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Signatures vs. MACs
Signatures

• 𝑛 users require only 𝑛secret keys

• Same signature can be verified by
all users

• Publicly verifiable and transferable

• Provide non-repudiation

MACs

• 𝑛 users require ≈ n 2  secretkeys

• Privately verifiable and non-transferable

• More efficient (2-3 orders ofmagnitude  
faster)



Sign𝑚 Verify
(𝑚,𝜎)

Correctness: For every message𝑚.
Verify(vk,m,s)=accept if s e Sign(sk,m) 

Digital Signatures
Key-generation: Gen ( 1n ) outputs pair

signing key sk and verification key vk
Signing: Sign(sk,m)   outputs a  signature s 𝜎
Verification: Verify(vk,m,𝜎) outputs accept/reject (1/0)

vksk

b



Security of Signatures
• Adv  knows vk and can adaptively ask for signatures of 

messages of its choice
• Adv tries to forge a signature on a new message m

(𝑚 ,𝜎)

Scheme Π  = (Gen, Sign,Verify) is existentially unforgeable against 
an adaptive chosen message attack  (EU-ACMA) if 
∀ppt adversary         ∃neg function s.t. ∀n sufficiently large
Prob [Verify(vk,m,s)=Accept & 

m ∉ {mi asked to be signed by       }]  <neg(n) 

signsk (vk)

Run Gen(1n) to get (sk,vk)

vk

𝒜

𝒜

𝒜



Signatures vs MACS

There do not exist EU-ACAM signature schemes against
unbounded adversaries. This holds regardless of the key length.

Why?

Secure mac schemes against unbounded adversaries exist with
a key as long as the number of messages to be signed.



RSA Digital Signature Scheme 77
The first example  of a digital signature scheme
• Key Generation(1n): choose N=pq for |p| ≈ |q|=n/2 

and e,d s.t. ed=1 mod f(N)  
vk=(N,e) the public verifying key 
sk=(N,d)    the private signing key.

• Sign((N,d), m):
sig := md mod N  

• Verify ((N,e),m,sig) :
Accept iff sige mod N = m.

RSA is existentially forgeable under Key Only attack.
RSA is universally forgeable under Chosen Message Attack

Can not securely sign specialized message sets, e.g. S={0,1}



Hash-then-Sign Paradigm  for the Trapdoor 
Digital Signature Model(e.g.RSA)

Use a public “cryptographic” hash function H 
Let Sig(sk,m)=f-1(H(m))       ( =H(m)d mod N for RSA)

Verify(vk,m,s)= accept iff f(sig)=H(m) 

Correctness certainly hold. What about unforgeability? Which 
properties need H have? Is collision resistance (CR) enough?

A: Counter to intuition, no proof of security, even if  f  is TDP 
and H is CRH. It depends on H & how H and f interact

Given TRP f, can be secure with one H & insecure with another.
Yet, popular paradigm where for H =MD5, SHA1 etc. 
• Basis for standards (e.g., PKCS#1 of RSA inc. DSS of NIST) 
• Basically assume that specific combination of F& H is secure



The Random Oracle Model
Theorem: if H is a random oracle, then Hashed RSA 
signatures is EU-ACMA under the assumption that f is 
trapdoor function (e.g. RSA assumption).
Unfortunately: H is not a random oracle but a deterministic 
function that everyone can evaluate

• No implication from "security in the random oracle 
model" to security of the actual scheme. In fact, it 
was shown that there CANNOT be a "generic” implication.
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Todays Outline
• Constructionof  EU-ACMA  from ANY one-way function (no trapdoors)

1. One-time signatures from OWFs

• Bounded-length messages 

• Unbounded length messages

2. From one-time to multi-time: Stateful signatures

3. Stateless signatures

• Many Flavors of Signatures

• Incremental Signatures

• Blind Signatures and Electronic Cash

• Group Signatures



Signing 1-bit messages from 
One-Way Functions (no trapdoors!)

Lamport
Let F be a one-way function collection

•Gen: choose fÎFn, x0,x1 ÎDomain(f), 
signing key sk = (x0,x1 ) & 
verifying key vk =(f(x0),f(x1))

•Sign((x0,x1), b): output xb

•Verify((f(x0),f( x1)), b, sig) = accept if f(sig) = f(xb)

sk = x o x 1 .

vk =
. f x0 f x1

sk

{



Extension to t-bit Messages: bigger keys

Increase the size of the 
signing key  sk= {(x0

i,x1
i )} i=1…t

verifying key vk = {( f(x0
i), f(x1

i ))} i=1…t

• Sign(sk, b1…bt) =  xi
bi for i=1…l

• Verify(vk, b1…bl , s1…si) =accept
if f(s i) = f(xbi)i for all i=1…t

f xi
0 f xi

1

x i o x i 1 .



