MIT 6.875 & Berkeley CS276

Foundations of Cryptography
Lecture 10

Today:
Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA) composite N/factoring

&: Quadratic Residuosity/Goldwasser-Micali
composite N/factoring

3: Diffie-Hellman/El Gamal prime p/discrete 10g

small numbers, large

4: Learning with Errors/Regev
dimensions

Tr 3 patocbo d rineayaRaronctadions

F
>
Easy to
compute
Hard to
1nvert
Easy to
1nvert
domain
glven a rarnge
U trapdoor range

Domain = Range

Review: Number Theory

Let’s review some number theory from L7-8.

Let N = pq be a product of two large primes.
Fact: Zy = {a € Zy:gcd(a,N) = 1}is a group.

 group operation is multiplication mod N.

* inverses exist and are easy to compute (how so0?)
e the order of the groupis p(N) = (p — 1)(q — 1)

Lecture 8: The map F(x) = x? mod N is a 4-to-1
trapdoor function, as hard to invert as factoring N.

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e, d(N)) = 1. Then,
the map Fy .(x) = x® mod N is a trapdoor permutation.

Key Fact: Given d such that ed = 1 mod p(N), it is easy
to compute x given x°©.

Proof: (x¢)4

This gives us the RSA trapdoor permutation collection.
{Fnc:gcd(e,N) = 1}

Trapdoor for inversion: d = e tmod ¢p(N).

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e, d(N)) = 1. Then,
the map Fy .(x) = x® mod N is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption

given N, e (as above) and x® mod N, hard to compute x.

We know that if factoring is easy, RSA is broken (and
that’s the only known way to break RSA)

Major Open Problem: Are factoring and RSA equivalent?

The RSA Trapdoor Permutation

Today: Let e be an integer with gcd(e, d(N)) = 1. Then,
the map Fy .(x) = x® mod N is a trapdoor permutation.

Hardcore bits (galore) for the RSA trapdoor one-way perm:
* The Goldreich-Levin bit GL(r;r') = (r,r’) mod 2
* The least significant bit LSB(r)
* The “most significant bit” HALFy(r) = 1iffr < N/2

* In fact, any single bit of 7 is hardcore.

RSA Encryption

 Gen(1™):Let N = pq and (e, d) be such that
ed = 1 mod ¢p(N).

Let pk = (N, e) and let sk = d.

 Enc(pk,b) where b is a bit: Generate random r €
Zy and output ¢ mod N and LSB(r)®m.

 Dec(sk,c): Recover r via RSA inversion.

IND-secure under the RSA assumption: given N, e (as
above) and r® mod N, hard to compute r.

Today:
Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA)
&: Quadratic Residuosity/Goldwasser-Micali
3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev

Quadratic Residuosity

Let’s review some more number theory from L7-8.

Let N = pq be a product of two large primes.

Jacyq

{x: (;\Cl) = +1}

Jacobi symbol (1’\5,) = (g) (2) is +1 if x is a square mod
both p and g or a nhon-square mod both p and q.

Quadratic Residuosity

Let’s review some more number theory from L7-8.

Let N = pq be a product of two large primes.

Jacyq

{x: (;\Cl) = +1}

Surprising fact: Jacobi symbol (1’\6,) = (;) (g) is
computable in poly time without knowing p and q.

Quadratic Residuosity

Let’s review some more number theory from L7-8.

Let N = pq be a product of two large primes.

Jac,q
won=w()=O= QRy N
QNRy = {x:(3) = () = -1} y

QR is the set of squares mod N and QNRy is the set
of non-squares mod N with Jacobi symbol +1.

Quadratic Residuosity

Let’s review some more number theory from L7-8.

Let N = pq be a product of two large primes.

Quadratic Residuosity Assumption (QRA)

Let N = pq be a product of two large primes.
No PPT algorithm can distinguish between a random
element of QRy from a random element of QNR

given only N.

Goldwasser-Micali (GM) Encryption

Gen(1™): Generate random n-bit primes p and g and

let N = pg. Lety € QNRy be some quadratic non-
residue with Jacobi symbol +1.

Let pk = (N, y) and let sk = (p, q).

