Message Authentication Codes

Digital Signatures

Lecture 11

Shafi Goldwasser

Authentication Problem

Alice Bob
message M 3 } / %

Eve is Active:
> Can alter messages
Can insert new messages

Authentication Problem

» Secrecy is not the only concern

* Integrity of the message may be even
more important for applications. An
Active adversary may

— alter messages in transit
— Inject new messages
— remove messages

Message Authentication Codes

A way to associate a tag with each message which is
hard to produce without knowing the secret key

Formal:
A Triplet of algorithms (Gen, MAC, Verify)
* Gen(1") produces key keK,

MAC (k,M). on key k and message M, outputs tag t
« Verify(k,M,t) on key k, message M & tag t

outputs {Accept, Reject} where

Correctness: for all m, Verify(k, m, MAC(k,m)) = Accept
Hard to Forge (needs a definition):

Intuitively, hard to generate new (m, t) s.t.
Verify(k,m,t)=accept

Comments

MAC may be

- Probabilistic: there are may be many tags for the
same message (not a requirement for achieving
security)

- Deterministic: Verify(k,M,t) simply re-computes
t' = MAC (k,M) and compares t =2t

Verify may be
- probabilistic correct with high probability.

Replay: Definition includes only stateless Algorithms, for
dealing with replay we may modify this assumption

What is the power of the adversary?

» Can see pairs of (m, MAC(k,m))

« Can access a Verify, :=Verify(k, ,) oracle
— Can check if tag are valid for m, tag of its choice
— Practice: send a (m, tag) & see if accepted or not.

» Can access Mac, := MAC(k,) oracle
— Obtain tags for messages of choice

Chosen Message Attack(CMA):Both powers

Who is a successful forger

After attack forger can
* Total Break: recover the secret key

* Universal Break: generate tags for any message

« Existential Forgery: 3message m for which can
generate a tag t s.t. Verify(k,m,t) = accept

Q: Is this too strong?
Why not allow for forging tags for nonsense messages?
A: Definition of ‘nonsense’ is application specific

Security Definition for MAC scheme
(Gen, MAC, Verity)

Vadversary A dneg() s.t. ¥n sufficiently large

PrObkEGen(1 n)[AVGFifYk,MACk(1 n):(m,t) S.t.
Verify, (m,t)=Accept &
m & {m. queries by AVeriyuMACK] <neg(n)

Can consider adversary A which is:
— Unbounded: information theoretic setting
— Polynomial time in n=|secret key]|

— Exact security: (T,g) — secure if for all adversary A who
can make T calls to MAC, succeeds with probability < €

Replay Attack

* Replay: sending the exact same (m,t) at a
later time
— Definition of Security Doesn'’t rule it out

* |n practice:

— Time Stamps appended to messages -- Need
Synchronized Clocks
« Take a Window to Allow for clock drifts

— Sequence Numbers appended to messages

 This requires stateful MAC and Verify algorithms, would
need to modify our definition accordingly

Beware: Privacy and Authentication
Two Entirely Different Goals

 False intuition: E,(m) garbles m so why not
use MAC(k,m) = E(k,m) ?

* Even though adversary can’t learn m from
E(k,m) may still be able to modify (m, E(k,m)) to
(m’, E(m")) s.t. Verify(k,m" ,E(k,m"))=Y

* One Time PAD provides a trivial example: can
generate valid tags for new messages from old
(message, tag) pairs.

PSRF imply Secure MAC schemes
for Fixed Size Messages

heorem:
 Let F ={f.: {0,1}8 ->{0,1}8 } PRF family

* Then there exist a secure message
authentication scheme for B- bit
messages

MAC(k,M) = f (M)

MAC for Long Messages?
Let PSRF F={F,}, F,={f}, f.: {0,1)8>{0,1)B

*MACO (k,MO...M") = f (MO® M2 ...®M)
— Existential forgery as long as ® M=®M’

‘MAC1 (k,M0...M)) = &, f (M) for |M|=B, use
padding for messages which are not multiples of B
in length

— Order-of-blocks forgery

‘MAC2 (k,MO...M) = ® (f(<i>.Mi)) for |Mi|=B/2

— Cut and paste attack on 3 messages

Randomize
Let PSRF F={F .}, F_={f.}, f.: {0,1}8>{0,11B

Choose random re{0,1}¢? | let |M/|=B/2
XOR-MAC (MO...M!) =
[r, f(<0>r)®f (<1>:M))®... f (<I>:M)]
— pad if message length not multiple of B/2

— Make r long enough so chance of collision with r
by another r’ is small.

