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Expectations

• Homework: 6 problem sets every 2 weeks, 
typed using latex for equations

• Attendance (with exception to those in 
different time zones) and Participation

• Knowledge: intro to algorithms, probability, 
mathematical maturiyu



Theory and Practice

Impact on
Real World

Theory of 
Computation Mathematics

Cryptography



Historically

Shannon
“A Mathematical Theory of Communication”(1948) 
“A Communication Theory of Secrecy Systems” 
(1945)

War Time Research

Turing
Inventor of the Universal computing 
machine
Theory and Practice: Breaking the enigma



Modern Cryptography: 

•Classical war time effort

•Modern with the rise of the internet to enable 
secure electronic commerce transactions 
(DiffieHellman 1976, RivestShamirAdleman 1977)

•Current & Future enable utilization of remote 
computing and availability of large amounts of data 
while maintaining our basic right to “be left alone”: 
privacy



Communication & Computation

Communication: Privacy, Integrity, Authenticity 

Computation: Privacy & Correctness of 
– Input Data 
– Programs and Executions

Catalyst notions and techniques that led to a series 
of leaps in Complexity Theory

– Pseudo Randomness
– Interactive and Probabilistic Proof Verification
– Average Case vs. Worst Case Hardness



Theory Focus

1. Careful Definitions of Cryptographic Tasks and Adversary 
Models

2. Critic of Existing Systems in light of above

3. Design systems which can be proved secure with respect  
to definitions made   

4. Often Security Proofs are: efficient reductions to explicit 
assumptions on the complexity of some computational 
hard problems (or simpler cryptohgraphic primitives)



Design cryptographic systems 
so science wins either way

Methodology: Efficient Reductions

Which Hard Problems 
NP-Hard? No. Worst Case hardness is not enough
Require: Problems which are Average Case Hard

Given any adversary
Strategy to break
the system in time 
T(k) with prob. a

Construct an algorithm 
solving the hard problem 
in time T’ = poly (T(k)) 
with prob a/poly (k)



Hard Problems 

• Number Theory

• Elliptic Curve Theory
• Geometry
• Coding Theory
• Learning Theory
• Combinatorics ?

Hardy,  ‘A Mathematician’s Apology” writes:
“Both Gauss and lesser mathematicians may be
justified in rejoicing that there is one such
science [number theory] at any rate, 
whose very remoteness from ordinary
human activities should keep it gentle and clean”

No longer: Number theory is the basis of modern security systems 

Most recent: Geometry and Coding are the basis of post-quantum systems



Topics: 1976-onward
• Public Key Encryption: Sending Secret Messages without 

ever Meeting 
• Digital Signatures: Signing Contracts Remotely
• Pseudo Random Number Generation Indistinguishable from 

random
• Zero Knowledge Proofs: Proofs that Reveal Nothing But the 

Truth (modern use: Block Chains)
• Two Party Secure Computation: coin flipping, oblivious 

transfer, secure function evaluation
• Multi Party Secure Protocols: Computing on Distributed 

Secret Data Revealing Nothing but the result without 
referees, Private Information Retrieval

• Fully Homomorphic Encryption
• Private Machine Learning using all of the above

Derandomization

Byznatine Agreement



Unifying Theme:
The Presence of a Worst Case

Adversary

• Integral Part of the Definition of the Problem

• Determines the Quality of Acceptable 
Solutions



What Can you Get from This 
Course

• We are not going to be able to cover everything

• Main goals
– Exposure to the “mindset” of security

• Identify the Adversary
• Identify the goal 
• Evaluate Security 

– In Depth: “Basic” cryptography & protocols
– Exposure: current trends

• If nothing else, a healthy dosage of paranoia…



message m

Secret Communication

BobAlice

Vincent



cipher text c=E(S,m)

Secret Communication

BobAlice

Vincent

S S

Alice and Bob met to agree on a secret key S



Define Encryption scheme
• An encryption scheme (G,E,D) is a triplet of 

(possibly probabilistic) algorithms where
– key generation G(1n) outputs secret key sk of 

length n 
[n is also called the security parameter]

– Encryption algorithm E(sk,m) outputs ciphertext c 
– Decryption algorithm D(sk,c) outputs plaintext m

• Requirements: 
– Correctness: D(sk,E(sk,m)) =m for all m in M.
– Security Definition…with respect to adversaries

• K = key probability space,               Prob[K=sk]
• M = message probability space,      Prob[M=m]
• C  = ciphertext probability space.    Prob[C=c] = 

Prob[E(K,M)=c]



