MIT 6.875J/18.425J and Berkeley CS276
Foundations of Cryptography (Fall 2020)

Problem Set 6: Released November 19, Due December 8

The problem set is due on Tuesday, December 8 at 10pm ET/7pm PT. Please make sure to upload to
the Gradescope course webpage by the deadline (all registered students should have access to this webpage
on Gradescope). Be sure to mark on Gradescope where each problem’s solution starts. Typed solutions
using IATEX are strongly encouraged (template provided on the course webpage).

Collaboration is permitted; however, you must write up your own solutions individually and acknowledge all
of your collaborators.

Problem 1. Voting System from Shamir’s Secret-Sharing
In this problem, we will consider a voting system for an election with two candidates.

The proposed system will use Shamir’s secret-sharing. The system consists of a committee of size n which
collects and aggregates the votes. In particular, each voter chooses a number s(*) which is 0 if she wants to
vote for candidate 0, and 1 if she wants to vote for candidate 1. Voter v submits its vote s(*) € {0,1} by
picking a random ¢-degree polynomial f, over a finite field F with free coefficient s(*), and gives committee
member ¢ the value sgv) = fu(7).

After the voting deadline is past, each committee member ¢ computes

s; = Z SZ(»U)

Observe that f*(-) = >, fu(-) is a t-degree polynomial over F with free coefficient s* = 3~ s(*). Now, to
reconstruct the secret, i.e. to compute s* which is the total number of voters for party 1, any set of ¢ + 1 or
more committee members can use their shares to interpolate the polynomial f*(-), thus obtaining s*.

For this problem, you may assume that there exists a public-ledger, and all parties have read/write
access to this ledger. You can use any cryptographic tool learned in the class such as: a public-private-
key encryption scheme, a digital signature scheme, a message authentication code (MAC), a (interactive or
non-interactive) zero knowledge proof system, a homomorphic encryption scheme, and so on.

1.1 In the voting system described above, cheating committee members can prevent the reconstruction of
the secret by contributing bad shares 3] # s;. Suggest a modification to this voting system which overcomes
this attack. Argue why in your modified voting system this attack is not possible.

1.2 Additionally, in the voting system described above, cheating voters can submit shares which do not
correspond to any t-degree polynomial f,(+), thus causing different groups in the committee to reconstruct
different “voting results,” i.e. the value of s* constructed is different for different groups. Moreover, cheating
voters can submit shares of a polynomial with free coefficient s(*) ¢ {0,1}, thus influencing the “voting
result” more than they should. Suggest how to further modify the scheme to overcome these problems as
well. Argue why your modified voting system does not suffer from these problems.

Problem 2. Oblivious Transfer Schemes

Recall that in class, we learned about 1-out-of-2 Oblivious Transfer (OT) schemes. In the scheme, a sender
has two messages mg, m; € {0,1}, and a receiver has an index bit b, and the sender wants to send m; to the
receiver while satisfying correctness (the receiver gets my), sender’s privacy (the receiver gains no knowledge
about mj_yp), and receiver’s privacy (the sender gains no knowledge about b). For this problem (as in class),
we focus on achieving security against semi-honest (or “honest-but-curious”) senders and receivers.



2.1 Oblivious Transfer for long messages. You want to design a l-out-of-2 OT scheme where the
messages mo and my have length ¢ = £(\). You should think of ¢ as being a very large polynomial function
of the security parameter \. How can this be done, if you are only allowed to use the 1-out-of-2 OT scheme
for single bit messages A < £ times?

2.2 1l-out-of-n Oblivious Transfer. Assume (e.g. from the previous part) that you have a 1l-out-of-2
OT scheme that works for any message length ¢ and security parameter A (where A and ¢ are polynomially
related). Show how to construct a 1-out-of-n OT scheme for any integer n > 2. In other words, the sender
now has n messages mo,...,m,_1 € {0,1}¢, and the receiver has an index b € {0,1,...,n — 1}, and the
sender wants to send my to the receiver while satisfying correctness, sender’s privacy, and receiver’s privacy.
How many times does your scheme call the 1-out-of-2 OT scheme?

Full credit will be given to solutions which use an asymptotically minimal number of calls (in terms of
n). Security of your system should rely only on that of the underlying 1-out-of-2 OT scheme.