Extension to t-bit Messages: bigger keys

Increase the size of the 
signing key  sk= {(x0

i,x1
i )} i=1…t

verifying key vk = {( f(x0
i), f(x1

i ))} i=1…t

• Sign(sk, b1…bt) =  xi
bi for i=1…l

• Verify(vk, b1…bl , s1…si) =accept
if f(s i) = f(xbi)i for all i=1…t

f  xi
0 f  xi

1

x i o x i 1 .



Security of Lamport’s One -TimeScheme
sk = x i o x i 1 .

vk

x1b1 …xtbt

m’=b’1…b’t.  s.t. 𝑚! ≠ 𝑚

s1 …st

Goal: for all ppt         Prob[      success] <e

𝒜

𝒜

m=b1….bt

Intuition:  ∃𝑗: bj’ ≠ 𝑏𝑗 , this means that there exists A that
produced sj an inverse of f(xj

b’j), which it didn’t see  before,so
A violates the assumption that f is a OWF. 

vk = f ( x i o )      f ( x i 1 )

𝒜



Theorem: Lamport’s method is existentially un-
forgeable under ACMA for one  length t signature
Proof Assume there exists forger A which forges with probability 
ε. We construct an adversary Inv to invert f with probability better 
than ε/2t.
Inv (y):  choose at random j← {1,...,t}; b ← {0,1}

1)choose signing key sk= (x0
i,x1

i ) i=1…t & verifying key
vk = {( f(x0

i), f(x1
i ))} i=1…tat random except for position j           

where you put y instead of  f(xj
b) 

2) run A(vk).When it requests a signature on m = b1 · · · bt; 
answer by signing m, unless bj = b; in which case, abort
3) if A forges signature (s1, . . . , sl) on m′=b’1 · · · b′l . 
and b′j= b,  then output sj , else abort 

Claim: Prob (A outputs an sj=x s.t. f(x)=y) = (1/2)(1/t)e
.



Only Signed 1 message of 
bounded length

How to Extend to 1 message of 
unbounded length?

Currently: Size of public key vk
grows with number of bits to be 

signed



Collision Resistant Hash Function (CRHF)
Let k>m
H:{0,1}k->{0,1}t is collision resistant polynomial time 
hash function if for all PPT algorithms A, for all k 
sufficently large:
Pr[(x, y) ← A(1k) s.t. H(x) = H(y) ∧ x≠ y] ≤ neg(k)

•Asymptotically, speak of keyed hash functions

•Do they exist?



Use Collision-Resistant Hash 
Functions

• Apply a CRH to m to hash it to a smaller 
string before signingas before with the one-
time signature for t size message. 
– The verification and signing keys will include also a 

description of CRH H
– sign H(m) rather than signing m directly.

• Security: By reduction to the security of the underlying 
scheme and the CRH

• Straightforward Analysis 
• first time we're proving security of a scheme based on the 

security of two different cryptographic primitives



Let (Gen,Sig,Verify) be a EU-ACMA t-time signature 
scheme, and H be a CRH.
Claim: (GenH,SigH,VerH) - the new signature scheme for 
arbitrary length message is EU-ACMA
Proof: Let A be an adversary that forges with e prob for 
size k.
Let COLL= the event that the forgery (m*,s*) generated by A is 
such that H(m*)=H(m) for some previous m that the signing oracle 
signed for A.
Lemma 1: Prob[COLL] < neg(n)
Assume not. Construct a collision-finder C for H. On input H, C 
chooses both signing sk and verification keys vk and runs A on vk
Event COLL immediately corresponds to a collision in h.
Lemma 2: Prob[A' forges | not COLL] < neg(n).
Assume not . Reduce to the EU-ACMA security of underlying 
scheme  (Gen,Sig,Ver).

Analysis



Conditions Under which  CRHF exist
Example (DLP). Let p be a prime, g  generator

– Let H(x)=gx’hb mod p, for x=x’|b  where x <p-1
– H compresses by 1 bit
– Collisions x=x’|b1 y=y’|b2 for H can be used to compute the discrete-log 

DLOGg (h) mod p
1) if b1=b2 then x’=y’ (since gx’ = gy’ & g generator) so must be that b1≠b2
and thus gx’hb1 = gy’hb2 mod p⇒ (Say b=0) gx’-y’ = h mod p and we 
solved DLP for h.