Challenge: prove this works if F PSRF
“Bellare, Guerin, Rogaway, “XOR MACS”

Hash-then-Sign

Let H:{0,1}*={0,1}" be a collision resistant hash
function
— Function which can be evaluated by all

— Function which compresses arbitrary length messages to n
bit strings

— Hard to find collisions
vppt A, Prob[A(H)=(x.x") s.t. H(x)=H(x")] < neg(n)

Not known to follow from one-way permutation
Known constructions from DLP, Factoring, LWE
Real life implementations: MD5, SHA-1

Hash-then-Sign

Let H:{0,1}*={0,1}" be a collision resistant hash
function

Gen: On input 1" choose PSRF f, . in F,
MAC: On f, and message m output t= f,(H(m))

Verify: Oninput f, , mand t
— Compute H(m)
—if f,(H(m))=t output Accept else Reject

Note: forge either by breaking f,
or by finding collisions: i.e m’ s.t. Hm)=H(m")
for m previously signed

Digital Signatures

Wish List for
Handwritten Signatures

» Associate documents with a signer

(individual)

To verify need to compare against other
signhatures

Signatures are legally binding

Should be hard to forge

Should be hard to change the document
once Its signed

Wish List for Digital Signatures

» Associate documents with a signer
(user in a computer network)

« Computationally easy to verify by
everyone, but hard to forge for all
except for the legal signer

* Non-refutable: if Alice signs a
document, then she cannot deny it.

— In particular, should not be able to change
document once it is sighed

=Legally binding

Digital Signatures vs. MAC

 Digital signatures are the public-key (or

asymmetric) analogue of MACs

— Publicly Verifiable

— Transferable: can show the signature to a
third party who can verify that the signature
Is valid

— Can not be refuted: if Alice signs a
document for Bob, she cannot deny it.

Digital Signature: Definition

A digital signature is a triplet of PPT algorithms

« G(1%) outputs pair (s,v) where s is referred to as the signing
key and v the verifying key. [(s,v) e G(1¥)]

« Sign (s,m) on signing key s and message m, outputs s
referred to as the digital signature of m [sig € Sign(s,m)]

« Verify(v,m,sig) on verifying key v, message m,
and sig outputs accept or reject s.t.

Verify(v,m,sig) =accept (sig is a valid signature of m)
=reject (sig in invalid signature of m).

Correctness: Verify(v,m,s)=accept if sig € Sign(s,m)
where (s,v) in G(1k)

Security . to be defined

Power of the adversary/forger?

Forger can:

« Key Only Attack: see only the public verifying key

 Known Message Attack: see the public key and
pairs of (m, Sign(s,m)) for m signed in the past

« Chosen Message Attack: Forger can request to see
signatures of messages of his choice

« Adaptively Chosen Message Attack: Forger can
request to see signatures of messages of his choice
which may be chosen in a way dependent on
previous signatures seen

Successful Forgery

« Total Break: Forger recovers the secret
signing key

* Universal Forgery: for any message m
Forger can come up with a string sig which

will be accepted as a valid signature of m by
the Verify algorithm

 Existential Break: There exist some

message for which the forger can produce a
valid signature

Security Definition for MAC scheme (G,
Sign, Verify)

Vadversary A 3neg() s.t. vn sufficiently large

Prob.vjec(q") [A%9%(v)=(m,t) s.t Verify(v,m,t)=Accept &
m & {m; queries by A to oracle Sig(s,)] <neg(n)

Can consider adversary A which is:

— Polynomial time in n=|secret key]|

— Exact security: (T,g) — secure if for all adversary A who
can make T calls to Sign(s,) succeeds with probability < €

Remarks

Could it be made any Stronger ?
— How?

— do not allow forger to produce a different
signhature for the same message signed in
the past

Digital Signatures: Primary Usages

« Authenticity of documents: A digital signature
provides a way for each user in a network to sign
messages so that signatures can later be verified by
anyone.

 Integrity of signed documents: Anyone can verify
that the content of a document that have been
signed has not been altered.

 Certificates

Certificates

If the directory of public keys is accessed over the
network, one needs to protect the users from
fraudulent public keys.

Certificates -- a user’ s public key digitally signed by
the public key directory manager (as a trusted party)
IS one solution to this problem.

Each user can transmit this certificate along with his
public key with any message he signs removing the
need for a central directory.

The only thing that need be trusted is that the
directory manager’ s public key is authentic.

