equals x� with probability at least half� However� the �rst event hap�
pens with probability ��l � �

�n�p�n�� independently of the events analyzed in Claim ��������

Hence� in case x�Sn� algorithm A inverts f on f�x
 with probability at least �
�p�jxj� �whereas�

the modi�ed algorithm� A�� succeeds with probability � �
�

� Recalling that jSnj � �

�p�n�
� �n�

we conclude that� for every n � N � algorithm A inverts f on f�Un
 with probability at least
�

	p�n��
� Noting that A is polynomial�time �i�e�� it merely invokes G for �n � p�n
� � poly�n


times in addition to making a polynomial amount of other computations
� a contradiction�
to our hypothesis that f is strongly one�way� follows�

����� � Hard�Core Functions

We have just seen that every one�way function can be easily modi�ed to have a hard�core
predicate� In other words� the result establishes one bit of information about the preimage
which is hard to approximate from the value of the function� A stronger result may say
that several bits of information about the preimage are hard to approximate� For example�
we may want to say that a speci�c pair of bits is hard to approximate� in the sense that
it is infeasible to guess this pair with probability signi�cantly larger than �

�
� In general� a
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polynomial�time function� h� is called a hard�core of a function f if no e
cient algorithm
can distinguish �f�x
� h�x

 from �f�x
� r
� where r is a random string of length jh�x
j�
For further discussion of the notion of e
cient distinguishability the reader is referred to
Section 	��� We assume for simplicity that h is length regular �see below
�

De�nition ����� �hard�core function
� Let h � f�� �g� �� f�� �g� be a polynomial�time

computable function� satisfying jh�x
j � jh�y
j for all jxj � jyj� and let l�n

def
� jh��n
j� The

function h � f�� �g� �� f�� �g� is called a hard�core of a function f if for every probabilistic
polynomial�time algorithm D�� every polynomial p��
� and all su�ciently large n�s

jPr �D��f�Xn
� h�Xn

��
	 Pr
�
D��f�Xn
� Rl�n�
��

� j � �

p�n


where Xn and Rl�n� are two independent random variables the 	rst uniformly distributed
over f�� �gn� and the second uniformly distributed over f�� �gl�n��

Theorem ����� Let f be an arbitrary strong one�way function� and let g� be de	ned by

g��x� s

def
� �f�x
� s
� where jsj� �jxj� Let c � � be a constant� and l�n


def
� dc log� ne� Let

bi�x� s
 denote the inner�product mod � of the binary vectors x and �si��� 			� si�n
� where

s � �s�� 			� s�n
� Then the function h�x� s

def
� b��x� s
 � � �bl�jxj��x� s
 is a hard�core of the

function g��

The proof of the theorem follows by combining a proposition concerning the structure
of the speci�c function h with a general lemma concerning hard�core functions� Loosely
speaking� the proposition �reduces� the problem of approximating b�x� r
 given g�x� r
 to
the problem of approximating the exclusive�or of any non�empty set of the bits of h�x� s

given g��x� s
� where b and g are the hard�core and the one�way function presented in the
previous subsection� Since we know that the predicate b�x� r
 cannot be approximated from
g�x� r
� we conclude that no exclusive�or of the bits of h�x� s
 can be approximated from
g��x� s
� The general lemma states that� for every �logarithmically shrinking� function h�

�i�e�� h� satisfying jh��x
j � O�log jxj

� the function h� is a hard�core of a function f � if and
only if the exclusive�or of any non�empty subset of the bits of h� cannot be approximated
from the value of f ��

Proposition ����� Let f � g� and bi�s be as above� Let I�n
 � f�� �� 			� l�n
g� n�N� be an

arbitrary sequence of non�empty subsets� and let bI�jxj��x� s

def
� �i�I�jxj�bi�x� s
� Then� for

every probabilistic polynomial�time algorithm A�� every polynomial p��
� and all su�ciently
large n�s

Pr
�
A��g��U�n

 � bI�n��U�n


�
�

�

�
�

�

p�n


Proof� The proof is by a �reducibility� argument� It is shown that the problem of ap�
proximating b�Xn� Rn
 given �f�Xn
� Rn
 is reducible to the problem of approximating
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bI�n��Xn� S�n
 given �f�Xn
� S�n
� where Xn� Rn and S�n are independent random vari�
able and the last is uniformly distributed over f�� �g�n� The underlying observation is that�
for every jsj � � � jxj�

bI�x� s
 � �i�Ibi�x� s
 � b�x��i�Isubi�s


where subi�s�� 			� s�n

def
� �si��� 			� si�n
� Furthermore� the reader can verify that for every

non�empty I � f�� 			� ng� the random variable �i�Isubi�S�n
 is uniformly distributed over
f�� �gn� and that given a string r � f�� �gn and such a set I one can e
ciently select a
string uniformly in the set fs � �i�Isubi�s
 � rg� �Veri�cation of both claims is left as an
exercise�


Now� assume to the contradiction� that there exists an e
cient algorithm A�� a polyno�
mial p��
� and an in�nite sequence of sets �i�e�� I�n
�s
 and n�s so that

Pr
�
A��g��U�n

 � bI�n��U�n


� � �

�
�

�

p�n


We �rst observe that for n�s satisfying the above inequality we can �nd in probabilistic
polynomial time �in n
 a set I satisfying

Pr �A��g��U�n

 � bI�U�n

 � �

�
�

�

�p�n


�i�e�� by going over all possible I �s and experimenting with algorithm A� on each of them
�
Of course we may be wrong here� but the error probability can be made exponentially small�

We now present an algorithm for approximating b�x� r
� from y
def
� f�x
 and r� On input

y and r� the algorithm �rst �nds a set I as described above �this stage depends only on
jxj which equals jrj
� Once I is found� the algorithm uniformly select a string s so that
�i�Isubi�s
 � r� and return A��y� s
� Evaluation of the success probability of this algorithm
is left as an exercise�

Lemma ����	 �Computational XOR Lemma
� Let f and h be arbitrary length regular

functions� and let l�n

def
� jh��n
j� Let D be an algorithm� Denote

p
def
� Pr �D�f�Xn
� h�Xn

 � �
 and q

def
� Pr

�
D�f�Xn
� Rl�n�
 � �

�
where Xn and Rl are as above� Let G be an algorithm that on input y� S �and l�n
�� selects r
uniformly in f�� �gl�n�� and outputs D�y� r
�����i�Sri
� where r � r� � � �rl and ri � f�� �g�
Then�

Pr �G�f�Xn
� Il� l�n

��i�Il�hi�Xn


 �
�

�
�

p	 q

�l�n� 	 �

where Il is a randomly chosen non�empty subset of f�� 			� l�n
g and hi�x
 denotes the ith bit
of h�x
�
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It follows that� for logarithmically shrinking h�s� the existence of an e
cient algorithm that
distinguishes �with a gap which is not negligible in n
 the random variables �f�Xn
� h�Xn


and �f�Xn
� Rl�n�
 implies the existence of an e
cient algorithm that approximates the
exclusive�or of a random non�empty subset of the bits of h�Xn
 from the value of f�Xn

with an advantage that is not negligible� On the other hand� it is clear that any e
cient
algorithm� which approximates an exclusive�or of an non�empty subset of the bits of h from
the value of f � can be easily modi�ed to distinguish �f�Xn
� h�Xn

 from �f�Xn
� Rl�n�
�
Hence� for logarithmically shrinking h�s� the function h is a hard�core of a function f if and
only if the exclusive�or of any non�empty subset of the bits of h cannot be approximated
from the value of f �

Proof� All that is required is to evaluate the success probability of algorithm G� We
start by �xing an x � f�� �gn and evaluating Pr�G�f�x
� Il� l
 � �i�Il�hi�x

� where Il is a

uniformly chosen non�empty subset of f�� 			� lg and l
def
� l�n
� Let B denote the set of all

non�empty subsets of f�� 			� lg� De�ne� for every S � B� a relation �S so that y �S z if and
only if �i�Syi � �i�Szi� where y�y� � � �yl and z�z� � � �zl� By the de�nition of G� it follows
that on input �f�x
� S� l
 and random choice r � f�� �gl� algorithm G outputs �i�S�hi�x


if and only if either �D�f�x
� r
 � � and r �S h�x
� or �D�f�x
� r
 � � and r ��S h�x
��
By elementary manipulations� we get

s�x

def
� Pr�G�f�x
� Il� l
 � �i�Il�hi�x




�
X
S�B

�

jBjPr�G�f�x
� S� l
 � �i�S�hi�x



�
X
S�B

�

� � jBj �Pr�D�f�x
� Rl
�� jRl �S h�x

 � Pr�D�f�x
� Rl
�� jRl ��S h�x




�
�

�
�

�

�jBj
X
S�B

�Pr�D�f�x
� Rl
�� jRl �S h�x

	 Pr�D�f�x
� Rl
�� jRl ��S h�x




�
�

�
�

�

�jBj �
�

�l��
�


�X
S�B

X
r�Sh�x�

Pr�D�f�x
� r
��
	
X
S�B

X
r ��Sh�x�

Pr�D�f�x
� x
��


�
A

�
�

�
�

�

�l � jBj �


�X

r

X
S�E�r�h�x��

Pr�D�f�x
� r
��
	
X
r

X
S�N�r�h�x��

Pr�D�f�x
� r
��


�
A

where E�r� z

def
� fS � B � r �S zg and N�r� z


def
� fS � B � r ��S zg� Observe that for

every r �� z it holds that jN�r� z
j � �l�� �and jE�r� z
j � �l�� 	 �
� On the other hand�
E�z� z
 � B �and N�z� z
 � �
� Hence� we get

s�x
 �
�

�
�

�

�ljBj
X

r ��h�x�

�
��l�� 	 �
 � Pr�D�f�x
� r
 � �
	 �n�� � Pr�D�f�x
� r
 � �


�

�
�

�ljBj � jBj � Pr�D�f�x
� h�x

 � �
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�
�

�
�

�

jBj � �Pr�D�f�x
� h�x

 � �
	 Pr�D�f�x
� Rn
 � �



Thus

E�s�Xn

 �
�

�
�

�

jBj � �Pr�D�f�Xn
� h�Xn

 � �
	 Pr�D�f�Xn
� Rn
 � �



and the lemma follows�

��	 
 E�cient Ampli�cation of One�way Functions

The ampli	cation of weak one�way functions into strong ones� presented in Theorem ��	���
has no practical value� Recall that this ampli�cation transforms a function f which is hard to
invert on a non�negligible fraction �i�e�� �

p�n�

 of the strings of length n into a function g which

is hard to invert on all but a negligible fraction of the strings of length n�p�n
� Speci�cally�
it is shown that an algorithm running in time T �n
 which inverts g on a ��n
 fraction of the
strings of length n�p�n
 yields an algorithm running in time poly�p�n
� n� �

��n�

 �T �n
 which

inverts f on a �	 �
p�n�

fraction of the strings of length n� Hence� if f is �hard to invert in

practice on a �
����

fraction of the strings of length ���� then all we can say is that g is �hard
to invert in practice on a 




����
fraction of the strings of length ����������� In contrast� an

e
cient ampli�cation of one�way functions� as given below� should relate the di
culty of
inverting the �weak one�way
 function f on strings of length n to the di
culty of inverting
the �strong one�way
 function g on the strings of length O�n
 �rather than relating it to the
to the di
culty of inverting the function g on the strings of length poly�n

� The following
de�nition is natural for a general discussion of ampli�cation of one�way functions�

De�nition ��	�� �quantitative one�wayness
� Let T �N ��N and � �N ��R be polynomial�
time computable functions� A polynomial�time computable function f � f�� �g� �� f�� �g� is
called ���
�one�way with respect to time T ��
 if for every algorithm� A�� with running�time
bounded by T ��
 and all su�ciently large n�s

Pr
�
A��f�Un

 �� f��f�Un


�
� ��n


Using this terminology we review what we know already about ampli�cation of one�
way functions� A function f is weakly one�way if there exists a polynomial p��
 so that f
is �

p��� �one�way with respect to polynomial time� A function f is strongly one�way if� for

every polynomial p��
� the f is �� 	 �
p���
�one�way with respect to polynomial time� The

ampli�cation result of Theorem ��	�� can be generalized and restated as follows� If there
exist a polynomial�time computable function f which is �

poly����one�way with respect to time

T ��
 then there exist a polynomial�time computable function g which is ��	 �
poly���
�one�way
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with respect to time T ���
� where T ��poly�n

 � T �n
 �i�e�� in other words� T ��n
 � T �n�

for some � � �
� In contrast� an e
cient ampli�cation of one�way functions� as given below�
should state that the above should hold with respect to T ��O�n

 � T �n
 �i�e�� in other
words� T ��n
 � T �� � n
 for some � � �
� Such a result can be obtained for regular one�
way functions� A function f is called regular if there exists a polynomial�time computable
function m �N ��N and a polynomial p��
 so that� for every y in the range of f � the number
of preimages �of length n
 of y under f � is between m�n�

p�n�
and m�n
 � p�n
� In this book we

only review the result for one�way permutations �i�e�� length preserving ��� functions
�

Theorem ��	�� �E
cient ampli�cation of one�way permutations
� Let p��
 be a polynomial
and T �N ��N be a polynomial�time computable function� Suppose that f is a polynomial�
time computable permutation which is �

p��� �one�way with respect to time T ��
� Then� there
exists a polynomial�time computable permutation F so that� for every polynomial�time com�
putable function � �N �� ��� ��� the function F is ��	 ���

�one�way with respect to time T �

���
�
where T �

��O�n


def
� ��n��

poly�n�
� T �n
�

The constants� in the O�notation and in the poly�notation� depend on the polynomial p��
�

The key to the ampli�cation of a one�way permutation f is to apply f on many di�erent
arguments� In the proof of Theorem ��	��� f is applied to unrelated arguments �which
are disjoint parts of the input
� This makes the proof relatively easy� but also makes the
construction very ine
cient� Instead� in the construction presented in the proof of the
current theorem� we apply the one�way permutation f on related arguments� The �rst idea
which comes to mind is to apply f iteratively many times� each time on the value resulting
from the previous application� This will not help if easy instances for the inverting algorithm
keep being mapped� by f � to themselves� We cannot just hope that this will not happen�
The idea is to use randomization between successive applications� It is important that
we use only a small amount of randomization�� since the �randomization� will be encoded
into the argument of the constructed function� The randomization� between successive
applications of f � takes the form of a random step on an expander graph� Hence a few
words about these graphs and random walks on them are in place�

A graph G��V�E
 is called an �n� d� c
�expander if it has n vertices �i�e�� jV j�n
� every
vertex in V has degree d �i�e�� G is d�regular
� and G has the following expansion property
�with expansion factor c � �
� for every subset S � V if jSj � n

� then jN�S
j � c � jSj�
where N�S
 denotes the vertices in V 	 S which have neighbour in S �i�e�� N�S


def
� fu�

V 	S � 
v � S s�t� �u� v
�Eg
� By explicitly constructed expanders we mean a family of
graphs fGngn�N so that Gn is a ���n� d� c
 expander �d and c are the same for all graphs
in the family
 having a polynomial�time algorithm that on input a description of a vertex
in an expander outputs its adjacency list �vertices in Gn are represented by binary strings
of length �n
� Such expender families do exist� By a random walk on a graph we mean
the sequence of vertices visited by starting at a uniformly chosen vertex and randomly
selecting at each step one of the neighbouring vertices of the current vertex� with uniform
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probability distribution� The expanding property implies �via a non�trivial proof
 that the
vertices along random walks on an expander have surprisingly strong �random properties��
In particular� for every l� the probability that vertices along an O�l
�step long random
walk hit a subset� S� is approximately the same as the probability that at least one of l
independently chosen vertices hits S�

We remind the reader that we are interested in successively applying the permutation
f � while interleaving randomization steps between successive applications� Hence� before
applying permutation f � to the result of the previous application� we take one random step
on an expender� Namely� we associate the domain of the given one�way permutation with
the vertex set of the expander� Our construction alternatively applies the given one�way
permutation� f � and randomly moves from the vertex just reached to one of its neighbours�
A key observation is that the composition of an expander with any permutation on its
vertices yields an expander �with the same expansion properties
� Combining the properties
of random walks on expanders and a �reducibility� argument� the construction is showed
to amplify the one�wayness of the given permutation in an e
cient manner�

Construction ��	�� Let fGngn�N be a family of d�regular graphs� so that Gn has vertex
set f�� �gn and self�loops at every vertex� Consider a labeling of the edges incident to each
vertex �using the labels �� �� 			� d�� De	ne gl�x
 be the vertex reachable from vertex x by
following the edge labeled l� Let f �f�� �g� ��f�� �g� be a ��� length preserving function� For
every k � �� x � f�� �gn� and ��� ��� 			� �k � f�� �� 			� dg� de	ne

F �x� ����			�k
 � ��� F �g���f�x

� ��� 			� �k


�with F �x� �
 � x�� For every k �N ��N� de	ne Fk����

 def
� F �x� ��� 		� �t
� where t � k�jxj


and �i�f�� �� 			� dg�

Proposition ��	�� Let fGng� f � k �N ��N� and Fk��� be as in Construction ��
�� �above��
and suppose that fGngn�N is an explicitly constructed family of d�regular expander graphs�
and f is polynomial�time computable� Suppose that 
 �N ��R and T �N ��N are polynomial�
time computable� and f is 
��
�one�way with respect to time T �N�N� Then� for every
polynomial�time computable � �N ��R� the function Fk��� is polynomial�time computable as

well as �� 	 ���

���
�one�way with respect to time T � � N� N� where ��n

def
� �� 	 �� 	


�n

k�n���
 and T ��n� k�n
�log� d
 def
� ��n����n�

k�n��n � T �n
�

Theorem ����� follows by applying the proposition � � � times� where � is the degree of
the polynomial p��
 �speci�ed in the hypothesis that f is �

p��� �one�way
� In all applications

of the proposition we use k�n

def
� 	n� In the �rst � applications we use any ��n
 � �

�
� The

function resulting from the ith application of the proposition� for i � �� is �
�n��i �one�way�

In particular� after � applications� the resulting function is �
�
�one�way� �It seems that the
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notion of �
��one�wayness is worthy of special attention� and deserves a name as mostly one�

way�
 In the last �i�e�� ���st
 application we use ��n
 � ��n
� The function resulting of the
last �i�e�� � � �st
 application of the proposition satis�es the statement of Theorem ������

The proposition itself is proven as follows� First� we use the fact that f is a per�
mutation to show� that the graph Gf � �V�Ef
� obtained from G � �V�E
 by letting

Ef
def
� f�u� f�v

 � �u� v
 � Eg� has the same expansion property as the graph G� Next�

we use the known relation between the expansion constant of a graph and the ratio of the
two largest eigenvalues of its adjacency matrix to prove that with appropriate choice of the
family fGng we can have this ratio bounded below by �p

�
� Finally� we combine the following

two Lemmata�

Lemma ��	�� �RandomWalk Lemma
� Let G be a d�regular graph having a normalized �by
factor �

d
� adjacency matrix for which the ratio of the 	rst and second eigenvalues is smaller

than �p
�
� Let � � ��� and S be a subset of measure � of the expender�s nodes� Then a

random walk of length �k on the expander hits S with probability at least �	 ��	 �
k�

The proof of the Random Walk Lemma regards probability distributions oven the ex�
pander vertex�set as linear combinations of the eigenvectors of the adjacency matrix� It can
be shown that the largest eigenvalue is �� and the eigenvector associated to it is the uniform
distribution� Going step by step� we bound from above the probability mass assigned to
random walks which do not pass through the set S� At each step� the component of the
current distribution� which is in the direction of the �rst eigenvector� losses a factor � of
its weight �this represents the fraction of the paths which enter S in the current step
� The
problem is that we cannot make a similar statement with respect to the other components�
Yet� using the bound on the second eigenvalue� it can be shown that in each step these
components are �pushed� towards the direction of the �rst eigenvector� The details� being
of little relevance to the topic of the book� are omitted�

Lemma ��	�	 �Reducibility Lemma
� Let 
� � �N �� ��� ��� and Gf�n be a d�regular graph on
�n vertices satisfying the following random path property� for every measure 
�n
 subset�
S� of Gf�n�s nodes� at least a fraction ��n� k�n
 � log� d
 of the paths of length k�n
 passes
through a node in S �typically ��n�k�n
 log� d
 � 
�n
�� Suppose that f is �
��
� exp��

�
one�way with respect to time T ��
� Then� for every polynomial�time computable � �N ��R�
the function Fk���� de	ned above� is ��	 ���

���
�one�way with respect to time T � �N�N�
where ��n� k�n
 log� d


def
� ��	 ��	 
�n

k�n���
 and T ��n� k�n
 log� d


def
� ��n����n�

k�n�n
� T �n
�

Proof Sketch� The proof is by a �reducibility argument�� Assume for contradiction that
Fk��� de�ned as above can be inverted in time T ���
 with probability at least � 	 �� 	
��m

 � ��m
 on inputs of length m

def
� n � k�n
 log� d� Amplify A to invert Fk��� with

overwhelming probability on a � 	 ��m
 fraction of the inputs of length m �originally A

inverts each such point with probability � ��m
� as we can ignore inputs inverted with
probability smaller than ��m

