
Digital Signatures
from one-way functions

Lecture 12

Signatures vs. MACs
Signatures

• 𝑛 users require only 𝑛secret keys

• Same signature can be verified by
all users

• Publicly verifiable and transferable

• Provide non-repudiation

MACs

• 𝑛 users require ≈ n 2 secretkeys

• Privately verifiable and non-transferable

• More efficient (2-3 orders ofmagnitude
faster)

Sign𝑚 Verify
(𝑚,𝜎)

Correctness: For every message𝑚.
Verify(vk,m,s)=accept if s e Sign(sk,m)

Digital Signatures
Key-generation: Gen (1n) outputs pair

signing key sk and verification key vk
Signing: Sign(sk,m) outputs a signature s 𝜎
Verification: Verify(vk,m,𝜎) outputs accept/reject (1/0)

vksk

b

Security of Signatures
• Adv knows vk and can adaptively ask for signatures of

messages of its choice
• Adv tries to forge a signature on a new message m

(𝑚 ,𝜎)

Scheme Π = (Gen, Sign,Verify) is existentially unforgeable against
an adaptive chosen message attack (EU-ACMA) if
∀ppt adversary ∃neg function s.t. ∀n sufficiently large
Prob [Verify(vk,m,s)=Accept &

m ∉ {mi asked to be signed by }] <neg(n)

signsk (vk)

Run Gen(1n) to get (sk,vk)

vk

𝒜

𝒜

𝒜

Signatures vs MACS

There do not exist EU-ACAM signature schemes against
unbounded adversaries. This holds regardless of the key length.

Why?

Secure mac schemes against unbounded adversaries exist with
a key as long as the number of messages to be signed.

RSA Digital Signature Scheme 77
The first example of a digital signature scheme
• Key Generation(1n): choose N=pq for |p| ≈ |q|=n/2

and e,d s.t. ed=1 mod f(N)
vk=(N,e) the public verifying key
sk=(N,d) the private signing key.

• Sign((N,d), m):
sig := md mod N

• Verify ((N,e),m,sig) :
Accept iff sige mod N = m.

RSA is existentially forgeable under Key Only attack.
RSA is universally forgeable under Chosen Message Attack

Can not securely sign specialized message sets, e.g. S={0,1}

Hash-then-Sign Paradigm for the Trapdoor
Digital Signature Model(e.g.RSA)

Use a public “cryptographic” hash function H
Let Sig(sk,m)=f-1(H(m)) (=H(m)d mod N for RSA)

Verify(vk,m,s)= accept iff f(sig)=H(m)

Correctness certainly hold. What about unforgeability? Which
properties need H have? Is collision resistance (CR) enough?

A: Counter to intuition, no proof of security, even if f is TDP
and H is CRH. It depends on H & how H and f interact

Given TRP f, can be secure with one H & insecure with another.
Yet, popular paradigm where for H =MD5, SHA1 etc.
• Basis for standards (e.g., PKCS#1 of RSA inc. DSS of NIST)
• Basically assume that specific combination of F& H is secure

The Random Oracle Model
Theorem: if H is a random oracle, then Hashed RSA
signatures is EU-ACMA under the assumption that f is
trapdoor function (e.g. RSA assumption).
Unfortunately: H is not a random oracle but a deterministic
function that everyone can evaluate

• No implication from "security in the random oracle
model" to security of the actual scheme. In fact, it
was shown that there CANNOT be a "generic” implication.

9

Todays Outline
• Constructionof EU-ACMA from ANY one-way function (no trapdoors)

1. One-time signatures from OWFs

• Bounded-length messages

• Unbounded length messages

2. From one-time to multi-time: Stateful signatures

3. Stateless signatures

• Many Flavors of Signatures

• Incremental Signatures

• Blind Signatures and Electronic Cash

• Group Signatures

Signing 1-bit messages from
One-Way Functions (no trapdoors!)

Lamport
Let F be a one-way function collection

•Gen: choose fÎFn, x0,x1 ÎDomain(f),
signing key sk = (x0,x1) &
verifying key vk =(f(x0),f(x1))

•Sign((x0,x1), b): output xb

•Verify((f(x0),f(x1)), b, sig) = accept if f(sig) = f(xb)

sk = x o x 1 .

vk =
. f x0 f x1

sk

{

Extension to t-bit Messages: bigger keys

Increase the size of the
signing key sk= {(x0

i,x1
i)} i=1…t

verifying key vk = {(f(x0
i), f(x1

i))} i=1…t

• Sign(sk, b1…bt) = xi
bi for i=1…l

• Verify(vk, b1…bl , s1…si) =accept
if f(s i) = f(xbi)i for all i=1…t

f xi
0 f xi

1

x i o x i 1 .

