
Berkeley CS276 & MIT 6.875

Merkle Trees and Transparency Logs

Lecturer: Raluca Ada Popa
Oct 12, 2020

Announcements

• Starting to record
• This lecture:

– Applied: practice digital signatures and CRH in a real
cryptographic system

– Focus is on systems building with crypto, so less time
for formalism

– Will post lecture after class due to Q&A

Recall: Collision Resistant Hash
Function (CRH)

Let 𝐻: 0,1 ∗ → 0,1 " is a collision resistant hash
function if for all PPT algorithms 𝐴, for all 𝑘
sufficiently large:

Pr 𝑥, 𝑦 ← 𝐴 1# 𝑠. 𝑡. 𝐻 𝑥 = 𝐻 𝑦 ∧ 𝑥 ≠ 𝑦
≤ 𝑛𝑒𝑔𝑙(𝑘)

Merkle trees

• A very useful tool invented by Ralph Merkle in
1979

• Used in many theoretical constructions and
practical crypto systems
– Bitcoin
– Certificate & Key Transparency
– secure storage

Merkle Hash Tree
A hash tree over a set of data values D0, D1,…, DN

Each node is the hash of its two children:
𝐻!" = ℎ𝑎𝑠ℎ(𝐻!#, 𝐻$"), where ℎ𝑎𝑠ℎ is CRH

𝐷0 𝐷2 𝐷3𝐷1 𝐷4 𝐷6 𝐷7𝐷5

𝐻03 𝐻47

𝐻01 𝐻23 𝐻45 𝐻67

𝐻!" = 𝐻#$$%
Merkle root

(Assume each 𝐷! has a data tag and padded to a fixed length)

Merkle Hash Trees
Claim: If ℎ𝑎𝑠ℎ is a CRH then 𝐻"##$ is a CRH.
Proof: ?

𝐷0 𝐷2 𝐷3𝐷1 𝐷4 𝐷6 𝐷7𝐷5

𝐻03 𝐻47

𝐻01 𝐻23 𝐻45 𝐻67

𝐻!" = 𝐻#$$%
Merkle root

Merkle Hash Trees
Claim: If ℎ𝑎𝑠ℎ is a CRH then 𝐻"##$ is a CRH.
Proof: Assume 𝐻%&&' is not a CRH. Let’s show that ℎ𝑎𝑠ℎ is
not a CRH (i.e., we produce a collision in poly time) to
achieve contradiction.
∃ 𝑃𝑃𝑇 𝐴 that can find a collision (𝐷!, … , 𝐷() and (𝐷′!, … , 𝐷)*)

𝐷0 𝐷2 𝐷3𝐷1

𝐻#$$%

𝐻01 𝐻23

𝐷′0 𝐷2 𝐷3𝐷1

𝐻#$$%

𝐻′01 𝐻23

𝐻"#, 𝐻$% and (𝐻"#& , 𝐻$%) are a collision

Authentication path
Assume a verifier knows 𝐻"##$.
How can Alice prove to the verifier that 𝐷) was
among the data items that produces 𝐻"##$?

𝐻𝑟𝑜𝑜𝑡

𝐷0 𝐷2 𝐷3𝐷1 𝐷4 𝐷6 𝐷7𝐷5

𝐻03 𝐻47

𝐻01 𝐻23 𝐻45 𝐻67

Authentication path
Assume a verifier knows 𝐻"##$.
How can it authenticate 𝐷)?
Alice provides authentication path: siblings of nodes
from 𝐷) to root

𝐻𝑟𝑜𝑜𝑡

𝐷0 𝐷2 𝐷3𝐷1 𝐷4 𝐷6 𝐷7𝐷5

𝐻03 𝐻47

𝐻01 𝐻23 𝐻45 𝐻67

Authentication path
Assume a verifier knows 𝐻"##$.
Alice provides authentication path: siblings of nodes
from 𝐷) to root.
Why can’t Alice lie?

𝐻𝑟𝑜𝑜𝑡

𝐷0 𝐷2 𝐷3𝐷1 𝐷4 𝐷6 𝐷7𝐷5

𝐻03 𝐻47

𝐻01 𝐻23 𝐻45 𝐻67

ℎ𝑎𝑠ℎ is CRH

Asymptotics

𝑛 # of data items 𝑚 hash size
Size of Merkle tree:
Size of Merkle root:
Size of authentication path:

𝑂(𝑛)

𝑂(𝑚)

𝑂(𝑚 log 𝑛)

Warmup app: Secure storage

Alice has files 𝐹*…𝐹+, stores them on the cloud. When
she retrieves file 𝑖, she wants to verify that an
untrusted cloud did not modify it.