Better compression: Let H(x)=gx’hx’’ mod p, for x=x’|x’’ for large q|(p-1) 
from 2log q to log (p-1)

Example (Factoring): derive from claw-free example
More generally: 

(1) if claw-free permutations exist (no trapdoor), or 
(2) if CPA-secure encryption  exist with homomorphic addition 

[see web site]



21

Todays Outline
• Constructionof  EU-ACMA  from ANY one-way function (no trapdoors)

ü One-time signatures from OWFs

• Bounded-length messages 

• Unbounded length messages: |vk|< |m|

2. From one-time signatures to multi-signatures: Stateful

signatures

3. Stateless signatures

• Many Flavors of Signatures

• Incremental Signatures

• Blind Signatures and Electronic Cash

Group Signatures



From one-signatures to many-signatures
Idea: When signing a new message mi

• generate also a new pair (ski,vki) of (one-time) public and 
private keys

• sign the pair (mi,vki) instead of just signing mi. (Note!: can 
sign |vk|+|m| bits ) 

• signature of mi includes all previous signed vki’s leading to 
the vk0 in public-key

Size: The signature grows with number of previous signatures.
Complexity of verification algorithm: need to verify all the 
one-time signatures of previous vki’s
Stateful: signer needs to maintain local (secret) state from one 
signature generation to the next.



Putting it all together:
Signing many messages securely from any

secure one message signature scheme 
Let H be a collision resistant hash function (CRH) to t bits

Key Chain Method: start with (G,S,V) that can sign t-bits and 
let (sk0,vk0) be the signing, verifying key pair. Counter i=1

To sign message mi , 
– choose newi=(ski, vki)
– Hash  hi = H(vki) and let si= S(sk i-1,hi)

s’=S(ski-1, mi) 
Chaini = chain i-1 || vki||hi||si

– Output (i,chaini, m,s’)
• To verify (i, chaini, m, s) 

Verify that V(vkj-1,hj, sj) =accept &  hj= H(vkj)  (for all j=i..0) 
Verify that V(vk i-1,m,s) =accept            
Verify that vk0 is in the public-key                                                       



Proof of Security
Forgery either means 

1) find forgery for the original one-time 
scheme (G,S,V) since each instantiation of 
(vk,sk) of (G,S,V) is used to sign exactly 
one t-bit message, or

2) could find collisions, i.e a new (vk’, sk’) s.t.
H (vk’)=H(vki) for a previous signatures of 
hi = H(vki).



Final step: Replace CRHF by
Universal One Way Hash Function

• A universal one-way hash functions (UOWHFs): 
– adversary cannot choose both x and y s.t. H(x)=H(y)
– instead, the adversary is given a random x as 

challenge and must find y such that H(x) = H(y). 
– Adversary’s job harder than for CRH, meaning that 

UOWHFs ⇒CRH but CRH may not ⇒ UOWHF (i.e
UOWHF weaker requirement).

• UOWHFs can replace CRH in the signature scheme
construction. Revisit the proof and verify this.

• OWF ⇒ UOWHF  (Rompel: One-Way Functions are 
Necessary and Sufficient for Secure Signatures, STOC 1990



Problem 1: 
Size of signatures grows 
linearly with the history



Signatures which do not grow Linearly 
with History: Tree solution

• Arrange (sk,vk) pairs in a virtual tree so that 
(sk0,vk0) is in the root, (ski,vki) are in an internal 
node specified by path i, 

• Instead of a `chain’ of previously authenticated 
(ski,vki) include in a new signature a `path’ from 
root to leaf of authenticated pairs

• Now for T messages ever to be signed, path-size 
is logT for each message
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A Stateful Scheme
• Let Gen,Sign, Vrfy be a one-time signature scheme for 

signing “sufficiently  long” messages , say size n

• The signer’s state is binary tree with 2𝑛 leaves
• Each node 𝑤 has a left child and a right child

• The tree is of exponential size but is never fully constructed

11
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A Stateful Scheme
• Let Gen,Sign, Vrfy be a one-time signature scheme for 

signing “sufficiently  long” messages , 

• The signer’s state is binary tree with 2𝑛 leaves
• Each node 𝑤 has a left child and a right child

• vk’s are  generated only if not previously generated

• Signature of ith message consists of path of vk’s and their
signatures + signature of ith message
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A Stateful Scheme
• Let Gen,Sign, Vrfy be a one-time signature scheme for 

signing “sufficiently  long” messages , say size n

• The signer’s state is binary tree with 2𝑛 leaves
• Each node 𝑤 has a left child and a right child

• vk’s are  generated only if not previously generated

• Signature of ith message consists of path of  vk’s and their 
signatures + signature of ith message

• Verify entire path upto vk0 and check that its in the public key

vk
0

vk
01

vk
00

vk
000

vk
010

vk
011

vk
001



Logarithmically Growing!
Now the state, the signature size, and the 
work for signing and verifying messages 
depend logarithmically on the number of 
signatures

Can we eliminate the state alltogether? 
• This would make the scheme simpler to run, 

will allow distributed signing, 
• Will make each signature independent of the 

activity in the rest of the system. 



