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Authentication Problem
• Secrecy is not the only concern

• Integrity of the message may be even 
more important for applications. An 
Active adversary may 
– alter messages in transit
– inject new messages
– remove messages



Message Authentication Codes
A way to associate a tag with each message which is 
hard to produce without knowing the secret key

Formal:
A Triplet of algorithms (Gen, MAC, Verify)
• Gen(1n) produces key kÎKn

• MAC (k,M): on key k and message M, outputs tag t
• Verify(k,M,t) on key k, message M & tag t                                 

outputs {Accept, Reject} where  
Correctness: for all m, Verify( k, m, MAC(k,m)) = Accept
Hard to Forge (needs a definition): 

Intuitively, hard to generate new (m, t) s.t.
Verify(k,m,t)=accept



Comments

MAC may be 
- Probabilistic:  there are may be many tags for the 

same message (not a requirement for achieving 
security)

- Deterministic: Verify(k,M,t) simply re-computes     
t’= MAC (k,M) and compares  t =? t’

Verify may be 
- probabilistic correct with high probability.

Replay: Definition includes only stateless Algorithms, for 
dealing with replay we may modify this assumption



What is the power of the adversary?

• Can see pairs of (m, MAC(k,m)) 

• Can access a Verifyk :=Verify(k, , ) oracle
– Can check if  tag are valid for m, tag of its choice 
– Practice: send a (m, tag) & see if accepted or not.

• Can access Mack := MAC(k, ) oracle
– Obtain tags for messages of choice

Chosen Message Attack(CMA):Both powers



Who is a successful forger

After attack forger can 
• Total Break: recover the secret key

• Universal Break: generate tags for any message

• Existential Forgery: ∃message m for which can 
generate a tag t s.t. Verify(k,m,t) = accept

Q: Is this too strong? 
Why not allow for forging tags for nonsense messages?
A:  Definition of `nonsense’ is application specific



Security Definition for MAC scheme 
(Gen, MAC, Verify)

∀adversary A ∃neg() s.t. ∀n sufficiently large
Probk∈Gen(1n

)[AVerifyk,MACk(1n)=(m,t) s.t.
Verifyk(m,t)=Accept &
m ∉ {mi queries by AVerifyk,MACk}] <neg(n) 

Can consider adversary A which is:
– Unbounded: information theoretic setting
– Polynomial time in n=|secret key|
– Exact security: (T,ε) – secure if for all adversary A who 

can make T calls to  MACk succeeds with probability < ε



Replay Attack

• Replay: sending the exact same (m,t) at a 
later time
– Definition of Security Doesn’t rule it out

• In practice:
– Time Stamps appended to messages -- Need 

Synchronized Clocks
• Take a Window to Allow for clock drifts

– Sequence Numbers appended to messages
• This requires stateful MAC and Verify algorithms, would 

need to modify our definition accordingly



Beware: Privacy and Authentication 
Two Entirely Different Goals

• False intuition:  Ek(m) garbles m so why not 
use MAC(k,m) = E(k,m) ?

• Even though adversary can’t learn m from 
E(k,m) may still be able to modify (m, E(k,m)) to 
(m’, E(m’)) s.t. Verify(k,m’,E(k,m’))= Y

• One Time PAD provides a trivial example:  can 
generate valid tags for new messages from old 
(message, tag) pairs. 



PSRF imply Secure MAC schemes
for Fixed Size Messages

Theorem:
• Let Fn={fk: {0,1}B ->{0,1}B } PRF family

• Then there exist a secure message 
authentication scheme for B- bit 
messages

MAC(k,M) = fk(M)



MAC for Long Messages?

Let PSRF  F={Fn}, Fn={fk}, fk: {0,1}Bà{0,1}B    

•MAC0 (k,M0…Ml) = fk(M0Ä M2 …ÄMl)   
– Existential forgery as long as Ä M=ÄM’

•MAC1 (k,M0…Ml) =  Åi fk(Mi) for |Mi|=B, use 
padding for messages which are not multiples of B 
in length

– Order-of-blocks forgery

•MAC2 (k,M0…Ml) =  Äi (fk(<i>.Mi) ) for |Mi|=B/2
– Cut and paste attack on 3 messages



Randomize
• Let PSRF F={Fn}, Fn={fk}, fk: {0,1}Bà{0,1}B

• Choose random rÎ{0,1}B/2 , let |Mi|=B/2                     
XOR-MAC (M0…Ml) =                                                     

[r, fk(<0>:r)Äfk(<1>:M1)Ä… fk(<l>:Ml)] 
– pad if message length not multiple of B/2
– Make r long enough so chance of collision with r 

by another r’ is small. 