𝐹*…𝐹+

How can she perform this
check sublinear in 𝑛?

Secure storage

𝑯𝒓𝒐𝒐𝒕
𝐹! and
authentication
path for it

𝐹*…𝐹+

Alice has files 𝐹*…𝐹+, stores them on the cloud. When
she retrieves file 𝑖 she wants to verify that an untrusted
cloud did not modify it.

Transparency logs

Web certificates

A website like Google obtains a certificate
of the form

𝑠𝑖𝑔𝑛&' 𝑃𝐾()*+ , “𝑏𝑎𝑛𝑘. 𝑐𝑜𝑚”, 𝑒𝑥𝑝𝑖𝑟𝑦
where CA is a certificate authority trusted
by user browsers

CAs have often been compromised

Why is CA compromise
bad?
User encrypts https traffic
with attacker key

Core problem

When seeing a certificate for google.com, we
fundamentally cannot tell if a certificate is corrupted or
not

A huge problem since https’s creation, many attempts
at solutions have been unsatisfactory

Only in recent years a satisfactory solution emerged

Certificate Transparency (CT)

• “Sunlight is the best disinfectant.”
— Supreme Court Justice Louis Brandeis

• Ensure transparency: everyone sees the same
certificates
– Both the user and the cert owner

• Ben Laurie, Adam Langley and Emilia Kasper
proposed CT in IETF Internet Draft in 2012 under
the code-name "Sunlight".

https://en.wikipedia.org/wiki/IETF
https://en.wikipedia.org/wiki/Internet_Draft

Adoption

- As of May 2020, CT has publicly logged over
9.2 billion certificates.
- Google Chrome requires web certificates
issued after April 30,2018 to appear in a CT log.

Parties
• Log server: stores certs in a log

– Untrusted (except for DoS)
• Monitors: owners of certificates

– Trusted to monitor its cert
• Auditors: audit the log is append-only

– Anyone can be an auditor
– Untrusted except that at least one auditor should be

honest and reachable
• User browsers: check that certs appear in the log

– Trusted to check each cert it receives

No central point of attack for all certificates

log server

log grows

publish signed
Merkle root

every epoch

epoch 1 epoch 2 …

user browser

check cert for
bank.com is
in log

bank.com
monitor

check all certs for
bank.com are valid

auditors

gossip Merkle
root and check
append only

log server

log grows

publish signed
Merkle root

every epoch

epoch 1 epoch 2 …

auditors

gossip Merkle
root and check
append only

Consistency proof:
- Server proves that 𝐻*++,! is an extension

of 𝐻*++,!-#

- 𝑂(log 𝑛), for 𝑛 #epochs
[treating hash size as constant]

𝐷0 𝐷2 𝐷3𝐷1

𝐻#$$%,

𝐻23𝐻!""#$%&

(In practice, the tree
growing to the right will
not be full so there are
some extra technicalities)

log server

log grows

publish signed
Merkle root

every epoch

epoch 1 epoch 2 …

bank.com
monitor

check all certs for
bank.com are valid

- For each epoch 𝑖, request all the certs
in the epoch from the log server

- Check them against 𝐻*++,! and 𝐻*++,!-#

from the auditors
- Check that bank.com’s certs are valid

log server

log grows

publish signed
Merkle root

every epoch

epoch 1 epoch 2 …

user browser

check cert for
bank.com is
in log

Inclusion proof:
- Obtain 𝐻*++,! from auditors
- Server proves that cert is in 𝐻*++,! by supplying the

authentication path
- 𝑂(log 𝑛), for 𝑛 #epochs

Guarantee: transparency
Assuming
- ℎ𝑎𝑠ℎ is a CRH,
- signature scheme is existentially unforgeable,
- at least one auditor is honest and reachable,
- a monitor monitors its certs,
If a user receives a compromised cert,
and the user checks inclusion for the cert,
then
- either the monitor detects the compromised cert or

some party detects log server misbehavior.

Any questions on CT?