Problem 2: 
Randomized and Stateless?

• Idea: instead of remembering past choices 
we'll use a PRF to make the same choices 
again and again whenever presented with the 
same message prefix. 

• Use pseudo-random functions for choosing 
new keys to sign mi, i.e. f(mi) = randomness to 
choose (vki, ski)

• Signer uses m’s value to find its place in the 
tree, rather than store i

• Signer re-computes path as necessary



Putting it together: details
• The signing key will have also a key k for a 

PRF F.
• To sign message m, use randomness 

r=F_k(m) and re-do the tree from scratch 

• Correctness: clear.
• Unforgeability: Assume for contradiction 
that the new scheme is forgeable, and construct 
a distinguisher between prf F and a random 
function.



Summary of Digital Signature Paradigms

• Diffie Hellman Trapdoor paradigms (insecure 
against CMA attack)

• Hash and Sign (oracle based)
• One Time Signature to Many via chain/tree 

based signatures (secure under OWF against 
CMA but inefficient)

• Remaining Goal: “Efficient” (signatures size 
don’t grow with history) and EU-ACMA



Cramer-Shoup Digital Signature Scheme

Strong RSA problem:
Given n and y ÎZn

* find any x and e such 
that y = xe mod n.
Strong RSA assumption:
" PPT algorithms A, 
Prob(A(n,y) = (x,e) s.t. y=xe mod n) < neg(k)
(taken over n=pq and x ÎZn

*)

Note: Possibly easier than the classical RSA 
question, as e is not fixed in advance. 



Cramer Shoup Digital Signatures

• Key Generation: Let vk=(N, x, h, e ,H)  and sk={p,q}, where 
N=pq, x,h ÎZn

* , gcd(e,f(N))=1,  H collision resistant hash function

• Sign ({p,q}, m): 
– Choose random r in Zn*.
– Let (y’)e  = x h H(r) mod N.  Compute  y’.
– Let ye’ = r h H(m) mod N.   Compute  y and e’.
– Output signature s = (y,y’,e’)

• Verify( (N, x,h, e’,H), m, s):
– Let  s= (y,y’,e’)
– Check that (y’)e  = x h H(r) mod N. 
– Check that  ye ‘ = r h H(m) mod N
– If all checks succeed accept, else reject



Security of Cramer-Shoup Signatures

Theorem: Under Strong-RSA Assumption, 
the Cramer-Shoup digital signature method 
is existentially unforgeable under chosen 
message attack.



Efficiency Improvements
• Incremental Signature Schemes: Signatures which 

can be quickly updated, with update work 
proportional to the amount of modifications document 
underwent since  last time signed. 

• On Line/Off Line: Major efficiency can be gained if 
one is careful to do whatever computation is possible 
before knowing which message exactly will need to 
be signed

• Batch Signing/Batch Verification: 
it is possible to verify whether many signatures
are valid in a more efficient way that
verifying the validity  of each one individually . 



Incremental Signatures
• Start with 

– (G,S,V) for fixed size B messages  which produce 
signature of size k

– a collision resistant hash H:{0,1}2k->{0,1}k

• For longer messages M=B1…Bn
– A signature is the contents of a balanced search 

tree:
• Leafs contain si=S(sk,Bi) for message blocks
• Internal nodes, parent to s1,s2, contains 
S(sk,H(s1|s2))

– To verify must verify signatures from root down to 
all leafs



Can Edit Incremental Signatures
• Start with 

– (G,S,V) for fixed size B messages  which produce 
signature of size k

– a collision resistant hash H:{0,1}2k->{0,1}k

• To modify the signature of M=B1…Bn
by replacing block Bj by block Bj’:
– go down the path to leaf where Bj is stored & 

store new block Bj’, 
– updates signatures on internal nodes on path 

from modified leaf upward to root
– cost of update: O(log n * (cost of single block 

signature +cost of evaluating H) 



Incremental Signatures

• Can support cut and pastes, or whatever the 
balanced tree structure supports

• Structure of tree can reveal history of updates 
.. is this a problem?