Problem 3. Private Information Retrieval

In this problem, we will consider private information retrieval. In this model, an array « € {0,1}" is stored
by one or more servers, and a user wants to a single bit of x, without the servers knowing which bit he wants.
We will consider a two-server model of PIR. Each server has a copy of x and will answer the user’s
queries, but the servers do not communicate with each other.
Consider the following two-server PIR protocols between user U and servers Sy and Si:

e The user chooses a random subset T' C {1,2,...,n}, including each value independently with prob-
ability 1/2. (Note that T" can be represented as an n-bit string wp by letting the bit in position j
represent whether or not j € T'.)

The user calculates the set T @4, which is TU{i} if T does not contain ¢, and T\ {¢} if 7" does contain
1.

The user sends wr to the server Sy and wrg; to the server S.

e Given a set, each server sends back the xor of all of the bits of = in that set.

The user calculates the xor of the two responses from Sy and S7.

3.1 Prove that this scheme is information-theoretically private; that is, for any two different values 14
and 7', the view of each server Sy, S; is perfectly indistinguishable, even if the servers are computationally
unbounded. (It will be the case that the views of Sy and Sy together reveal 7, but that is OK. Our assumption
is that of non-collusion, that is Sy and S; do not ever collude and put their views together.)

3.2 Unfortunately, the above protocol has a total communication complexity of 2(n + 1) bits, because the
user U sends an n-bit message and receives a one-bit response from each of the two servers. Note that there
is a trivial protocol with communication complexity n that is also private: one of the servers simply sends
the entire string = to the user U. We would like to reduce the amount of communication to significantly
below n.

Alter the scheme from part 3.1 in such a way as to reduce the amount of communication to o(n).

3.3 Unfortunately, in the above protocol each server needs to look at the entire database to answer every
query. That’s too computationally expensive.

Your goal is to alter the scheme from part 3.2 in such a way as to reduce the computation per query to
O(n/log(n)), while keeping the communication complexity the same. In order to do that, you are allowed
to preprocess the database into a polynomially larger string in an offline phase, that is before receiving any



queries. This preprocessing could be computationally expensive, that is, it could take time polynomial in n.
However, the computation in the online phase, that is, after receiving a query from the client, should take
time o(n). In particular, a solution that achieves online computational complexity O(n/logn) will receive
full points.

Problem 4. Linear Regression MPC

In order to better understand the side-effects of cryptomania, m hospitals in the Boston and Berkeley areas
want to compute a joint linear model on their combined patient data. That is, the ¢’th hospital has a N x d
matrix X;, where each row corresponds to a patient and each column corresponds to an attribute, as well as
a length N vector y; of labels. Furthermore, N >> d (there have been many recent cryptomania diagnoses!)
The hospitals’ goal is to perform linear regression on their combined mN samples to obtain a model z € R,
without leaking additional information about their patients’ data.

Because each hospital wishes to keep their own patient data private, simply collating all the data and
using usual linear regression methods is not an option. Instead, the hospitals iteratively solve for m personal
models w; € R? that are all very close to a global model z € R?, as follows:

1. Fori € [m], let A; = (XTX; + pI)~! and b; = XTy;. Also initialize u?,...,u% w9, ..., w2 2%« 0.
2. For k=0...numiters — 1, the following are computed for each i € [m]:
(a) Wi Ay(bi + p(z" —uf))

(b) 2"+ Sx/mp (% E?il(vvf“ + uf))
k+1 k1

(c) ubtt « ub +wh z

3. Output z « zumiters,

In the above, S, is the soft thresholding operator, defined by

a—c a>c
Se(a) =10 —c<a<e

at+c a<—c,

and p is a constant that determines the size of the penalization for w; deviating from z.

Using garbled circuits, design (and prove the security of) a secure protocol for the m hospitals to com-
pute the model z. Since cryptographic computation is often much slower than regular computation, your
cryptographic protocol should run in time polynomial in d, m, numiters, and your security parameter, but
it should not depend on N, except for computations done with unencrypted data. You may assume that
all the hospitals are semi-honest, meaning that they will follow your protocol correctly but may collude and
share information to learn information about another hospital, if possible. You may also assume that two of
the hospitals, MGH and Mount Auburn, do not collude with anyone at all.

The parameters A, p are both public and fixed.