� Note that inputs to A correspond to k�n
�long paths on
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the graph Gn� Consider the set� denoted Bn� of paths �x� p
 such that A inverts Fk�n��x� p

with overwhelming probability�

In the sequel� we use the shorthands k
def
� k�n
� m

def
� n � k log� d� �

def
� ��m
� �

def
� ��m
�



def
� 
�n
� and B

def
�Bn� Let Pv be the set of all k�long paths which pass through v� and Bv

be the subset of B containing paths which pass through v �i�e�� Bv � B � Pv
� De�ne v as
good if jBvj�jPvj � ���k �and bad otherwise
� Intuitively� a vertex v is called good if at least
a ���k fraction of the paths going through v can be inverted by A� Let B� � B 	�v badBv�
namely B� contain all �invertible� paths which pass solely through good nodes� Clearly�
Claim ��
�
��� The measure of B� in the set of all paths is greater than �	 ��
Proof� Denote by ��S
 the measure of the set S in the set of all paths� Then

��B�
 � ��B
 	 ���v badBv


� �	 ��	 �
� 	
X
v bad

��Bv


� �	 � � �� 	
X
v

����k
��Pv


� �	 � �

Using the random path property� we have
Claim ��
�
��� The measure of good nodes is at least �	 
�
Proof� Otherwise� let S be the set of bad nodes� If S has measure 
 then� by the random
path property� it follows the fraction of path which pass through vertices of S is at least ��
Hence� B�� which cannot contain such paths can contain only a �	 � fraction of all paths
in contradiction to Claim �������� �

The following algorithm for inverting f � is quite natural� The algorithm uses as subroutine
an algorithm� denoted A� for inverting Fk���� Inverting f on y is done by placing y on a
random point along a randomly selected path p� taking a walk from y according to the su
x
of p� and asking A for the preimage of the resulting pair under Fk�
Algorithm for inverting f �
On input y� repeat kn

��
times�

�� Select randomly i�f�� �� 			� kg� and ��� ��� 			� �k�f�� �� 			� dg�
�� Compute y� � F �g�i�y
� �i��			�k
�

	� Invoke A to get x� 
 A������ 			� �k� y
�
�

�� Compute x � F �x�� ��			�i��
�

�� If f�x
 � y then halt and output x�

Analysis of the inverting algorithm �for a good x
�
Since x is good� a random path going through it �selected above
 corresponds to an

�invertible path� with probability at least ���k� If such a path is selected then we obtain
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the inverse of f�x
 with overwhelming probability� The algorithm for inverting f repeats
the process su
ciently many times to guarantee overwhelming probability of selecting an
�invertible path��

By Claim �������� the good x�s constitute a � 	 
 fraction of all n�bit strings� Hence� the
existence of an algorithm inverting Fk���� in time T ���
 with probability at least � 	 �� 	
���

���
� implies the existence of an algorithm inverting f � in time T ��
 with probability at
least �	
��
	exp��
� This constitutes a contradiction to the hypothesis of the lemma� and
hence the lemma follows�

��� Miscellaneous

��
�� Historical Notes

The notion of a one�way function originates from the paper of Di
e and Hellman �DH����
Weak one�way functions were introduced by Yao �Y���� The RSA function was introduced
by Rivest� Shamir and Adleman �RSA���� whereas squaring modulo a composite was in�
troduced and studied by Rabin �R�	�� The suggestion for basing one�way functions on the
believed intractability of decoding random linear codes is taken from �BMT��
GKL���� and
the suggestion to base one�way functions on the subset sum problem is taken from �IN�	��

The equivalence of existence of weak and strong one�way functions is implicit in Yao�s
work �Y���� The existence of universal one�way functions is stated in Levin�s work �L����
The e
cient ampli�cation of one�way functions� presented in Section ���� is taken from
Goldreich el� al� �GILVZ�� which in turn uses ideas originating in �AKS��

Author�s Note� GILVZ � Goldreich� Impagliazzo� Levin� Venkatesan and Zuck�
erman 
FOCS���� AKS � Ajtai� Komolos and Szemeredi 
STOC�
��

The concept of hard�core predicates originates from the work of Blum andMicali �BM����
That work also proves that a particular predicate constitutes a hard�core for the �DLP
function� �i�e�� exponentiation in a �nite �eld
� provided that this function is one�way�
Consequently� Yao proved that the existence of one�way functions implies the existence
of hard�core predicates �Y���� However� Yao�s construction� which is analogous to the
contraction used for the proof of Theorem ��	��� is of little practical value� The fact that the
inner�product mod � is a hard�core for any one�way function �of the form g�x� r
��f�x
� r


was proven by Goldreich and Levin �GL�	�� The proof presented in this book� which follows
ideas originating in �ACGS���� is due to Charles Racko��

Hard�core predicates and functions for speci�c collections of permutations were sug�
gested in �BM��
LW
K��
ACGS��
VV���� Speci�cally� Kalisky �K���� extending ideas of
�BM��
LW�� proves that the intractability of various discrete logarithm problems yields
hard�core functions for the related exponentiation permutations� Alexi el� al� �ACGS����
building on work by Ben�Or et� al� �BCS�
�� prove that the intractability of factoring yields
hard�core functions for permutations induced by squaring modulo a composite number�
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��
�� Suggestion for Further Reading

