
6.875J/18.425J Cryptography and Cryptanalysis Feb 27, 2017

Lecture 5: Pseudorandom Generators
Instructor: Vinod Vaikuntanathan Scribes: Srinivasan Raghuraman

Acknowledgements: These lecture notes are based on scribes by Mikhail Rudoy, Yinzhan Xu, Quntao
Zhuang, Bingfei Cao, Bristy Sikder and Sagnik Saha from 2016 (lecturer: Shafi Goldwasser).

As we have seen, randomness is crucial towards the construction of cryptographic primitives. What are
the sources of randomness? Hardware is one of them – transistor noise, heat, etc. Stock market fluctuations
are fairly unpredictable as well. However, one of these are true sources of randomness. We realize that true
randomness is an expensive commodity. Since we need a lot of randomness, we would like to be able to take
a few truly random bits and stretch them into a large stream of bits that are su�ciently/seemingly random.
This brings us to the topic of this lecture – pseudorandom generators (PRGs). We will first wrap up the
proof of the Goldreich-Levin Theorem and move on to PRGs.

1 Finishing Goldreich-Levin

Let us recap and complete the proof of the Goldreich-Levin Theorem, which attempts to construct a hard
core predicate for every one way function. We review the definition of a hard core predicate. The intuition
behind hard core predicates is that given y = f(x), a hard core predicate b(x) is hard to calculate, in other
words, information obtained from f(x) is not helpful to calculate b(x). Formally, b : {0, 1}n ! {0, 1} is a
hard-core predicate for f : {0, 1}n ! {0, 1}n if 8 PPT algorithms A,

Pr[x
$
 {0, 1}n : A(f(x)) = b(x)] =

1

2
+ negl(n) (1)

Let us recall the Goldreich-Levin Theorem. Let f be a length-preserving one way function. Define

g(x, r) = f(x)||r

where |x| = |r|. Let

b(x, r) = hx, ri =
X

i

xiri mod 2

The theorem states that b is a hard-core predicate for g.
The proof is by contradiction. Assume there exists a PPT algorithm PRED such that

Pr[x, r
$
 {0, 1}n : PRED(g(x, r)) = b(x, r)] �

1

2
+ ✏

where |x| = |r| = n and ✏ is a non-negligible function of n. We show that we can then construct a PPT
algorithm B which inverts f and hence contradicts the fact that it is one way.

We began by showing that a non-negligible fraction (✏2) of the possible xs are “good” xs for which

Pr[r
$
 {0, 1}n : PRED(g(x, r)) = b(x, r)] �

1

2
+

✏

2

Our goal is to design an algorithm which succeeds in inverting g(x, r) with non-negligible probability under
the assumption that x was good. Since a non-negligible fraction of xs are good, running the same algorithm
on a completely random x will still result in a non-negligible probability of success.

The main strategy for this is as follows. Define ei to be the string of length n such that only the i-th bit
is 1 and the other bits are all 0. By definition, hx, eii = xi is the ith bit of x. Since PRED retrieves inner

6.875J/18.425J Cryptography and Cryptanalysis — Lec5 — 1

products, we can use it to determine bits of x by asking it to compute the inner products of x and ei for
each 1  i  n. Note that ei is by no means random.

If ✏ = 1, PRED would in fact work correctly on all r and hence this strategy works. If ✏h1, we have to
deal with the issue that ei is not random. We exploit linearity to randomize ei. Because of the distributive
property of the dot product,

hx, ri = hx, zi � hx, r � zi

for any z 2 {0, 1}n. We can hence pick ri uniformly from {0, 1}n, and let

x0
i = PRED(g(x, ri))� PRED(g(x, ri � ei))

to compute the ith bit of x.
In order that x0

i = xi, we need that both queries to PRED are answered either correctly or incorrectly. It
is su�cient that both answers are correct and we analyze that case. We have

Pr[ri
$
 {0, 1}n : x0

i 6= xi]  Pr[ri
$
 {0, 1}n : PRED(g(x, ri)) 6= hx, rii _ PRED(g(x, ri � ei)) 6= hx, ri � eii]

 2

✓
1

2
�

✏

2

◆

= 1� ✏

Thus, the probability that x0
i = xi is ✏. If ✏ > 1

2 + 1
p(n) for some polynomial p, we can amplify this bias

we have obtained in order to extract xi with higher confidence. The idea is to repeat the procedure many
r0is for each i and take the majority for each i. We denote these as ri,j where 1  i  n and 1  j  m, and
let

x0
i,j = PRED(g(x, ri,j))� PRED(g(x, ri,j � ei))

The question remains, what is m? We obtain this from the Cherno↵ bound. Let Ei,j be the indicator variable

for the event that x0
i,j = xi and let Ei be the indicator variable for the event that maj

⇣
{xi,j}j=1,...m

⌘
= xi.

