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Lecture 10
Foundations of Cryptography



Today: 
Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA)

2: Quadratic Residuosity/Goldwasser-Micali

3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev

composite N/factoring

composite N/factoring

prime p/discrete log

small numbers, large 
dimensions



F

domain
range

Easy to 
compute

Hard to 
invert

Easy to 
invert

given a 
trapdoor

Trapdoor One-way Functions

range

Trapdoor One-way Permutations

Domain = Range



Review: Number Theory

Let’s review some number theory from L7-8.

Let 𝑁 = 𝑝𝑞 be a product of two large primes.

Fact: 𝑍!∗ = {𝑎 ∈ 𝑍!: gcd a, N = 1} is a group.

• group operation is multiplication mod 𝑁.
• inverses exist and are easy to compute (how so?)

• the order of the group is ϕ 𝑁 = 𝑝 − 1 (𝑞 − 1)

Lecture 8: The map 𝐹 𝑥 = 𝑥# mod 𝑁 is a 4-to-1 
trapdoor function, as hard to invert as factoring 𝑁.



The RSA Trapdoor Permutation

Today: Let 𝑒 be an integer with gcd 𝑒, ϕ(𝑁) = 1. Then, 
the map 𝐹!,% 𝑥 = 𝑥% mod 𝑁 is a trapdoor permutation.

{𝐹!,%: gcd 𝑒, 𝑁 = 1}

Key Fact: Given 𝑑 such that 𝑒𝑑 = 1 mod ϕ 𝑁 , it is easy 
to compute 𝑥 given 𝑥%. 

Proof: (𝑥%)& = 𝑥'( ! )* = (𝑥( ! )' = 𝑥 = 𝑥 mod 𝑁
(for some integer k)

This gives us the RSA trapdoor permutation collection.

Trapdoor for inversion: 𝑑 = 𝑒+*mod ϕ 𝑁 .



The RSA Trapdoor Permutation

Today: Let 𝑒 be an integer with gcd 𝑒, ϕ(𝑁) = 1. Then, 
the map 𝐹!,% 𝑥 = 𝑥% mod 𝑁 is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption 

We know that if factoring is easy, RSA is broken (and 
that’s the only known way to break RSA)

Major Open Problem:  Are factoring and RSA equivalent?

given 𝑁, 𝑒 (as above) and 𝑥% mod N, hard to compute 𝑥.



The RSA Trapdoor Permutation

Today: Let 𝑒 be an integer with gcd 𝑒, ϕ(𝑁) = 1. Then, 
the map 𝐹!,% 𝑥 = 𝑥% mod 𝑁 is a trapdoor permutation.

Hardcore bits (galore) for the RSA trapdoor one-way perm: 

• The Goldreich-Levin bit  GL 𝑟; 𝑟, = 𝑟, 𝑟′ mod 2

• The least significant bit LSB 𝑟

• The “most significant bit”  𝐻𝐴𝐿𝐹! 𝑟 = 1 iff 𝑟 < 𝑁/2

• In fact, any single bit of 𝑟 is hardcore. 



RSA Encryption
• 𝐺𝑒𝑛 1- : Let 𝑁 = 𝑝𝑞 and 𝑒, 𝑑 be such that 
𝑒𝑑 = 1 𝑚𝑜𝑑 𝜙(𝑁). 

Let 𝑝𝑘 = (𝑁, 𝑒) and let 𝑠𝑘 = 𝑑.

• 𝐸𝑛𝑐 𝑝𝑘, 𝑏 where 𝑏 is a bit: Generate random 𝑟 ∈
𝑍!∗ and output 𝑟% mod 𝑁 and LSB 𝑟 ⨁𝑚.

• 𝐷𝑒𝑐 𝑠𝑘, 𝑐 : Recover 𝑟 via RSA inversion.

IND-secure under the RSA assumption: given 𝑁, 𝑒 (as 
above) and 𝑟% mod N, hard to compute 𝑟.



Today: 
Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA)

2: Quadratic Residuosity/Goldwasser-Micali

3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev



Quadratic Residuosity

Let’s review some more number theory from L7-8.

Let 𝑁 = 𝑝𝑞 be a product of two large primes.

𝐽𝑎𝑐+* 𝐽𝑎𝑐)*
𝑍!∗

{𝑥:
𝑥
𝑁

= −1} {𝑥:
𝑥
𝑁

= +1}

Jacobi symbol .
! = .

/
.
0 is +1 if 𝑥 is a square mod 

both 𝑝 and 𝑞 or a non-square mod both 𝑝 and 𝑞. 



Quadratic Residuosity

Let’s review some more number theory from L7-8.

Let 𝑁 = 𝑝𝑞 be a product of two large primes.