• Challenge: prove this works if F PSRF
• “Bellare, Guerin, Rogaway, “XOR MACS”



Hash-then-Sign
• Let H:{0,1}*⇒{0,1}n be a collision resistant hash 

function
– Function which can be evaluated by all
– Function which compresses arbitrary length messages to n 

bit strings
– Hard to find collisions
∀ppt A, Prob[A(H)=(x.x’) s.t. H(x)=H(x’)] < neg(n) 

• Not known to follow from one-way permutation
• Known constructions from DLP, Factoring, LWE
• Real life implementations: MD5, SHA-1



Hash-then-Sign
• Let H:{0,1}*⇒{0,1}n be a collision resistant hash 

function

• Gen: On input 1n choose PSRF fk in Fn

• MAC: On fk and message m output t= fk(H(m)) 
• Verify: On input fk.  , m and t

– Compute H(m)
– if fk(H(m))=t output Accept else Reject

Note: forge either by breaking  fk
or by finding collisions: i.e m’ s.t. H(m)=H(m’) 

for m previously signed



Digital Signatures



Wish List for
Handwritten Signatures

• Associate documents with a signer 
(individual)

• To verify need to compare against other 
signatures

• Signatures are legally binding
• Should be hard to forge 
• Should be hard to change the document 

once its signed 



Wish List for Digital Signatures

• Associate documents with a signer 
(user in a computer network)

• Computationally easy to verify by 
everyone, but hard to forge for all 
except for the legal signer

• Non-refutable: if Alice signs a 
document, then she cannot deny it. 
– In particular, should not be able to change 

document once it is signed 
⇒Legally binding



Digital Signatures vs. MAC

• Digital signatures are the public-key (or 
asymmetric) analogue of MACs
– Publicly Verifiable
– Transferable: can show the signature to a 

third party who can verify that the signature 
is valid

– Can not be refuted: if Alice signs a 
document for Bob,  she cannot deny it.



Digital Signature: Definition

A digital signature is a triplet of PPT algorithms 
• G(1k ) outputs  pair (s,v)  where s is referred to as the signing 

key and v the verifying  key.   [(s,v) e G(1k)]
• Sign (s,m) on  signing key s and  message m, outputs s

referred to as the digital signature of m [sig e Sign(s,m) ]
• Verify(v,m,sig) on verifying key v, message m, 

and sig outputs accept or reject s.t.
Verify(v,m,sig) =accept (sig is a valid signature of m) 

=reject (sig in invalid signature of m).

Correctness: Verify(v,m,s)=accept if sig e Sign(s,m) 
where (s,v) in G(1k) 

Security : to be defined



Power of the adversary/forger? 

Forger can:
• Key Only Attack: see only the public verifying key
• Known Message Attack: see the public key and 

pairs of (m, Sign(s,m)) for m signed in the past
• Chosen Message Attack: Forger can request to see 

signatures of messages of his choice 

• Adaptively Chosen Message Attack: Forger can 
request to see signatures of messages of his choice 
which may be chosen in a way dependent on 
previous  signatures seen  



Successful Forgery

• Total Break: Forger recovers the secret 
signing key

• Universal Forgery: for any message m 
Forger can come up with a string sig which 
will be accepted as a valid signature of m by 
the Verify algorithm

• Existential Break: There exist some 
message for which the forger can produce a 
valid signature



Security Definition for MAC scheme (G, 
Sign, Verify)

∀adversary A ∃neg() s.t. ∀n sufficiently large
Prob(s,v)∈G(1n

) [ASignk (v)=(m,t) s.t Verify(v,m,t)=Accept & 
m ∉ {mi queries by A to oracle Sig(s,)] <neg(n) 

Can consider adversary A which is:
– Polynomial time in n=|secret key|
– Exact security: (T,ε) – secure if for all adversary A who 

can make T calls to  Sign(s,) succeeds with probability < ε



Remarks

• Could it be made any Stronger ?
– How?

– do not allow forger to produce a different 
signature for the same message signed in 
the past



Digital  Signatures: Primary Usages

• Authenticity of documents: A digital signature 
provides a way for each user in a network to sign 
messages so that signatures can later be verified by 
anyone.

• Integrity of signed documents: Anyone can verify 
that the content of a document that have been 
signed has not been altered.

• Certificates



Certificates

• If the directory of public keys is accessed over the 
network,  one needs to protect the users from 
fraudulent public keys. 

• Certificates -- a user’s public key digitally signed by 
the public key directory manager (as a trusted party) 
is one solution to this problem.

• Each user can transmit this certificate along with his 
public key with any message he signs removing the 
need for a central directory.

• The only thing that need be trusted is that the 
directory manager’s public key is authentic.