Extension to t-bit Messages: bigger keys

Increase the size of the
signing key sk= {(x0

i,x1
i)} i=1…t

verifying key vk = {(f(x0
i), f(x1

i))} i=1…t

• Sign(sk, b1…bt) = xi
bi for i=1…l

• Verify(vk, b1…bl , s1…si) =accept
if f(s i) = f(xbi)i for all i=1…t

f xi
0 f xi

1

x i o x i 1 .

Security of Lamport’s One -TimeScheme
sk = x i o x i 1 .

vk

x1b1 …xtbt

m’=b’1…b’t. s.t. 𝑚! ≠ 𝑚

s1 …st

Goal: for all ppt Prob[success] <e

𝒜

𝒜

m=b1….bt

Intuition: ∃𝑗: bj’ ≠ 𝑏𝑗 , this means that there exists A that
produced sj an inverse of f(xj

b’j), which it didn’t see before,so
A violates the assumption that f is a OWF.

vk = f (x i o) f (x i 1)

𝒜

Theorem: Lamport’s method is existentially un-
forgeable under ACMA for one length t signature
Proof Assume there exists forger A which forges with probability
ε. We construct an adversary Inv to invert f with probability better
than ε/2t.
Inv (y): choose at random j← {1,...,t}; b ← {0,1}

1)choose signing key sk= (x0
i,x1

i) i=1…t & verifying key
vk = {(f(x0

i), f(x1
i))} i=1…tat random except for position j

where you put y instead of f(xj
b)

2) run A(vk).When it requests a signature on m = b1 · · · bt;
answer by signing m, unless bj = b; in which case, abort
3) if A forges signature (s1, . . . , sl) on m′=b’1 · · · b′l .
and b′j= b, then output sj , else abort

Claim: Prob (A outputs an sj=x s.t. f(x)=y) = (1/2)(1/t)e
.

Only Signed 1 message of
bounded length

How to Extend to 1 message of
unbounded length?

Currently: Size of public key vk
grows with number of bits to be

signed

Collision Resistant Hash Function (CRHF)
Let k>m
H:{0,1}k->{0,1}t is collision resistant polynomial time
hash function if for all PPT algorithms A, for all k
sufficently large:
Pr[(x, y) ← A(1k) s.t. H(x) = H(y) ∧ x≠ y] ≤ neg(k)

•Asymptotically, speak of keyed hash functions

•Do they exist?

Use Collision-Resistant Hash
Functions

• Apply a CRH to m to hash it to a smaller
string before signingas before with the one-
time signature for t size message.
– The verification and signing keys will include also a

description of CRH H
– sign H(m) rather than signing m directly.

• Security: By reduction to the security of the underlying
scheme and the CRH

• Straightforward Analysis
• first time we're proving security of a scheme based on the

security of two different cryptographic primitives

Let (Gen,Sig,Verify) be a EU-ACMA t-time signature
scheme, and H be a CRH.
Claim: (GenH,SigH,VerH) - the new signature scheme for
arbitrary length message is EU-ACMA
Proof: Let A be an adversary that forges with e prob for
size k.
Let COLL= the event that the forgery (m*,s*) generated by A is
such that H(m*)=H(m) for some previous m that the signing oracle
signed for A.
Lemma 1: Prob[COLL] < neg(n)
Assume not. Construct a collision-finder C for H. On input H, C
chooses both signing sk and verification keys vk and runs A on vk
Event COLL immediately corresponds to a collision in h.
Lemma 2: Prob[A' forges | not COLL] < neg(n).
Assume not . Reduce to the EU-ACMA security of underlying
scheme (Gen,Sig,Ver).

Analysis

Conditions Under which CRHF exist
Example (DLP). Let p be a prime, g generator

– Let H(x)=gx’hb mod p, for x=x’|b where x <p-1
– H compresses by 1 bit
– Collisions x=x’|b1 y=y’|b2 for H can be used to compute the discrete-log

DLOGg (h) mod p
1) if b1=b2 then x’=y’ (since gx’ = gy’ & g generator) so must be that b1≠b2
and thus gx’hb1 = gy’hb2 mod p⇒ (Say b=0) gx’-y’ = h mod p and we
solved DLP for h.