Enc(pk,b) where b is a bit:
Generate random r € Zy and output 7% mod N if
b=0andr*ymodN if b = 1.

Dec(sk,c): Check if c € Zy is a quadratic residue
using p and q. If yes, output O else 1.

Goldwasser-Micali (GM) Encryption

Enc(pk, b) where b is a bit:
Generate random r € Zy and output 72 mod N if
b=0andr“ymodN if b = 1.

IND-security follows directly from the quadratic
residuosity assumption.

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of
b’, | can compute a GM-ciphertext of b + b'mod 2.

without knowing anything about b or b’!

Enc(pk,b) where b is a bit:
Generate random r € Z5; and output r?y®? mod N.

Claim: Enc(pk, b) - Enc(pk,b") is an encryption of
b&®b' = b+ b'mod 2.

Today:
Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA)
&: Quadratic Residuosity/Goldwasser-Micali
3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev

Diffie-Hellman Key Exchange

Commutativity in the exponent: (g*)” = (g”)”*

(where g is an element of some group)

So, you can compute g*” given either g* and y, or
g” and x.

Diffie-Hellman Assumption (DHA):
Hard to compute g*Y given only g, g* and g”

Diffie-Hellman Key Exchange

Diffie-Hellman Assumption (DHA):
Hard to compute it given only g, g* and g”

We know that if discrete log is easy, DHA is false.

Major Open Problem:
Are discrete log and DHA equivalent?

Diffie-Hellman Key Exchange

D, g: Generator of our group Z,,

g* mod p

g” mod p
Pick a random Pick a random
number x € Z,_, numbery € Z,,_4
Shared key K= g*Y mod p Shared key K= g*¥ mod p

=(g”)* modp =(9”*)” modp

Diffie-Hellman/El Gamal Encryption

* Gen(1™): Generate an n-bit prime p and a generator
g of Z;,. Choose a random number x € Z,,_4

Let pk = (p, g, g9”) and let sk = «x.

* Enc(pk,m) wherem € Z;: Generate randomy €
Z,_, and output (g%, g™ - m)

* Dec(sk = x,c): Compute g*¥ using g”¥ and x and
divide the second component to retrieve m.

Is this Secure?

The Problem

Claim: Given p, g, g* mod p and g” mod p, adversary can

detepuiia sdMme hitavdaticaaleatyg fifoded p.

Corollary: Therefore, additionally given g*” - m mod p, the
adversary can determine whether m is a square mod p,
violating “IND-security”.

The Problem

Claim: Given p, g, g* mod p and g” mod p, adversary can

determine if g*¥ mod p is a square mod p.

g*Y mod p is a square & xy (mod p — 1) is even

& XYy Is even
& X iIseven or y is even
& x (modp—1)isevenory (modp — 1) is even

< g* mod p or g¥ mod p is a square

This can be checked in poly time!

Diffie-Hellman Encryption

Claim: Given p, g, g* mod p and g” mod p, adversary can

determine if g*¥ mod p is a square mod p.

More generally, dangerous to work with groups that have
non-trivial subgroups (in our case, the subgroup of all
squares mod p)

Lesson: Best to work over a group of prime order. Such
groups have no subgroups.

An Example: Let p = 2q + 1 where q is a prime itself.
(p-1) _ q

Then, the group of squares mod p has order

Diffie-Hellman/El Gamal Encryption

* Gen(1™): Generate an n-bit “safe” primep = 2qg + 1
and a generator g of Z, and let h = g“mod p be a

generator of QR,, . Choose a random number x € Z,, .
Let pk = (p, h, h*) and let sk = x.

* Enc(pk,m) wherem € QR, : Generate random y €
Zq and output (g7, g*Y - m)

* Dec(sk = x,c): Compute g*¥ using g¥ and x and
divide the second component to retrieve m.

Decisional Diffie-Hellman Assumption

Decisional Diffie-Hellman Assumption (DDHA):

Hard to distinguish between g*¥ and a uniformly
random group element, given g, g* and g”

That is, the following two distributions are
computationally indistinguishable:

(9,9%.9%,97) = (9,9%,9”,u)

DH/El Gamal is IND-secure under the DDH assumption.