Ancient Codes

``MAX YTNEM, WXTK UKNMNL, EBXL GHM BG HNK
LMTKL UNM BG HNKLXSCXL’’

``THE FAULT, DEAR BRUTUS,   LIES NOT IN OUR 
STARS BUT IN OURSELVES’’

Security? Easy to break, by frequency analysis, 

ciphertext

plaintext

Secret Key:

A        T
B        U
…
S        L
… 

“Pen and Paper
Cryptography”



Enigma Machine
Electro-mechanical Devices

Automated Cryptography & 
Cryptanalysis

Rejewski, Zygalski, Rozycki 



Mid Century:
From Art to Science

Shannon ‘49: 
Perfect Secrecy Theory

Adversary: unbounded computationally, 
security analysis is information theoretic



What Does the Adversary Know?
• Kerckohoff Law: A cryptographic system 

should be secure even if everything about the 
system (e.g. the algorithms G,E and D in the 
context of a secrecy system)is known to the 
adversary except for the key and the 
randomness of the legal users

• Ciphertext Only: Can see c transmitted over 
an insecure channel (but not request c for m of 
its choice)



What Security Guarantee Do We 
Want?

It should be  impossible to 

– compute plaintext from cipher text

– Compute the i-th bit of the plaintext

– compute any partial information about 
the plaintext from the cipher text.

– compute relations between plaintexts

How do we define that?

For any
message 
space,
with high
probability



Shannon Secrecy Definition
(aka perfect secrecy)

Let EVE be an unbounded adversary.

We say that (G,E,D) satisfies 
Shannon-secrecy if and only if: 
" probability distribution over M, 
" c in C, " m in M
Pr [M=m] = Pr[M=m |E(K,M)=c]

A-priori          =  A-posteriori

Note 1:
C=E(K,M)

Note 2: When a r.v.
(random variable)
Appears in a context of 
prob statement., the
prob is taken over the
choices of the r.v.

Slight Notational Abuse: All
capital letters denote  r.v’s
and prob distribution at the
same time



Perfect Indistinguishability 
Alternative Security Definition
Let EVE be an unbounded adversary.

We say that (G,E,D) satisfies 
Perfect indistinguishability if : 
"Probability distribution over M 
" m, m’ in M, 
"c in C 
Pr [E(K,m)=c] = Pr [E(K,m’)=c]

Note :  EVE is not used
In the definition but
Is implicitly there computing 
probabilities…



The Definitions are Equivalent

Theorem: 
(G,E,D) satisfies 
perfect indistinguishability iff 
(G,E,D) satisfies Shannon secrecy.

Proof: Simple use of Bayes Theorem



Indistinguishability implies Shannon
For all m, m’,c perfect indistinguishability guarantees 
that Pr[E(K, m)=c]=Pr[E(K, m’)=c] =[call it  a ]

fact1 Pr[E(K,M)=c]=Sm Pr[M=m]Pr(E(K,m)=c]=          
Sm  Pr(M=m)a = aSm  Pr (M=m) =a

Bayes: P[A|B]=Pr[B|A] Pr[A]/Pr[B]
For all m: A-posteriori 

Pr[M=m|E(K,M) = c]=                                  (Bayes)
Pr(E(K,M)=c|M=m)Pr(M=m)/Pr[E[K,M]=c]= (fact1)
Pr[E(K,m)=c] Pr(M=m) /a=    (def of indistinguishability)
aPr(M=m)/a= Pr[M=m]   =    A=priori     QED



Shannon implies indistinguishability
Bayes: P[A|B]=Pr[B|A] Pr[A]/Pr[B]
For all m,c Shannon secrecy guarantees that 
Pr[M=m] =Pr[M=m| E(K,M)=c] for all m
For all m,
Pr[E(K,m)=c]=             (rewrite)
Pr[E(K,M)=c | M=m] = (Bayes)
Pr[M=m|E(K,M)=c]Pr[E(K,M)=c]/Pr[M=m]= (def of Shannon)
Pr[M=m] Pr[E(K,M)=c]/Pr[M=m] = 
Pr(E(K,M)=c]

This is also true for m’. Namely, Pr[E(K,m’)=Pr[E(K,M)=c]
Thus, for all m, m’,c; Pr[C=c|M=m]=Pr[C=c | M=m’]  QED



Shannon Secrecy is Achievable
One Time Pad: G chooses sk at random in {0,1}n

E(sk,m)=skÅm, D(sk,c)=skÅc

Claim: One Time Pad Achieves Shannon Security
Proof: Fix m, c Î{0,1}n .
Prob[E(K,m)=c]= Prob [KÅm=c]= 

Prob[K=mÅc]=1/2n

Thus, "c, m, m’
Prob(E(K,m)=c)=  Prob(E(K,m’)=c)

And  one-time pad (G,E,D) achieves perfect 
indistinguishability Þ Shannon secrecy.