Better compression: Let H(x)=gx’hx’’ mod p, for x=x’|x’’ for large q|(p-1)
from 2log q to log (p-1)

Example (Factoring): derive from claw-free example
More generally:

(1) if claw-free permutations exist (no trapdoor), or
(2) if CPA-secure encryption exist with homomorphic addition

[see web site]

21

Todays Outline
• Constructionof EU-ACMA from ANY one-way function (no trapdoors)

ü One-time signatures from OWFs

• Bounded-length messages

• Unbounded length messages: |vk|< |m|

2. From one-time signatures to multi-signatures: Stateful

signatures

3. Stateless signatures

• Many Flavors of Signatures

• Incremental Signatures

• Blind Signatures and Electronic Cash

Group Signatures

From one-signatures to many-signatures
Idea: When signing a new message mi

• generate also a new pair (ski,vki) of (one-time) public and
private keys

• sign the pair (mi,vki) instead of just signing mi. (Note!: can
sign |vk|+|m| bits)

• signature of mi includes all previous signed vki’s leading to
the vk0 in public-key

Size: The signature grows with number of previous signatures.
Complexity of verification algorithm: need to verify all the
one-time signatures of previous vki’s
Stateful: signer needs to maintain local (secret) state from one
signature generation to the next.

Putting it all together:
Signing many messages securely from any

secure one message signature scheme
Let H be a collision resistant hash function (CRH) to t bits

Key Chain Method: start with (G,S,V) that can sign t-bits and
let (sk0,vk0) be the signing, verifying key pair. Counter i=1

To sign message mi ,
– choose newi=(ski, vki)
– Hash hi = H(vki) and let si= S(sk i-1,hi)

s’=S(ski-1, mi)
Chaini = chain i-1 || vki||hi||si

– Output (i,chaini, m,s’)
• To verify (i, chaini, m, s)

Verify that V(vkj-1,hj, sj) =accept & hj= H(vkj) (for all j=i..0)
Verify that V(vk i-1,m,s) =accept
Verify that vk0 is in the public-key

Proof of Security
Forgery either means

1) find forgery for the original one-time
scheme (G,S,V) since each instantiation of
(vk,sk) of (G,S,V) is used to sign exactly
one t-bit message, or

2) could find collisions, i.e a new (vk’, sk’) s.t.
H (vk’)=H(vki) for a previous signatures of
hi = H(vki).

Final step: Replace CRHF by
Universal One Way Hash Function

• A universal one-way hash functions (UOWHFs):
– adversary cannot choose both x and y s.t. H(x)=H(y)
– instead, the adversary is given a random x as

challenge and must find y such that H(x) = H(y).
– Adversary’s job harder than for CRH, meaning that

UOWHFs ⇒CRH but CRH may not ⇒ UOWHF (i.e
UOWHF weaker requirement).

• UOWHFs can replace CRH in the signature scheme
construction. Revisit the proof and verify this.

• OWF ⇒ UOWHF (Rompel: One-Way Functions are
Necessary and Sufficient for Secure Signatures, STOC 1990

Problem 1:
Size of signatures grows
linearly with the history

Signatures which do not grow Linearly
with History: Tree solution

• Arrange (sk,vk) pairs in a virtual tree so that
(sk0,vk0) is in the root, (ski,vki) are in an internal
node specified by path i,

• Instead of a `chain’ of previously authenticated
(ski,vki) include in a new signature a `path’ from
root to leaf of authenticated pairs

• Now for T messages ever to be signed, path-size
is logT for each message

17

A Stateful Scheme
• Let Gen,Sign, Vrfy be a one-time signature scheme for

signing “sufficiently long” messages , say size n

• The signer’s state is binary tree with 2𝑛 leaves
• Each node 𝑤 has a left child and a right child

• The tree is of exponential size but is never fully constructed

11

vk
0

vk
01

vk
00

vk
000

vk
010

vk
011

vk
001

A Stateful Scheme
• Let Gen,Sign, Vrfy be a one-time signature scheme for

signing “sufficiently long” messages ,

• The signer’s state is binary tree with 2𝑛 leaves
• Each node 𝑤 has a left child and a right child