Today:
Constructions of Public-Key En %

QUANTUM COMPUTER

apdoor Permutation SA)

&: Quadratic 1duosity/Goldwasser-Micali

fie-Hellman/El Ga,

4: Learning with Errors/Regev

(post-quantum secure, as far as we know)

Sol Sipky Waikinbimeche Eguations

4 A Easy!
o = -~ asy!
(ils)[g 5 /=011 3] :> Find (s1ls2)
% J
How about:
-)

(Sll.gz) [2 ; i] + [81 €2 63] — [11 3 9]

K(e1,e2,e3) are “small” numbers)

Very hard!
> Find s

in large dimensions

Learning with Errors (LWE)

[Regev05, following BFKL93, Ale03]

very hard!

LWE: [(A, sA+e)] :1> Find s

(A € Z}}Xm
S E ZZ} random “small” secret vector

e € Zg: random “small” error vector)

Decisional LWE:
[(A, sA+e) J é [(A, b)J

(b uniformly random)

“Decisional LWE is as hard as LWE”.

Basic (Secret-key) Encryption

[Regev095]

n = security parameter, g = “small” prime

 Secret key sk = Uniformly random vector s € Z7

« Encryption Enc,(m): // me {0,1}

— Sample uniformly random a € Zj, "short” noise e € Z

— The ciphertextc=(a,b=(a,s)+e +m)

« Decryption Decg(c): Output (b — (@, s) mod q)

// correctness as long as |e| < g/4

Basic (Secret-key) Encryption

[Regev095]

This is an incredibly cool scheme. In particular, additively
homomorphic.

c=(ab=(a,sy+e+mlq/2]) +

c'=(a',b'=(a’,s)y+e’"+m’|q/2])

c+c' =(at+a’,b+tb'=(a+a,s)+ (e+te’) + (m+m") |q/2])

In words: ¢ + ¢’ is an encryption of m+m’ (mod 2)

Public-key Encryption

[Regev095]

Here is a crazy idea. Public key has an encryption of O

(call it ¢g) and an encryption of 1 (call it ¢).
If you want to encrypt 0, output ¢, and if you want to

encrypt 1, output ¢;.

Well, turns out to be a crazy bad idea.

If only we could produce fresh encryptions of O or 1 given
just the pk...

Public-key Encryption

[Regev095]

Here is another crazy idea.
Public key has many encryptions of 0 and an encryption
of 1 (call it ¢q).

If you want to encrypt O, output a random linear
combination of the 0-encryptions.

If you want to encrypt 1, output a random linear
combination of the 0-encryptions plus ¢;.

This one turns out to be a crazy good idea.

Public-key Encryption

[Regev095]

Secret key sk = Uniformly random vector s € Z]

Public key pk: fori from 1 to k = poly(n)
q
(CO = (ag,{ag, s) + eg + b‘),ci = (a;,(a;, s) + el-))

Encrypting a bit m: pick k random bits 74, ..., 1%

k

Z:r,;ci+m-c0

=1

Correctness: additive homomorphism

Security: decisional LWE + “Leftover Hash Lemma”

We saw:
Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA)
2: Quadratic Residuosity/Goldwasser-Micali
3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev

Practical Considerations

| want to encrypt to Bob. How do | know his public key?

Public-key Infrastructure: a directory of identities
together with their public keys.

Needs to be “authenticated”:

otherwise Eve could replace Bob’s pk with her own.

Practical Considerations

Public-key encryption is orders of magnitude slower
than secret-key encryption.

1. We just showed how to encrypt bit-by-bit! Super-
duper inefficient.

2. Exponentiation takes O(n?) time as opposed to
typically linear time for secret key encryption (AES).

3. The nitselfis large for PKE (RSA: n = 2048)
compared to SKE (AES: n = 128).

Can solve problem 1 and minimize problems 2&3 using
hybrid encryption.

Hybrid Encryption

To encrypt a long message m (think 1 GB):

Pick a random key K (think 128 bits) for a secret-
key encryption

Encrypt K with the PKE: PKE. Enc(pk, K)

Encrypt m with the SKE: SKE. Enc(K, m)

To decrypt: recover K using sk. Then using K, recover m

Next Lecture:
Digital Signatures