𝐽𝑎𝑐+* 𝐽𝑎𝑐)*
𝑍!∗

{𝑥:
𝑥
𝑁

= −1} {𝑥:
𝑥
𝑁

= +1}

Surprising fact: Jacobi symbol .
! = .

/
.
0 is 

computable in poly time without knowing 𝑝 and 𝑞.  



Quadratic Residuosity

Let’s review some more number theory from L7-8.

Let 𝑁 = 𝑝𝑞 be a product of two large primes.

𝐽𝑎𝑐)*

𝑄𝑅! is the set of squares mod 𝑁 and 𝑄𝑁𝑅! is the set 
of non-squares mod 𝑁 with Jacobi symbol +1.

𝑄𝑅!

𝑄𝑁𝑅!

So: 𝑄𝑅! = {𝑥: "
# = "

$ = +1}

𝑄𝑁𝑅! = {𝑥: "
# = "

$ = −1}



Quadratic Residuosity

Let’s review some more number theory from L7-8.

Let 𝑁 = 𝑝𝑞 be a product of two large primes.

Quadratic Residuosity Assumption (QRA)

Let 𝑁 = 𝑝𝑞 be a product of two large primes. 
No PPT algorithm can distinguish between a random 
element of 𝑄𝑅! from a random element of 𝑄𝑁𝑅!
given only 𝑁.



Goldwasser-Micali (GM) Encryption

𝐺𝑒𝑛 1- : Generate random 𝑛-bit primes 𝑝 and 𝑞 and 
let 𝑁 = 𝑝𝑞. Let 𝑦 ∈ 𝑄𝑁𝑅! be some quadratic non-
residue with Jacobi symbol +1.  

Let 𝑝𝑘 = (𝑁, 𝑦) and let 𝑠𝑘 = (𝑝, 𝑞).

𝐸𝑛𝑐 𝑝𝑘, 𝑏 where 𝑏 is a bit: 
Generate random 𝑟 ∈ 𝑍!∗ and output 𝑟# mod 𝑁 if 
𝑏 = 0 and 𝑟#𝑦 mod 𝑁 if 𝑏 = 1.

𝐷𝑒𝑐 𝑠𝑘, 𝑐 : Check if c ∈ 𝑍!∗ is a quadratic residue 
using 𝑝 and 𝑞. If yes, output 0 else 1. 



Goldwasser-Micali (GM) Encryption

𝐸𝑛𝑐 𝑝𝑘, 𝑏 where 𝑏 is a bit: 
Generate random 𝑟 ∈ 𝑍!∗ and output 𝑟# mod 𝑁 if 
𝑏 = 0 and 𝑟#𝑦 mod 𝑁 if 𝑏 = 1.

IND-security follows directly from the quadratic 
residuosity assumption.



GM is a Homomorphic Encryption 

𝐸𝑛𝑐 𝑝𝑘, 𝑏 where 𝑏 is a bit: 
Generate random 𝑟 ∈ 𝑍!∗ and output 𝑟#𝑦< mod 𝑁.

Given a GM-ciphertext of 𝑏 and a GM-ciphertext of 
𝑏′, I can compute a GM-ciphertext of 𝑏 + 𝑏,𝑚𝑜𝑑 2.
without knowing anything about 𝒃 or 𝒃′!

Claim: 𝐸𝑛𝑐 𝑝𝑘, 𝑏 = 𝐸𝑛𝑐(𝑝𝑘, 𝑏,) is an encryption of 
𝑏⨁𝑏, = 𝑏 + 𝑏,𝑚𝑜𝑑 2. 



Today: 
Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA)

2: Quadratic Residuosity/Goldwasser-Micali

3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev



Diffie-Hellman Key Exchange

(𝑔.)= = (𝑔=).Commutativity in the exponent:

So, you can compute 𝑔.= given either 𝑔. and 𝑦, or 
𝑔= and 𝑥.

Hard to compute 𝑔.= given only 𝑔, 𝑔. and 𝑔=
Diffie-Hellman Assumption (DHA):

(where 𝑔 is an element of some group)



Diffie-Hellman Key Exchange

Hard to compute it given only 𝑔, 𝑔. and 𝑔=
Diffie-Hellman Assumption (DHA):

We know that if discrete log is easy, DHA is false.

Major Open Problem:  
Are discrete log and DHA equivalent?