• Yes, can fix and come up with a memoryless 
2-3 tree (see web site).





Variants on Digital Signatures

• Blind Signatures
• Group Signatures 
• Undeniable Signatures



Blind Signatures

Introduced by Chaum, allow A to get a 
message m signed by Bob, without B knowing 
which m he signed

Why?
Ex1: Suppose Bob is notary public, Alice 
wants him to notarize a document. Bob does 
not need to know what document says, 

only he notarized it at a certain time. 

Ex2: Untraceable Checks (electronic cash)



Blind Signatures:   How?

Blind Signatures Using RSA function 
User B has  RSA public Key (n,e) and secret key d

A chooses random r in Zn*                  r is a `blinder’
and asks B to sign M=mre mod n 

B returns y=Md=mdr mod n

Now A sets the signature of m = y/r mod n



Using Blind Signatures: E-cash

Alice wants a virtual $100 note. 
– Alice goes to the bank and gets Banks signature on a $100 

note.
– Problem1: Bank can trace check back to Alice
– Solution: Bank signs check m via a blind signature.
– Problem2: Alice tricks the bank into signing a check for more 

than $100
– Solution2:

• Alice prepares 100 versions of check m1,...,m100 and gives 
the  Bank yi=ri

emi mod n for randomly chosen ri in Zn*
• Bank challenges Alice to reveal all ri’s  1<i<100 except for 

one r. 
• If all checks revealed are ok, Bank signs the remaining un-

opened one, and 
• Alice calculates md=r-1(rem)d mod n.



Security Concerns

• Can such a scheme be made secure 
against ACMA ?

• Not quite, but can induce a limit on 
the number of new signatures that 
can be created: schemes where 
cannot generate more valid (m,sig) 
pairs than given by Bank.



E-cash: Beyond Signatures

• How about Double Spending?

• E-cash scheme usually has 3 
components: bank, merchant, and 
consumer

• There are protocols that are run 
between bank, merchant and 
consumer



E-cash Concept
Merchant

Consumer

Bank

1

2

3

4

5

1. Consumer buys e-cash from Bank
2. Bank sends e-cash  to consumer 
3. Consumer sends e-cash to merchant
4. Merchant checks with Bank that e-cash

is not invalid
5. Bank verifies that e-cash has not been 

Used before
6. Parties complete transaction: 
e.g., merchant

present e-cash to issuing back for deposit
once goods or services are delivered

Consumer still has (invalid) e-cash



Group Signatures [D,DF]

An digital signature where:
• Secret key is shared among trustees,
• Trustees can produce valid signatures only if sufficient 

number cooperates
• Faulty trustees can’t prevent signature

• Challenge: Size of public key and size of signatures should 
not be proportional to the number of group members



t-Threshold Signatures

Signeri = Certification  
Authority

m         =   Alice’s public-key

Signature Scheme 
with n signers:
• where each signer has a 
share si  of key s .
• < t signers cooperate  

can’t sign
•>t honest signers can
produce valid signatures

K2

K1

mKe

Signers

Will see how to do this once we learn about secret sharing



Undeniable Signatures
Undeniable signatures are a special form of 
signatures which require the cooperation of the 
signer in order to verify the validity of a signature.
If the legal signer refuses to verify, he must be able 
prove that the signature is a fraud.

An undeniable signature consists of:
Key-Generation Algorithm, 
Signing Algorithm,
interactive verification protocol,
disavowal protocol. 



Usage for Undeniable Signatures
Ex1: Customer C wants to gain access to a secure 
area controlled by the bank B (e.g. deposit box).

– Solution: B requires a signature from C on a challenge 
document (with date and time) before access is granted. 

– The use of undeniable  signatures prevents B from using 
the signature as evidence that C was at the bank (since C 
must be present in verification).

Ex2: Software Pirating. 
The vendor signs the software with an undeniable 
signature, which must be verified before the 
software can be installed on a new machine.



Signatures vs. Identification
• In many applications (e.g. password, access control 

etc) we only want to verify  that the entity (e.g. 
person) claiming to be A is indeed A, rather than 
authenticating documents

• Given a signature scheme this identification problem 
is easily solved as follows 

• However, the identification problem may be easier 
than signing and may be solved with more efficient 
interactive solutions rather than requiring 
signatures. 

A’ “I am A”
Challenge m
A’s Signature of m If signature of m is 

valid, then A’ is 
identified as A