• vk’s are generated only if not previously generated

• Signature of ith message consists of path of vk’s and their
signatures + signature of ith message

vk
0

vk
01

vk
00

vk
000

vk
010

vk
011

vk
001

A Stateful Scheme
• Let Gen,Sign, Vrfy be a one-time signature scheme for

signing “sufficiently long” messages , say size n

• The signer’s state is binary tree with 2𝑛 leaves
• Each node 𝑤 has a left child and a right child

• vk’s are generated only if not previously generated

• Signature of ith message consists of path of vk’s and their
signatures + signature of ith message

• Verify entire path upto vk0 and check that its in the public key

vk
0

vk
01

vk
00

vk
000

vk
010

vk
011

vk
001

Logarithmically Growing!
Now the state, the signature size, and the
work for signing and verifying messages
depend logarithmically on the number of
signatures

Can we eliminate the state alltogether?
• This would make the scheme simpler to run,

will allow distributed signing,
• Will make each signature independent of the

activity in the rest of the system.

Problem 2:
Randomized and Stateless?

• Idea: instead of remembering past choices
we'll use a PRF to make the same choices
again and again whenever presented with the
same message prefix.

• Use pseudo-random functions for choosing
new keys to sign mi, i.e. f(mi) = randomness to
choose (vki, ski)

• Signer uses m’s value to find its place in the
tree, rather than store i

• Signer re-computes path as necessary

Putting it together: details
• The signing key will have also a key k for a

PRF F.
• To sign message m, use randomness

r=F_k(m) and re-do the tree from scratch

• Correctness: clear.
• Unforgeability: Assume for contradiction
that the new scheme is forgeable, and construct
a distinguisher between prf F and a random
function.

Summary of Digital Signature Paradigms

• Diffie Hellman Trapdoor paradigms (insecure
against CMA attack)

• Hash and Sign (oracle based)
• One Time Signature to Many via chain/tree

based signatures (secure under OWF against
CMA but inefficient)

• Remaining Goal: “Efficient” (signatures size
don’t grow with history) and EU-ACMA

Cramer-Shoup Digital Signature Scheme

Strong RSA problem:
Given n and y ÎZn

* find any x and e such
that y = xe mod n.
Strong RSA assumption:
" PPT algorithms A,
Prob(A(n,y) = (x,e) s.t. y=xe mod n) < neg(k)
(taken over n=pq and x ÎZn

*)

Note: Possibly easier than the classical RSA
question, as e is not fixed in advance.

Cramer Shoup Digital Signatures

• Key Generation: Let vk=(N, x, h, e ,H) and sk={p,q}, where
N=pq, x,h ÎZn

* , gcd(e,f(N))=1, H collision resistant hash function

• Sign ({p,q}, m):
– Choose random r in Zn*.
– Let (y’)e = x h H(r) mod N. Compute y’.
– Let ye’ = r h H(m) mod N. Compute y and e’.
– Output signature s = (y,y’,e’)

• Verify((N, x,h, e’,H), m, s):
– Let s= (y,y’,e’)
– Check that (y’)e = x h H(r) mod N.
– Check that ye ‘ = r h H(m) mod N
– If all checks succeed accept, else reject

Security of Cramer-Shoup Signatures

Theorem: Under Strong-RSA Assumption,
the Cramer-Shoup digital signature method
is existentially unforgeable under chosen
message attack.

Efficiency Improvements
• Incremental Signature Schemes: Signatures which

can be quickly updated, with update work
proportional to the amount of modifications document
underwent since last time signed.

• On Line/Off Line: Major efficiency can be gained if
one is careful to do whatever computation is possible
before knowing which message exactly will need to
be signed

• Batch Signing/Batch Verification:
it is possible to verify whether many signatures
are valid in a more efficient way that
verifying the validity of each one individually .

Incremental Signatures
• Start with

– (G,S,V) for fixed size B messages which produce
signature of size k

– a collision resistant hash H:{0,1}2k->{0,1}k

• For longer messages M=B1…Bn
– A signature is the contents of a balanced search

tree:
• Leafs contain si=S(sk,Bi) for message blocks
• Internal nodes, parent to s1,s2, contains
S(sk,H(s1|s2))

– To verify must verify signatures from root down to
all leafs

Can Edit Incremental Signatures
• Start with

– (G,S,V) for fixed size B messages which produce
signature of size k

– a collision resistant hash H:{0,1}2k->{0,1}k

• To modify the signature of M=B1…Bn
by replacing block Bj by block Bj’:
– go down the path to leaf where Bj is stored &

store new block Bj’,
– updates signatures on internal nodes on path

from modified leaf upward to root
– cost of update: O(log n * (cost of single block

signature +cost of evaluating H)

Incremental Signatures

• Can support cut and pastes, or whatever the
balanced tree structure supports

• Structure of tree can reveal history of updates
.. is this a problem?