Public-Key Infrastructure (PKI)

Trusted root authority (VeriSign, IBM,
United Nations)

« Everyone must know the verification key of root
authority

Root authority can sign certificates

Certificates identify others, including other
authorities

Leads to certificate chains

Digital Signatures:
Trapdoor Function Model

Diffie Hellman 76 proposal in our notation is: given a
trapdoor collection of functions F define
(Gen,Sign,Verify) as follows

Gen: On input security parameter 1", pick a function f
In F, and its associated trapdoor t. Make the signing
key t and the verifying key is f.

Sign(t,m) =f1(m)

Verify(f,m,sig) = accept if f(sig) =m
and reject otherwise

Why does it work?

Since f(sig) =f (F'(m))= m when sig =f'(m) as computed by
the legal signing algorithm.

Existential Forgery

Even though F is a collection of trapdoor

functions, the scheme is trivial to “existentially

forge” under a “key only” attack as follows
On public key fin F,

Adversary A chooses at random x in the
domain of f and sets message=f(x),
sighature=x.

How about signing single bit messages ?

Instantiation:
The RSA Digital Signature Scheme

The first example of a digital signature scheme was
proposed by the RSA in 77.

« Key Generation: choose n=pq and e, d s.t. ed=1
mod ¢(n) Set (n,e) the public verifying key and d the
private signing key.

« Sign(d,m)
Set sig = m9 mod n to be the signature of m
* Verify ((n,e), sig,m):

output 1 if and only if (sig)® mod n = m.

Why ? sig=m9 mod n implies sig®¢ mod n =(m¢de)=
med mod ¢(n) =m mod N

Security of RSA signatures

Claim: RSA is existentially forgeable under a

Key only attack.

Proof: Let pk=(n,e) and sk —d s.t. ed=1 mod phi(n).

Simply choose x in Z,* at random, and set m=x® mod n,

and sig=x, then V((n,e),sig, m)=accept. Namely, x is a legal
signature of m.

Claim: RSA is universally forgeable under chosen
message attack(CMA)

Proof: Suppose interested in forging the signature of m. Choose a
random rin Z,*. Let m,=r and m,=m/r mod n. Get signatures s; =(m,)°
mod n, s,=(m,)¢ mod n of m,, m, from S (during the CMA). Now, it is
easy to compute the signature of m,

set s=s,*s, mod n=(m,)¢ (m,)! mod n=(m,*m,)¥mod n =m9 mod n.

Hash-then-Sign RSA

Hash-then-Sign paradigm

Generation: PK = ((n, e), H), SK = (p,q)
Signing: On input signing key d and message m
output s = H(m)4 mod n.

Verifying: On input (n,e), s, and m,

— Compute H(m)

— if s* mod n = H(m) output 1 (accept signature)

Note: can try to forge either by breaking
RSA or by looking for collisions, i.e mand m” H(m)=H(m")

Note: has the added advantage of handling long messages
“for free”

Security of hashed RSA

 Theorem: if H is a random oracle, then Hashed
RSA signatures is existentially secure against
chosen message attack under the RSA
assumption.

» Variants of hashed RSA have been
standardized, and are used in practice

* Problem: H is not really a random oracle is

In Practice: PSS0- RSA

Hash-then-Sign probabilistic paradigm

Generation: PK = ((n, e), H), SK = (p,q)

Signing: On input signing key d and message m
output (s,r)

- where ¢ = H(r|| m)d mod n

— ris randomly chosen each time, |r| = [m|

Verifying: On input (n,e), (s,r) and m, output 1 if and

only if s* mod n = H(r||m)

Important Remark

Diffie Hellman in their work linked the tasks of public-
key encryption and digital signatures.

They observed that for pair of (E,D) (from public-key
encryption) you can use s=D(m) as a signature and
E(s) =? M as the verifying algorithm.

This of course fails when E is a probabilistic scheme
and is not true in general for any encryption scheme.

We explicitly separate the two tasks to achieve
greater security.

Next time Show:
How to Sigh any message
Securely from any one-way
functions

Start with signing 1 message

How to Sign a Bit: Claw-Free Functions
fo(x)=f1(y)

/\

X Y
Let (fo.f1) be a pair of trapdoor functions which are
“claw-free”, i.e. its hard to find x,y s.t. fo(x)=f(y)

verifying key vk |signing key sk

Let .
z,fo.f1 f-1,f-1 (the corresponding

trapdoor information)

+ To sign b, output =f,1(z)

+ To verify that ¢ is a valid signature of b, check if
fo(c)=z for z in public file.