Our exposition of the RSA and Rabin functions is quite sparse in details� In particular�
the computational problems of generating uniformly distributed �certi�ed primes� and of
�primality checking� deserve much more attention� A probabilistic polynomial�time algo�
rithm for generating uniformly distributed primes together with corresponding certi�cates
of primality has been presented by Bach �BachPhd�� The certi�cate produced� by this algo�
rithm� for a prime P consists of the prime factorization of P 	 �� together with certi�cates
for primality of these factors� This recursive form of certi�cates for primality originates in
von�Pratt�s proof that the set of primes is in NP �cf� �vP�
� However� the above procedure
is not very practical� Instead� when using the RSA �or Rabin
 function in practice� one is
likely to prefer an algorithm that generates integers at random and checks them for primality
using fast primality checkers such as the algorithms presented in �SSprime
Rprime�� One
should note� however� that these algorithms do not produce certi�cates for primality� and
that with some �small
 probability may assert that a composite number is a prime� Proba�
bilistic polynomial�time algorithms �yet not practical ones
 that� given a prime� produce a
certi�cate for primality� are presented in �GKprime
AHprime�

Author�s Note� SSprime � Solovay and Strassen� Rprime � Rabin� GKprime �
Goldwasser and Kilian� AHprime � Adleman and Haung�

The subset sum problem is known to be easy in two special cases� One case is the case in
which the input sequence is constructed based on a simple �hidden sequence�� For example�
Merkle and Hellman �MH���� suggested to construct an instance of the subset�sum problem

based on a �hidden super increasing sequence� as follows� Let s�� 			� sn�M
def
� sn�� be a

sequence satisfying� si �
Pi��

j�� sj� for every i� and let w be relatively prime to M � Such
a sequence is called super increasing� The instance consists of �x�� 			� xn
 and

P
i�I xi� for

I�f�� 			� ng� where xi def
� w � si mod M � It can be shown that knowledge of both w and M

allows easy solution of the subset sum problem for the above instance� The hope was that�
when w and M are not given� solving the subset�sum problem is hard even for instances
generated based on a super increasing sequence �and this would lead to a trapdoor one�way
function
� However� the hope did not materialize� Shamir presented an e
cient algorithm
for solving the subset�sum problem for instances with a hidden super increasing sequence
�S���� Another case for which the subset sum problem is known to be easy is the case of
low density instances� In these instances the length of the elements in binary representation
is considerably larger than the number of elements �i�e� jx�j� � � � � jxnj � �� � �
n for
some constant � � �
� For further details consult the original work of Lagarias and Odlyzko
�LO��� and the later survey of Brickell and Odlyzko �BO����

For further details on hard�core functions for the RSA and Rabin functions the reader is
directed to Alexi el� al� �ACGS���� For further details on hard�core functions for the �DLP
function� the reader is directed to Kalisky�s work �K����

The theory of average�case complexity� initiated by Levin �L���� is somewhat related to
the notion of one�way functions� For a survey of this theory we refer the reader to �BCGL��
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Loosely speaking� the di�erence is that in our context it is required that the �e
cient

�generator� of hard �on�the�average
 instances can easily solve them himself� whereas in
Levin�s work the instances are hard �on�the�average
 to solve even for the �generator��
However� the notion of average�case reducibility introduced by Levin is relevant also in our
context�

Author�s Note� BCGL � Ben�David� Chor� Goldreich and Luby 
JCSS� April
������

Readers interested in further details about the best algorithms known for the factoring
problem are directed to Pomerance�s survey �P���� Further details on the best algorithms
known for the discrete logarithm problem �DLP
 can be found in Odlyzko�s survey �O����
In addition� the reader is referred to Bach and Shalit�s book on computational number
theory �BS	�book�� Further details about expander graphs� and random walks on them�
can be found in the book of Alon and Spencer �AS	�book��

Author�s Note� Updated versions of the surveys by Pomerance and Odlyzko do
exist�

��
�� Open Problems

The e
cient ampli�cation of one�way functions� originating in �GILVZ�� is only known to
work for special types of functions �e�g�� regular ones
� We believe that presenting �and
proving
 an e
cient ampli�cation of arbitrary one�way functions is a very important open
problem� It may also be instrumental for more e
cient constructions of pseudorandom
generators based on arbitrary one�way functions �see Section 	��
�

An open problem of more practical importance is to try to present hard�core functions
with larger range for the RSA and Rabin functions� Speci�cally� assuming that squaring
mod N is one�way� is the function which returns the �rst half of x a hard�core of squaring
mod N� Some support to a positive answer is provided by the work of Shamir and Shrift
�SS	��� A positive answer would allow to construct extremely e
cient pseudorandom
generators and public�key encryption schemes based on the conjectured intractability of the
factoring problem�

��
�� Exercises

Exercise �� Closing the gap between the motivating discussion and the de	nition of one�
way functions� We say that a function h �f�� �g� ��f�� �g� is hard on the average but
easy with auxiliary input if there exists a probabilistic polynomial�time algorithm� G�
such that

�� There exists a polynomial�time algorithm� A� such that A�x� y
 � h�x
 for every
�x� y
 in the range of G �i�e�� for every �x� y
 so that �x� y
 is a possible output of
G��n
 for some input �n
�
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�� for every probabilistic polynomial�time algorithm� A�� every polynomial p��
� and
all su
ciently large n�s

Pr�A��Xn
�h�Xn

 �
�

p�n


where �Xn� Yn

def
� G��n
 is a random variable assigned the output of G�

Prove that if there exist �hard on the average but easy with auxiliary input� functions
then one�way functions exist�

Exercise �� One�way functions and the P vs� NP question �part ��� Prove that the
existence of one�way functions implies P �� NP�

Guideline� For every function f de�ne Lf � NP so that if Lf � P then there exists a

polynomial�time algorithm for inverting f �

Exercise �� One�way functions and the P vs� NP question �part ��� Assuming that
P �� NP� construct a function f so that the following three claims hold�

�� f is polynomial�time computable�

�� there is no polynomial�time algorithm that always inverts f �i�e�� successfully
inverts f on every y in the range of f
� and

	� f is not �even weakly
 one�way� Furthermore� there exists a polynomial�time
algorithm which inverts f with exponentially small failure probability� where the
probability space is �again
 of all possible choices of input �i�e�� f�x

 and internal
coin tosses for the algorithm�

Guideline� Consider the function fsat de�ned so that fsat����� � ��� �� if � is a satis�

fying assignment to propositional formulae �� and fsat��� �� � ��� �� otherwise� Modify

this function so that it is easy to invert on most instances� yet inverting fsat is reducible

to inverting its modi�cation�

Exercise �� Let f be a strongly one�way function� Prove that for every probabilistic
polynomial�time algorithm A� and for every polynomial p��
 the set

BA�p
def
� fx � Pr�A�f�x

�f��f�x

 � �

p�jxj
g

has negligible density in the set of all strings �i�e�� for every polynomial q��
 and all
su
ciently large n it holds that jB�f���gn

�n � �
q�n�
�

Exercise �� Another de	nition of non�uniformly one�way functions� Consider the de�ni�
tion resulting from De�nition ����� by allowing the circuits to be probabilistic �i�e��
have an auxiliary input which is uniformly selected
� Prove that the resulting new
de�nition is equivalent to the original one�
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� MISCELLANEOUS ��

Exercise 	� De�ne fadd � f�� �g� �� f�� �g� so that fadd�xy
 � prime�x
 � prime�y
� where
jxj � jyj and prime�z
 is the smallest prime which is larger than z� Prove that fadd is
not a one�way function�

Guideline� Don	t try to capitalize on the possibility that prime�N� is too large� e�g��

larger than N 
 poly�logN�� It is unlikely that such a result� in number theory� can be

proven� Furthermore� it is generally believed that there exists a constant c such that� for

all integer N � �� it holds that prime�N� � N 
 logc
�
N � Hence� it is likely that fadd is

polynomial�time computable�

Exercise �� �Suggested by Bao Feng
� Refute the following conjecture�

For every �length preserving
 one�way function f � the function f ��x
 def
�

f�x
� x is one�way too�

Guideline� Let g be a �length preserving� one�way function� and consider f de�ned on

pairs of strings of the same length so that f�y� z�
def

� �g�y�� z� z��

Exercise 
� Prove that one�way functions cannot have a polynomial�size range� Namely�
prove that if f is �even weakly
 one�way then for every polynomial p��
 and all su
�
ciently large n�s it holds jff�x
 � x�f�� �gngj � p�n
�

Exercise �� Prove that one�way functions cannot have polynomially bounded cycles� Namely�
for every function f de�ne cycf�x
 to be the smallest positive integer i such that ap�
plying f for i times on x yields x� Prove that if f is �even weakly
 one�way then for
every polynomial p��
 and all su
ciently large n�s it holds E�cycf �Un

 � p�n
� where
Un is a random variable uniformly distributed over f�� �gn�

Exercise ��� on the improbability of strengening Theorem ����� �part ��� Suppose that
the de�nition of weak one�way function is further weakened so that it is required that
every probabilistic polynomial�time algorithm fails to inverts the function with non�
negligible probability� That is� the order of quanti�ers in De�nition ����� is reversed
�we now have �for every algorithm there exists a polynomial� rather than �there exists
a polynomial so that for every algorithm�
� Demonstrate the di
culty of extending
the proof of Theorem ��	�� to this case�

Guideline� Suppose that there exists a family of algorithms� one per each polynomial

t���� so that an algorithm with time bound t�n� fails to invert the function with probability

��t�n�� Demonstrate the plausibility of such a family�

Exercise ��� on the improbability of strengening Theorem ����� �part �� �due to S� Rudich
�
Suppose that the de�nition of a strong one�way function is further strengthen so that
it is required that every probabilistic polynomial�time algorithm fails to inverts the
function with some speci	ed negligible probability �e�g�� ��

p
n
� Demonstrate the dif�

�culty of extending the proof of Theorem ��	�� to this case�
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�� CHAPTER �� COMPUTATIONAL DIFFICULTY

Guideline� Suppose that that we construct the strong one�way function g as in the

original proof� Note that you can prove that any algorithm that works separately on each

block of the function g� can invert it only with exponentially low probability� However�

there may be an inverting algorithm� A� that inverts the function g with probability ��

Show that any inverting algorithm for the weakly one�way function f that uses algorithm

A as a black�box �must
 invoke it at least �

�
times�

Exercise ��� collections of one�way functions and one�way functions� Represent a collec�
tion of one�way functions� �I�D� F 
� as a single one�way function� Given a one�way
function f � represent it as a collection of one�way functions�
�Remark� the second direction is quite trivial�


Exercise ��� a convention for collections of one�way functions� Show that without loss of
generality� algorithms I and D of a collection �of one�way functions
 can be modi�ed
so that each of them uses a number of coins which exactly equals the input length�
�Hint� Apply padding �rst on �n� next on the coin tosses and output of I� and �nally to the coin

tosses of D��

Exercise ��� justi	cation for a convention concerning one�way collections� Show that giv�
ing the index of the function to the inverting algorithm is essential for a meaningful
de�nition of a collection of one�way functions� �Hint� Consider a collection ffi � f�� �g

jij ��

f�� �gjijg where fi�x� � x� i��

Exercise ��� Rabin�s collection and factoring� Show that the Rabin collection is one�way
if and only if factoring integers which are the product of two primes of equal binary
expsansion is intractable in a strong sense �i�e�� every e
cient algorithm succeeds with
negligible probability
�

Guideline� For one direction use the Chinese Reminder Theorem and an e�cient algo�

rithm for extracting square roots modulo a prime� For the other direction observe that

an algorithm for extracting square roots modulo a composite N can be use to get two

integers x and y such that x� � y� mod N and yet x �� �y mod N � Also� note that such

a pair� �x� y�� yields a split of N �i�e�� two integers a� b �� � such that N � a � b��

Exercise �	� clawfree collections imply one�way functions� Let �I�D� F 
 be a clawfree
collection of functions �see Subsection �����
� Prove that� for every �f�� �g� the triplet
�I�D� F�
� where F��i� x


def
� F ��� i� x
� is a collection of strong one�way functions�

Repeat the exercise when replacing the word �functions� by �permutations�� �I�D� F 

be a clawfree collection of functions

Exercise ��� more on the inadequacy of graph isomorphism as a basis for one�way func�
tions� Consider another suggestion to base one�way functions on the conjectured
di
culty of the Graph Isomorphism problem� This time we present a collection of
functions� de�ned by the algorithmic triplet �IGI� DGI� FGI
� On input �n� algorithm
IGI selects uniformly a d�n
�regular graph on n vertices �i�e�� each of the n vertices in
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the graph has degree d�n

� On input a graph on n vertices� algorithm DGI randomly
selects a permutation in the symmetric group of n elements �i�e�� the set of permuta�
tions of n elements
� On input a �n�vertex
 graph G and a �n�element
 permutation


� algorithm FGI returns fG�


def
� 
G�

�� Present a polynomial�time implementation of IGI�

�� In light of the known algorithms for the Graph Isomorphism problem� which
values of d�n
 should be de�nitely avoided�

	� Using a known algorithm� prove that the above collection does not have a one�
way property� no matter which function d��
 one uses�

�A search into the relevant literature is indeed required for items ��
 and �	
�


Exercise �
� Assuming the existence of one�way functions� prove that there exist a one�
way function f so that no single bit of the preimage constitutes a hard�core predicate�

Guideline� Given a one�way function f construct a function g so that g�x� I� J�
def

�

�f�xI�J�� xI�J � I� J�� where I�J 	 f�� �� ���jxjg� and xS denotes the string resulting by

taking only the bits of x with positions in the set S �i�e�� xi������is
def

� xi� � � �xis � where

x � x� � � �xjxj��

Exercise ��� hard�core predicate for a ��� function implies that the function is one�way�
Let f be a ��� function �you may assume for simplicity that it is length preserving

and let b be a hard�core for f �

�� Prove that if f is polynomial�time computable then it is strongly one�way�

�� Prove that �regardless of whether f is polynomial�time computable or not
 f
must be weakly one�way� Furthermore� for every � � �

�
� the function f cannot

be inverted on a � fraction of the instances�

Exercise ��� An unbiased hard�core predicate �suggested by Erez Petrank
� Assuming the
existence of one�way functions� prove the existence of hardcore predicates which are
unbiased �i�e�� the predicate b satis�es Pr�b�Un
��
 � �

�

�

Guideline� Slightly modify the predicate de�ned in Theorem ������

Exercise ��� In continuation to the proof of Theorem ������ we present guidelines for a
more e
cient inverting algorithm� In the sequel it will be more convenient to use
arithmetic of reals instead of that of Boolean� Hence� we denote b��x� r
 � �	�
b�r�x�
and G��y� r
 � �	�
G�y�r��

�� Prove that for every x it holds that E�b��x� r
 �G��f�x
� r� ei

 � s��x
 � �	�
xi�
where s��x
 def

� � � �s�x
	 �
�

�
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�� CHAPTER �� COMPUTATIONAL DIFFICULTY

�� Let v be an l�dimensional Boolean vector� and let R be a uniformly chosen l�by�n
Boolean matrix� Prove that for every v �� u � f�� �gl it holds that vR and uR
are pairwise independent and uniformly distributed in f�� �gn�

	� Prove that b��x� vR
 � b��xRT � v
� for every x � f�� �gn and v � f�� �gl�
�� Prove that� with probability at least �

�
� there exists � � f�� �gl so that for every

�� i�n the sign of
P

v�f���gl b
���� v
G��f�x
� vR� ei

 equals the sign of �	�
xi�

�Hint� �
def

� xRT ��

�� Let B be an �l�by��l matrix with the ��� v
�entry being b���� v
� and let gi be an
�l�dimensional vector with the vth entry equal G��f�x
� vR� ei
� The inverting
algorithm computes zi 
 Bgi� for all i�s� and forms a matrix Z in which the
columns are the zi�s� The output is a row that when applying f to it yields f�x
�
Evaluate the success probability of the algorithm� Using the special structure of
matrix B� show that the product Bgi can be computed in time l � �l�
Hint� B is the Sylvester matrix� which can be written recursively as

Sk �

�
Sk��Sk��
Sk��Sk��

	

where S� � �� and M means �ipping the �� entries of M to 	� and vice versa�

Author�s Note� First draft written mainly in Summer of �����
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