• Yes, can fix and come up with a memoryless
2-3 tree (see web site).

Variants on Digital Signatures

• Blind Signatures
• Group Signatures
• Undeniable Signatures

Blind Signatures

Introduced by Chaum, allow A to get a
message m signed by Bob, without B knowing
which m he signed

Why?
Ex1: Suppose Bob is notary public, Alice
wants him to notarize a document. Bob does
not need to know what document says,

only he notarized it at a certain time.

Ex2: Untraceable Checks (electronic cash)

Blind Signatures: How?

Blind Signatures Using RSA function
User B has RSA public Key (n,e) and secret key d

A chooses random r in Zn* r is a `blinder’
and asks B to sign M=mre mod n

B returns y=Md=mdr mod n

Now A sets the signature of m = y/r mod n

Using Blind Signatures: E-cash

Alice wants a virtual $100 note.
– Alice goes to the bank and gets Banks signature on a $100

note.
– Problem1: Bank can trace check back to Alice
– Solution: Bank signs check m via a blind signature.
– Problem2: Alice tricks the bank into signing a check for more

than $100
– Solution2:

• Alice prepares 100 versions of check m1,...,m100 and gives
the Bank yi=ri

emi mod n for randomly chosen ri in Zn*
• Bank challenges Alice to reveal all ri’s 1<i<100 except for

one r.
• If all checks revealed are ok, Bank signs the remaining un-

opened one, and
• Alice calculates md=r-1(rem)d mod n.

Security Concerns

• Can such a scheme be made secure
against ACMA ?

• Not quite, but can induce a limit on
the number of new signatures that
can be created: schemes where
cannot generate more valid (m,sig)
pairs than given by Bank.

E-cash: Beyond Signatures

• How about Double Spending?

• E-cash scheme usually has 3
components: bank, merchant, and
consumer

• There are protocols that are run
between bank, merchant and
consumer

E-cash Concept
Merchant

Consumer

Bank

1

2

3

4

5

1. Consumer buys e-cash from Bank
2. Bank sends e-cash to consumer
3. Consumer sends e-cash to merchant
4. Merchant checks with Bank that e-cash

is not invalid
5. Bank verifies that e-cash has not been

Used before
6. Parties complete transaction:
e.g., merchant

present e-cash to issuing back for deposit
once goods or services are delivered

Consumer still has (invalid) e-cash

Group Signatures [D,DF]

An digital signature where:
• Secret key is shared among trustees,
• Trustees can produce valid signatures only if sufficient

number cooperates
• Faulty trustees can’t prevent signature

• Challenge: Size of public key and size of signatures should
not be proportional to the number of group members

t-Threshold Signatures

Signeri = Certification
Authority

m = Alice’s public-key

Signature Scheme
with n signers:
• where each signer has a
share si of key s .
• < t signers cooperate

can’t sign
•>t honest signers can
produce valid signatures

K2

K1

mKe

Signers

Will see how to do this once we learn about secret sharing

Undeniable Signatures
Undeniable signatures are a special form of
signatures which require the cooperation of the
signer in order to verify the validity of a signature.
If the legal signer refuses to verify, he must be able
prove that the signature is a fraud.

An undeniable signature consists of:
Key-Generation Algorithm,
Signing Algorithm,
interactive verification protocol,
disavowal protocol.

Usage for Undeniable Signatures
Ex1: Customer C wants to gain access to a secure
area controlled by the bank B (e.g. deposit box).

– Solution: B requires a signature from C on a challenge
document (with date and time) before access is granted.

– The use of undeniable signatures prevents B from using
the signature as evidence that C was at the bank (since C
must be present in verification).

Ex2: Software Pirating.
The vendor signs the software with an undeniable
signature, which must be verified before the
software can be installed on a new machine.

Signatures vs. Identification
• In many applications (e.g. password, access control

etc) we only want to verify that the entity (e.g.
person) claiming to be A is indeed A, rather than
authenticating documents

• Given a signature scheme this identification problem
is easily solved as follows

• However, the identification problem may be easier
than signing and may be solved with more efficient
interactive solutions rather than requiring
signatures.

A’ “I am A”
Challenge m
A’s Signature of m If signature of m is

valid, then A’ is
identified as A