We have
Pr[ri,j

$
 {0, 1}n : Ei,j = 1] � ✏

Applying the Cherno↵ bound,

Pr[ri,1, . . . , ri,m
$
 {0, 1}n : Ei = 0] = Pr

2

4ri,1, . . . , ri,m
$
 {0, 1}n :

mX

j=1

Ei,j <
m

2

3

5

 O

⇣
e�m(✏� 1

2)
2⌘

Setting it to be less than �, we get that our algorithm succeeds with probability � 1� � for a given i as long
as

m � O

1

�
✏� 1

2

�2 log

✓
1

�

◆!

In order that the algorithm succeeds for every i with non-negligible probability, applying a union bound, it
is su�cient that n� be non-negligible, which can be achieved by setting � = 1

n2 . For this choice of �, note
that the running time of the algorithm is polynomial in n.

We now come to the final case of arbitrary 0 < ✏  1. Note in the previous case, when ✏i 12 , for any j, the
probability that Ei,j succeeded was greater than 1

2 and hence we could amplify this success probability by
repeating for many j. This however provides no advantage if ✏  1

2 , since that would mean that we would
do at least as well by simply guessing xi.

Suppose we are somehow given a certain number of ri,j , hx, ri,ji values, where the ri,js are random.
Then, to compute the ith bit of x, it would be su�cient to compute hx, ri,j � eii. This we can do whenever

6.875J/18.425J Cryptography and Cryptanalysis — Lec5 — 2

a computation of PRED(g(x, ri,j � ei)) succeeds, which occurs with probability at least 1
2 + ✏

2 . Since this
probability is strictly greater than 1

2 , for any given i, we can amplify the probability of success as before.
The problem now reduces to computing a large number of ri,j , hx, ri,ji values for random ri,j , which

are correct. We first note that the ri,js need not be random, rather, is it su�cient that they are pairwise
independent. In this case, we use Chebyshev’s inequality. Let E0

i,j be the indicator variable for the event
that x00

i,j = xi where
x00
i,j = hx, ri,ji � PRED(g(x, ri,j � ei))

and let E0
i be the indicator variable for the event that maj

⇣�
x00
i,j

j=1,...m0

⌘
= xi. We have

Pr[ri,j {0, 1}n : E0
i,j = 1] �

1

2
+

✏

2

where the ri,j are pairwise independent. Applying Chebyshev’s inequality,

Pr[ri,1, . . . , ri,m0 {0, 1}n : E0
i = 0] = Pr

2

4ri,1, . . . , ri,m0 {0, 1}n :
m0X

j=1

E0
i,j <

m0

2

3

5

 O

✓
1

✏2m0

◆

Setting it to be less than �, we get that our algorithm succeeds with probability � 1� � for a given i as long
as

m0
� O

✓
1

✏2�

◆
(2)

In order that the algorithm succeeds for every i with non-negligible probability, applying a union bound, it
is su�cient that n� be non-negligible, which can be achieved by setting � = 1

n2 . For this choice of �, note
that the running time of the algorithm is polynomial in n.

Now, we need to devise a method to compute ri,j , hx, ri,ji for 1  i  n, 1  j  m0, where ri,j and ri,j0
are pairwise independent for every i and j 6= j0. Can we guess them? No, there are too many of them and
we will be correct with probability at most 2�m0

which is negligible in n. We proceed as follows. We choose
log(m0+1) = O(log n) random n-bit strings s1, . . . , slog(m0+1) independently and uniformly at random. Then
for every non-empty subset S of {1, ..., log(m0 + 1)}, define

rS =
M

i2S

si (3)

Clearly, each rS is uniformly distributed over the set of n-bit strings. Furthermore, for S 6= S0, we have that

rS � rS0 = rT

is also uniformly distributed, where T = S 4 S0
6= ;. We conclude that the rSs are pairwise independent.