How about using one-time pad to send 
more than one message?

Q: Would it preserve Shannon Secrecy?
A:  No

Proof: Show Perfect Indistinguishability no longer holds.

Consider the case of two messages each of length n, each 
encrypted by “xoring” the message with the same sk.

Claim: there exists m=(m1, m2) & m’=(m1’,m2’) & ciphertext  
c=(c1,c2) such that Pr [E(K,m)=c]≠ PrSK[E(K,m’)=c]

Pf: Set m1=m2 and m1’≠m2’ and c=(c1,c1) .Then, 
m1’≠m2’⇒there is no sk for which skÅm1’=c1 = skÅm2’

⇒Pr[E(K,m’)=c]=0
But there exist sk s.t. skÅm1=c1  and skÅm2=c1   

⇒ Pr[E(K,m)=c]>0                        QED. 



#Keys  ³ #Messages
Shannon Theorem: For perfect secrecy schemes, |K| ³ |M|

Proof: Suppose not and |K| < |M|.
Fix c s.t. Pr[E(K,M)=c]>0.

Let Mc={m s.t. $ some k for which m= D(k, c)}.
Then |Mc|£|K| (since there is at least 1 key per message)

<|M| (assumed for contradiction)

So, ∃some m‘Î M for which there is no k
that yields m’=D(k,c). Namely, Pr (E(K,m’)=c)=0

Whereas  Pr(E(K,M)=c) >0, so there exists another m, s.t.
Pr[E(K,m)=c]>0 . Perfect Indistinguishability is  violated.
Contradiction QED

Note:
|K|= number of distinct keys
|M|=number of distinct messages



|K| ³ |M|  Þ

# bits to specify Key ³
# bits to specify Message



Disadvantages of 
One Time Pads

• The size of the key is huge: as many key bits 
as message bits and need to know in 
advance how many message bits

• Receiver needs to know which key goes with 
which ciphertext (some synchronization or 
state)

• Advantage
– By Shannon’s Theorem, this is BEST POSSIBLE.



Modern Cryptography
1976, New Directions in Cryptography

“

”
W. Diffie, M. Hellman, “New Directions in Cryptography”, 1976.



Modern Cryptography
1976, New Directions in Cryptography

The Adversary
Any probabilistic polynomial time algorithm:
O(nc) for some c>0 for n=security parameter.
Think of n=size of the secret key



Probabilistic Polynomial Time algorithms 
(PPT)

• A runs in polynomial time in its input length

• A is randomized: can flip fair coins 
• Las Vegas: "input, A is correct or 

with negligible probability A outputs ⫠

• Monte Carlo:  "input, A is correct
With all but negligible probability



Can Now Ask New Questions
1. Can A and B agree on key sk in person and 

subsequently exchange P(|sk|) messages 
where  P is any polynomial?

2. Can A and B exchange messages without even 
meeting

3. Can B be assured that A’s message was not 
modified: can A sign messages digitally so that 
B can verify that A signed the message, without 
A and B meeting

Possible for the new Adversary model and 
modified security definition



Conventions
• We say that a function e(n) is negligible if

for every polynomial P, there exists  n0 s.t.
for all n>n0, e(n)<1/P(n)
• We say that a function e(n) is non-negligible if 

there exists a polynomial P, such that for 
infinitely many k, e(n)>1/P(n)

• Instead of “there exists a n0 s.t. for all n>n0 “, 
we often say “for sufficiently large n”

• b ∈R {0,1} means “sampled at random” (often 
omitted)



Notations
PPT: Probabilistic Polynomial Time Algorithms. They can toss 

coins; different outputs are possible for the same input; and 
on length n input,  the running  time is bounded by O(nc) for 
some constant c>0.    

Negligible neg(n): < 1/p(n) for all polynomials p  
non-neg: There exists a polynomial p s.t. non-neg(n)>1/p(n)
Security Parameter: is  always presented in Unary
There Exists: $
For All:  "
Such that: s.t.
|n|: number of bits in binary representation of n ,e.g. |8|=3   
Big O-notation:  
|S| : Cardinality of Set S
Prob (E), Pr[E]: probability that event E is true
iff : if and only if
o.w: other wise