Public-Key Infrastructure (PKI)

• Trusted root authority (VeriSign, IBM, 
United Nations)

• Everyone must know the verification key of root 
authority

• Root authority can sign certificates
• Certificates identify others, including other 

authorities
• Leads to certificate chains



Digital Signatures: 
Trapdoor Function Model

• Diffie Hellman 76 proposal in our notation is: given a 
trapdoor collection of functions F define  
(Gen,Sign,Verify) as follows  

• Gen: On input security parameter 1n, pick a function f 
in Fn and its associated trapdoor t. Make the signing 
key t and the verifying key is f.

• Sign(t,m)  = f-1(m) 
• Verify(f,m,sig) = accept if f(sig) =m 

and reject otherwise 
Why does it  work?

Since f(sig) =f (f-1(m))= m when sig =f-1(m) as computed by
the legal signing algorithm.



Existential Forgery

Even though F is a collection of trapdoor 
functions, the scheme is trivial to “existentially 
forge” under a “key only” attack as follows

On public key f in F, 
Adversary A chooses at random x in the   
domain of f and sets message=f(x), 

signature=x.

How about signing single bit messages ?



Instantiation:
The RSA Digital Signature Scheme

The first example  of a digital signature scheme was 
proposed by the RSA in 77.
• Key Generation: choose n=pq and e, d s.t. ed=1 

mod f(n)  Set (n,e) the public verifying key and d  the 
private signing key.

• Sign(d,m)
Set sig = md mod n  to be the signature of m

• Verify ((n,e), sig,m):
output 1 if and only if (sig)e mod n = m.

Why ? sig=md mod n implies  sige mod n =(mde )=
med mod f(n) =m mod n



Security of  RSA signatures

Claim: RSA is existentially forgeable under a 
Key only attack.
Proof: Let pk=(n,e) and sk –d s.t. ed=1 mod phi(n).
Simply choose x in Zn* at random, and set m=xe mod n, 
and sig=x, then V((n,e),sig, m)=accept. Namely, x is a legal 

signature of m.
Claim: RSA is universally forgeable under chosen 
message attack(CMA)
Proof: Suppose interested in forging the signature of m. Choose a 
random r in Zn*. Let m1=r and m2=m/r mod n. Get signatures s1 =(m1)d

mod n, s2=(m2)d mod n of  m1, m2 from S (during the CMA). Now, it is 
easy to compute the signature of m, 
set s=s1*s2 mod n=(m1)d (m2)d mod n=(m1*m2)d mod n =md mod n. 



Hash-then-Sign RSA
• Hash-then-Sign paradigm
• Generation: PK = ((n, e), H), SK = (p,q)
• Signing: On input signing key d and message m

output s = H(m)d mod n.
• Verifying: On input (n,e), s, and m, 

– Compute H(m)
– if se mod n = H(m) output 1 (accept signature)

Note: can try to forge either by breaking 
RSA or by looking for collisions, i.e m and m’ H(m)=H(m’) 
Note: has the added advantage of handling long messages    

“for free”



Security of hashed RSA

• Theorem: if H is a random oracle, then Hashed 
RSA signatures is existentially secure against 
chosen message attack under the RSA 
assumption.

• Variants of hashed RSA have been 
standardized, and are used in practice

• Problem:  H is not really a random oracle is 



In Practice: PSS0- RSA
• Hash-then-Sign probabilistic paradigm
• Generation: PK = ((n, e), H), SK = (p,q)
• Signing: On input signing key d and message m

output (s,r ) 
– where s = H(r|| m)d mod n
– r is randomly chosen each time, |r| = |m|

• Verifying: On input (n,e), (s,r) and m, output 1 if and 
only if se mod n = H(r||m)



Important Remark

• Diffie Hellman in their work linked the tasks  of public-
key encryption and digital signatures. 

• They observed that for pair of (E,D) (from public-key 
encryption) you can use s=D(m) as a signature and 
E(s) =? M as the verifying algorithm.

• This of course fails when E is a probabilistic scheme 
and is not true in general for any encryption scheme. 

• We explicitly separate the two tasks to achieve 
greater security.



Next time Show:
How to Sign any message

Securely from any one-way
functions

Start with signing 1 message



How to Sign a Bit: Claw-Free Functions

Let (f0,f1) be a pair of trapdoor functions which are 
“claw-free”, i.e. its hard to find x,y s.t. f0(x)=f1(y)

Let

• To sign b, output =fb
-1(z) 

• To verify that s is a valid signature of b, check if 
fb(s)=z for z in  public file.

verifying key  vk signing key sk

z,f0,f1 f-1,f-1
1  (the corresponding

trapdoor information)

x                      y

f0(x)=f1(y)