Since there are 2log(m
0+1)
� 1 = m0 non-empty subsets of {s1, ..., slog(m0+1)}, we have produced m0 di↵erent

rSs; in other words, we have produced m0 pairwise independent rs which can be used as ri,js for some i.
We now wish to compute hx, rSi for each rS . But

hx, rSi =

*
x,
M

i2S

si

+
=
M

i2S

hx, sii (4)

Hence, in order to compute hx, rSi for every S, it would be su�cient to compute hx, sii for every i. Let
vi = hx, sii. We see that if the correct values of {vi} are known, then we can compute hx, rSi correctly for
every rS . But vis can take on only 2log(m

0+1) = poly(n) di↵erent assignments of values. So, we can simply
run the whole algorithm from above once for every possible assignment of {vi}, yielding (m0 +1) guesses for

6.875J/18.425J Cryptography and Cryptanalysis — Lec5 — 3

x. One of the runs will use the correct assignment of values to {vi}, and in that run, there is a non-negligible
probability that we recover x. Hence, there is a non-negligible chance that at least one of the (m0+1) guesses
is correct. Since for any guess x0, we can easily check whether f(x0) = f(x), if any of the guesses is correct,
we can identify it and output it. Therefore, the algorithm we have designed inverts f with non-negligible
probability. The complete algorithm is presented below.

Algorithm GL-Invert(y = f(x))

1. Compute m0 as in Equation 2

2. Choose s1, . . . , slog(m0+1)
$ {0, 1}n independently and uniformly at random.

3. For each of the 2log(m
0+1) boolean assignments to vi = hx, sii

(a) For every non-empty subset S of {1, ..., log(m0 + 1)}, compute rS and hx, rSi as in Equations 3 and 4.

(b) For every 1  i  n

i. For every non-empty subset S of {1, ..., log(m0 + 1)}, compute x00
i,S = hx, rSi � PRED(g(x, rS � ei)).

ii. Compute x0
i = maj

⇣�
x00
i,S

�⇢S✓{1,...,log(m0+1)}

⌘
.

(c) Let x0 = x0
n . . . x0

1. Check if f(x0) = y. If so, return x0. Else, continue.

Remark. It is possible to view Goldreich-Levin as a list-decoding algorithm. The inner products of
x with all n-bit strings can be thought of as a highly redundant codeword for x (this is known as the
“Hadamard” code). The predictor PRED simply provides access to a noisy codeword and the reduction we
designed uses access to the noisy codeword in order to do local or list decoding of the codeword.

2 Pseudorandom Generators

As discussed before, we want to design algorithms, called PRGs, that take a few truly random bits and
stretch them into a large stream of bits that are su�ciently/seemingly random. Here are a few ways in
which one could define a PRG.

Definition 1. A polynomial time deterministic algorithm G, where G : {0, 1}n ! {0, 1}m is a cryptograph-
ically strong pseudorandom number generator, if

1. m > n

2. For any PPT algorithm D,
���Pr[x $

 Un : D(G(x)) = 1]� Pr[y
$
 Um : D(y) = 1]

��� = negl(n)

The next definition asks for something seemingly weaker, which we call next-bit tests. It says that
given any prefix of the output of a PRG, the next bit is hard to predict.

Definition 2. A polynomial time deterministic algorithm G, where G : {0, 1}n ! {0, 1}m is an unpre-
dictable pseudorandom number generator, if for all 1  i  m and all PPT algorithms A,

Pr[y
$
 G(Un) : A(y1, . . . , yi�1) = yi] =

1

2
+ negl(n)

The last definition one could consider would be that no PPT algorithm can compress the output of a
PRG. One could then ask which of these is the right definition. Fortunately, it turns out that all these
definitions are equivalent.

6.875J/18.425J Cryptography and Cryptanalysis — Lec5 — 4

2.1 Equivalence of definitions

It turns out that although next-bit tests are much more constrained in their mode of operation than distin-
guishing the entire output of the PRG from a random string, both the tests have the same power when it
comes to recognizing random bit sequences.

Theorem 3. A pseudo-random number generator G is cryptographically secure if and only if it is unpre-
dictable.