Diffie-Hellman Key Exchange

Pick a random 
number 𝑥 ∈ 𝑍/+*

𝑔. mod 𝑝

𝑝, 𝑔:Generator of our group 𝑍!∗

Pick a random 
number y ∈ 𝑍/+*

𝑔= mod 𝑝

Shared key K = 𝑔.= mod 𝑝
= (𝑔=). mod 𝑝

Shared key K = 𝑔.= mod 𝑝
= (𝑔.)= mod 𝑝



Diffie-Hellman/El Gamal Encryption

• 𝐺𝑒𝑛 1- : Generate an 𝑛-bit prime 𝑝 and a generator 
𝑔 of 𝑍/∗ . Choose a random number 𝑥 ∈ 𝑍/+*

Let 𝑝𝑘 = (𝑝, 𝑔, 𝑔.) and let 𝑠𝑘 = 𝑥.

• 𝐸𝑛𝑐 𝑝𝑘,𝑚 where 𝑚 ∈ 𝑍/∗ : Generate random 𝑦 ∈
𝑍/+* and output (𝑔= , 𝑔.= = 𝑚)

• 𝐷𝑒𝑐 𝑠𝑘 = 𝑥, 𝑐 : Compute 𝑔.= using 𝑔= and 𝑥 and 
divide the second component to retrieve 𝑚.

Is this Secure?



The Problem

Claim: Given p, g, 𝑔. mod 𝑝 and 𝑔= mod 𝑝, adversary can

Corollary: Therefore, additionally given 𝑔.= = 𝑚 mod 𝑝, the 
adversary can determine whether 𝑚 is a square mod 𝑝, 
violating “IND-security”.

compute some information about 𝑔.= mod 𝑝.determine if 𝑔.= mod 𝑝 is a square mod 𝑝.



The Problem

Claim: Given p, g, 𝑔. mod 𝑝 and 𝑔= mod 𝑝, adversary can
determine if 𝑔.= mod 𝑝 is a square mod 𝑝.

𝑔.= mod 𝑝 is a square ⟺ 𝑥𝑦 (mod 𝑝 − 1) is even

⟺𝑥𝑦 is even
⟺𝑥 is even or 𝑦 is even 
⟺𝑥 (𝑚𝑜𝑑 𝑝 − 1) is even or 𝑦 (mod p − 1) is even 
⟺𝑔. 𝑚𝑜𝑑 𝑝 or 𝑔= 𝑚𝑜𝑑 𝑝 is a square 

This can be checked in poly time!



Diffie-Hellman Encryption

Claim: Given p, g, 𝑔. mod 𝑝 and 𝑔= mod 𝑝, adversary can

Lesson: Best to work over a group of prime order. Such 
groups have no subgroups.

More generally, dangerous to work with groups that have 
non-trivial subgroups (in our case, the subgroup of all 
squares mod p)

An Example: Let 𝑝 = 2𝑞 + 1 where 𝑞 is a prime itself. 
Then, the group of squares mod 𝑝 has order /+*

#
= 𝑞.

determine if 𝑔.= mod 𝑝 is a square mod 𝑝.



Diffie-Hellman/El Gamal Encryption

• 𝐺𝑒𝑛 1- : Generate an 𝑛-bit “safe” prime 𝑝 = 2𝑞 + 1
and a generator 𝑔 of 𝑍/∗ and let ℎ = 𝑔#mod 𝑝 be a 
generator of 𝑄𝑅/ . Choose a random number 𝑥 ∈ 𝑍0 . 

Let 𝑝𝑘 = (𝑝, ℎ, ℎ.) and let 𝑠𝑘 = 𝑥.

• 𝐸𝑛𝑐 𝑝𝑘,𝑚 where 𝑚 ∈ 𝑄𝑅/ : Generate random 𝑦 ∈
𝑍0 and output (𝑔= , 𝑔.= = 𝑚)

• 𝐷𝑒𝑐 𝑠𝑘 = 𝑥, 𝑐 : Compute 𝑔.= using 𝑔= and 𝑥 and 
divide the second component to retrieve 𝑚.



Decisional Diffie-Hellman Assumption

Hard to distinguish between 𝑔.= and a uniformly 
random group element, given 𝑔, 𝑔. and 𝑔=

Decisional Diffie-Hellman Assumption (DDHA):

That is, the following two distributions are 
computationally indistinguishable: 

(𝑔, 𝑔. , 𝑔= , 𝑔.=) ≈ (𝑔, 𝑔. , 𝑔= , 𝑢)

DH/El Gamal is IND-secure under the DDH assumption. 



Today: 
Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA)

2: Quadratic Residuosity/Goldwasser-Micali

3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev
(post-quantum secure, as far as we know)



Solving Linear Equations

Find 𝒔𝟏 𝒔𝟐
𝒔𝟏 𝒔𝟐

𝟓 𝟏 𝟑
𝟔 𝟐 𝟏 = 11 3 9

Find 𝑠

How about:

(e1,e2,e3) are “small” numbers

Easy! 

