MIT 6.875J/18.425J and Berkeley CS276
Foundations of Cryptography (Fall 2020)

Problem Set 2: Released September 15, Due September 29

The problem set is due on Tuesday September 29 at 10pm ET /7pm PT. Please make sure to upload to
the Gradescope course webpage by the deadline (all registered students should have access to this webpage
on Gradescope). Be sure to mark on Gradescope where each problem’s solution starts. Typed solutions
using BTEX are strongly encouraged (template provided on the course webpage).

Collaboration is permitted; however, you must write up your own solutions individually and acknowledge all
of your collaborators.

Problem 1. PRF Variants

In this problem, we will consider variants of a pseudo-random function, and show that they can be
constructed from standard pseudo-random functions.

Consider the following variant of a pseudo-random function. We define a summable PRF to be a PRF
family F = {Fp}nen with F, = {F) : {0,1}" — {0,1}"},c(0,1}n, along with an additional PPT algorithm
S:{0,1}™ x {0,1}™ x {0,1}™ — {0, 1}™ such that

b
S(k,a,b) =Y Fi(x).

In other words, F is a PRF such that, in addition to being able to compute Fj(x) on any given point z
(given the key k) in polynomial time, you can also compute sums of evaluations over any interval of inputs
x € [a,b], given the key k, in polynomial time. We identify a,b € {0,1}" with natural numbers between 0
and 2" — 1, so in particular, these sums may be exponentially long.

1.1 Show that if PRFs exist, then so do summable PRF's.

We will now consider delegatable PRFs. Specifically, we want a PRF family F = {F,, }nen with 7, = {F}, :
{0,1}™ — {0,1}"}ref0,137, with an additional two PPT algorithms R and S, where R : {0,1}" x {0,1}" —
{0,1}" takes k as input, as well as some string z € {0,1}™, with m < n and outputs a string k" such that
algorithm S : {0,1}"™ x {0,1}"~™ — {0, 1}" satisfies that S(k’,y) = Fx(z 4+ y), where here z 4+ y denotes the
concatenation of the strings z and y.

Additionally, we require that every PPT algorithm on input k', z (with 2 not expressible as z + y for any
y) can determine Fj(z) with only negligible probability.

That is, the algorithm R takes in the key, as well as some “prefix” z, and outputs another key &’. Now,
using S and &’ one can compute the PRF value for any x whose prefix is z (that is, any x whose first m bits
are the same as z). However, even knowing k', it is not possible to compute Fy(x) for any z’s other than
those which have z as a prefix.

1.2 Show how to use a PRG to construct a delegatable PRF.

Problem 2. A Variant of AES

One can consider the following variant of AES-256 where for every ¢, in the ith round, the function
F(K;,y) =y~ '+ K; mod p is computed, where we define 0~! = 0. That is, our key is a sequence of integers
K = (K, ..., K;), all modulo some large prime p (for example, p can be 256-bit).



On input z, we first compute

z1=2""4+K; (mod p),
and then

Ty = xfl + Ky (mod p),

and so on, until at last we compute the output x, = J;,T_ll + K, (mod p). Call this composition of all of
the F's the function G((K3, ..., K,),z) = Gk (x).
Let’s examine some properties of this function G.

2.1 Show that G is a permutation for all choices of K1, ..., K.

2.2 Show that G is not pseudo-random.

Problem 3. A Subexponential Algorithm for Discrete Log

We are given inputs integers p, g, and y (where p is prime, and g is a generator of Z;), and we want to
find 29 = log,(y) (mod p).

Today, the best publicly known algorithms for solving the discrete logarithm mod a general prime p take
time 20(n'/* (log ")2/3), where n is the number of bits in the binary representation of p. In this problem, we will
not describe that algorithm, but instead outline a different (simpler) subexponential (2"(")—time) algorithm
for finding discrete logs mod an n-bit prime p. This approach has found applications not only in finding
discrete logs mod p, but also for finding discrete logs in other fields.

We begin by defining a smooth number:

Definition 1 (b-smooth number). A number n is b-smooth if all of its prime factors are at most b.

For example, 2250 = 2 - 32 - 5% is 5-smooth, but it is not 4-smooth.
3.1 Say you are given an e such that ¥’ = (¢¢)y modulo p viewed as an integer is b-smooth (that is, the
smallest positive integer that is in the residue class of ¥’ mod p is b-smooth). Use p, g, e, and y to find a linear

equation (mod some number) relating zo = log,(y) with 21 = log,(p1), 22 = log,(p2), ...,z = log,(pk),
where p; < ps < --- < pg are all the primes less than or equal to b, in time polynomial in b

It turns out smooth numbers are pretty common (common enough that we can use them to find a
subexponential algorithm). Specifically, we have:

Theorem 2 (Canfield-Erdos-Pomerance). Define N(a,b) to be the number of b-smooth numbers less than
or equal to a. If c <logx/(2loglogx), as ¢ and x approach infinity, it holds that:

1 1/c —c+o(c)

;N(.T, x /) =c .

To find the discrete log of y, we will create a solvable system of linear equations, one of whose variables
is zg = log, (y). In the next subproblem we describe how to find the linear equations, and then in the final
subproblem we describe the full algorithm.

3.2  Set the smoothness bound b = 2V™1°2"  Find a randomized 2°(")-time algorithm for finding an e such
that ¢y mod p is b-smooth.



3.3 Describe a 2°(")-time randomized algorithm to create k + 1 distinct linear equations (none of which is
obviously a linear combination of the others) with the following k + 1 unknowns!: zg, 21,. .., 2x.

3.4 Describe a subexponential algorithm for solving discrete log modulo p. Analyze the run-time of your
algorithm, expressed as 20(/(") for some function f. Try to make it as fast as possible!

Problem 4. Factoring and Quadratics

Let n = p1paps - - - pi, where p; < po < p3 < ... < pi are prime numbers, for an arbitrary integer k.

4.1 Given a black box that can find square roots mod n, show that n can be efficiently (polynomial time
in the number of bits of n, and in k) factored into its primes.

4.2 Suppose this black box only works on 1% of the inputs mod n. Show that n can still be efficiently
(polynomial time in the number of bits of n, and in k) factored into its primes.

For the rest of the problem, you may assume n = pq for two primes p and q.

4.3 Suppose you have a black box that on input a finds a solution to the equation 22 + az + 1 = 0 mod n
(if such a solution exists). Show that n can be efficiently (polynomial time in the number of bits of n, and
in k) factored into its primes.

1For the sake of this problem, we assume (without proof) that these m linear equations with m unknowns is not underde-
termined, and can be solved to find log,(y).