Proof. =) : Suppose that G is not unpredictable. Therefore there exists a predictor A and i  m such that

P[y
$
 G(Un) : A(y1, y2, . . . , yi�1) = yi] >

1

2
+

1

Q(n)

where Un denotes the uniform distribution over n-bit strings and Q is a polynomial. Then consider the
distinguisher D which on input y invokes A(y1, y2, . . . , yi�1) and outputs 1 if and only if the result matches
yi. If y is a random bit sequence, then this probability is exactly half (since yi would then be 1 or 0 with
equal probability.). However, if y was generated by G, then by our assumption, A guesses the ith bit
successfully with probability at least 1

2 + 1
Q(n) , and hence D outputs 1 with at least that probability. Since

the probabilities corresponding to the 2 di↵erent input distributions di↵er by a noticeable fraction, G is not
cryptographically secure.
(= : For the ‘if’ direction, we show that if there exists a distinguisher D that distinguishes between Um

and G(Un) with probability greater than ✏, then we can create a predictor that can predict some bit of the
output of G with probability larger than 1

2 +
✏
m . If ✏ is greater than some polynomial fraction, then so is ✏

m ,
which completes the proof.

The proof strategy is what is known as a hybrid argument. Let us define m + 1 hybrid distributions
as follows:-

• D0 is the uniform distribution on m bits, i.e., Um

• Di is defined as the distribution obtained by choosing the first i bits from G(Un) and the rest m � i
bits uniformly and independently at random.

• Dm is the distribution obtained by applying G on a random n-bit string, i.e., G(Un).

Intuitively, these hybrid distributions gradually transition from Um to G(Un), and hence if A can distin-
guish between the two extreme distributions, it can also distinguish between at least one adjacent pair of

hybrids. To formalize this notion, we define pi = P[y
$
 Di : D(y) = 1]. We have

|pm � p0| > ✏

This implies that
mX

i=1

|pi � pi�1| > ✏

An averaging argument tells us that there exists an i such that

|pi � pi�1| >
✏

m

Without loss of generality, assume that

pi � pi�1 >
✏

m

We now use D to build a predictor A for the ith bit of the output of G. On input (y1, y2, . . . , yi�1),
invoke D on (y1y2 . . . yi�1cr1r2 . . . rm�i) where c and all the rj are randomly and independently chosen.
Finally, output c if A outputs 1 and c otherwise. The intuition for the construction of A is as follows. Notice

6.875J/18.425J Cryptography and Cryptanalysis — Lec5 — 5

that pm � p0 > ✏. Hence, D tends to output 1 more often when it is fed a pseudorandom input. We would
hence like to identify D’s output of 1 with the world of pseudorandom strings. Similarly, since pi > pi�1, D
outputs 1 more often when it is fed the input with the ith bit being the ith bit in the output of the PRG.
Hence, if D outputs 1, we would like to output c itself as the ith bit of the output of the PRG. However, if
D outputs 0, it was because the bit that it was sent was the wrong bit, and hence we flip c. We formalize
this below.

Let us analyze the success probability of this predictor. For convenience, let us define p0i to be the
probability that D outputs 1 when the input is taken from D0

i, which is the same as Di with its ith bit
flipped. Since the ith bit of Di�1 is uniformly chosen, it’s easy to see that

pi�1 =
pi + p0i

2

We have

P[s
$
 G(Un) : A(s1, s2, . . . , si�1) = si]

= P[s
$
 G(Un), c

$
 {0, 1}, r

$
 Um�i : D(s1, s2, . . . , si�1kckr) = 1 ^ c = si]

+ P[s
$
 G(Un), c

$
 {0, 1}, r

$
 Um�i : D(s1, s2, . . . , si�1kckr) = 0 ^ c = si]

= P[x
$
 Di : D(x) = 1 ^ r1 = si] + P[x

$
 D0

i : D(x) = 0 ^ r1 = si]

=
pi
2

+
1� p0i

2

>
1

2
+

✏

m

In the next lecture, we are going to see how to construct PRGs from OWPs.

References

[1] Goldreich, Oded, and Leonid A. Levin. ”A hard-core predicate for all one-way functions.” Proceedings
of the twenty-first annual ACM symposium on Theory of computing. ACM, 1989.

6.875J/18.425J Cryptography and Cryptanalysis — Lec5 — 6