𝒔𝟏 𝒔𝟐
𝟓 𝟏 𝟑
𝟔 𝟐 𝟏 + 𝑒* 𝑒# 𝑒@ = 11 3 9

Very hard!

in large dimensions

Solving Noisy Linear Equations



Learning with Errors (LWE)

Find 𝒔(A, 𝒔A+e)

𝒆 ∈ 𝑍!": random “small” error vector)

Decisional LWE:

LWE:

(A, b)(A, sA+𝑒)
(b uniformly random)≈c

(A ∈ 𝑍!"#$
s ∈ 𝑍!" random “small” secret vector

[Regev05, following BFKL93, Ale03]

“Decisional LWE is as hard as LWE”. 

very hard!



Basic (Secret-key) Encryption

• Secret key sk = Uniformly random vector s Î 𝑍%&

• Encryption Encs(m):   // mÎ {0,1}

– Sample uniformly random a Î 𝑍%&, “short” noise e Î 𝑍

– The ciphertext c = (a, b = áa, sñ + e + m 𝑞/2 )

n = security parameter, q = “small” prime

[Regev05]

• Decryption Decsk(c): Output Roundq/2(b − áa, sñ mod q)

// correctness as long as |e| < q/4



Basic (Secret-key) Encryption
[Regev05]

This is an incredibly cool scheme. In particular, additively 
homomorphic.

𝒄 = (a, b = áa, sñ + e + m 𝑞/2 )

𝒄′ = (a′ , b′ = áa′, sñ + e′ + m′ 𝑞/2 )

𝒄 + 𝒄′ = (a+a′ , b+ b′ = á a +a′, sñ + (e+e′) + (m+m′) 𝑞/2 )

+

In words: 𝑐 + 𝑐′ is an encryption of m+m′ (mod 2) 



Public-key Encryption
[Regev05]

Here is a crazy idea.  Public key has an encryption of 0 
(call it 𝑐A) and an encryption of 1 (call it 𝑐*).  
If you want to encrypt 0, output 𝑐A and if you want to 
encrypt 1, output 𝑐*. 

Well, turns out to be a crazy bad idea.

If only we could produce fresh encryptions of 0 or 1 given 
just the pk…



Public-key Encryption
[Regev05]

Here is another crazy idea.  
Public key has many encryptions of 0 and an encryption 
of 1 (call it 𝑐*).  

This one turns out to be a crazy good idea.

If you want to encrypt 0, output a random linear 
combination of the 0-encryptions.

If you want to encrypt 1, output a random linear 
combination of the 0-encryptions plus 𝑐*. 



Public-key Encryption

• Secret key sk = Uniformly random vector s Î 𝑍%&

[Regev05]

• Public key pk: for 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑘 = 𝑝𝑜𝑙𝑦(𝑛)

𝒄𝟎 = (𝒂𝟎, 𝒂𝟎, 𝒔 + 𝑒( +
𝑞
2
), 𝒄𝒊 = (𝒂𝒊, 𝒂𝒊, 𝒔 + 𝑒*)

Security:  decisional LWE + “Leftover Hash Lemma”

• Encrypting a bit 𝑚: pick 𝑘 random bits 𝑟+, … , 𝑟,

D
*-+

,

𝑟*𝒄𝒊 +𝑚 E 𝒄𝟎

Correctness: additive homomorphism



We saw: 
Constructions of Public-Key Encryption

1: Trapdoor Permutations (RSA)

2: Quadratic Residuosity/Goldwasser-Micali

3: Diffie-Hellman/El Gamal

4: Learning with Errors/Regev



Practical Considerations

I want to encrypt to Bob. How do I know his public key?

Public-key Infrastructure: a directory of identities 
together with their public keys.

Needs to be “authenticated”:
otherwise Eve could replace Bob’s pk with her own.



Practical Considerations

Public-key encryption is orders of magnitude slower 
than secret-key encryption.

1. We just showed how to encrypt bit-by-bit! Super-
duper inefficient.

2. Exponentiation takes 𝑂(𝑛#) time as opposed to 
typically linear time for secret key encryption (AES). 

3. The 𝑛 itself is large for PKE (RSA: 𝑛 ≥ 2048) 
compared to SKE (AES: 𝑛 = 128).

Can solve problem 1 and minimize problems 2&3 using 
hybrid encryption.



Hybrid Encryption

To encrypt a long message 𝑚 (think 1 GB): 

Pick a random key K (think 128 bits) for a secret-
key encryption

Encrypt K with the PKE: 𝑃𝐾𝐸. 𝐸𝑛𝑐(𝑝𝑘, 𝐾)

Encrypt m with the SKE: SKE. 𝐸𝑛𝑐(𝐾,𝑚)

To decrypt: recover 𝐾 using 𝑠𝑘. Then using 𝐾, recover 𝑚



Next Lecture:
Digital Signatures


