
Lecture 14

Zero Knowledge I



From Secure Communication to 
Complex Interactions

Bob (y)Alice

Now doing much more than communicating securely:

- Complex interactions: games, computations,  proofs

- Complex Adversaries: Alice or Bob, adaptively chosen

- Complex Properties: correctness, simultaneity, fairness 

- Joined by others: auctions, bidding, elections, e-commerce

(x)



a

b

a2+b2 Prime-
Number Thm

… …

…                     
...

Classical Proofs



Proofs 

Prover Verifier
Claim  

proof 
accept/
reject



Efficiently Verifiable  Proofs (NP)

Prover Verifier

Works Hard     Polynomial Time

Claim  

proof 
accept/
reject



Efficiently Verifiable  Proofs (NP)

Prover Verifier

Works Hard     Polynomial Time

x  

w 
Iff V(x,w)=1
Then accept
x

NP = decision problems D for which there is a 
short and polynomial time verifiable proofs 
(witness)of x∈ D



Example: N is a product of 2 large 
primes

p,q

If N=pq, accept
Else reject

After interaction, Bob knows:

1) N is product of 2 primes

2) Also the factors of N



Example: y is a quadratic residue mod N
(i.e y=x2 mod N)

x

If y=x2 mod N,
Accept

Else rejectAfter interaction, Bob knows:

1) y is a quadratic residue mod

2) Square root of y



Example: G0 is isomorphic to G1

G0

3

1
2

G15
42

5

1

4

3

Isomorphism f

If isomorphism
is good, accept

Else reject



f

G0 isomorphic to G1

Is there any other way?

After interaction, Bob knows:

1) G0 is isomorphic to G1

2) Also the isomorphism



Main Idea:
Prove  that 
I could prove it
If I felt like it

Zero Knowledge Proofs



Two New Ingredients

Interactive and Probabilistic Proofs

Non-trivial interaction: rather than 
“reading” proof, verifier engages in an
non-trivial interaction with the prover.

Randomness: verifier is randomized 
(tosses coins as a primitive operation), 
and can err with some small probability 



I will  not give  you
an isomorphism, but I will prove 
to you that I could provide one. 

HOW?



I will produce a random graph H for 
which 

1: I can give you an isomorphism g0
from G0 to H 

OR
2: I can give you an isomorphism  g1
from G1 to H

Hence, there is an isomorphism s
from G0 to G1 directly 

YOU randomly choose if I should 
demonstrate my ability to do 
#1  or  #2. 

POINT IS: If I can do both, there exists an 
isomorphism from G0 to G1

Proof:
H= g 0(G0), 
H= g 1(G1), 
Thus 
G1= g1

-1(g 0(G0))
𝑆𝑒𝑡 s= g1

-1!g 0



Claims:
(1) Statement true        can answer correctly for b= 0 and 1 
(2) Statement false       probb(catch a mistake) =     1/2
(3) Zero Knowledge (to be defined)        

REPEAT K 
INDEPDENT 
TIMES.

b

If b=0: send g0
If b=1: send g0 s-1 (where s(G0)=G1)

Toss
coin b

An Interactive Proof

1-1/2k

Choose 
random g0
permutation  
of vertices  
of G0. Set 
H=g0(G0)

Graph H



Interactive Proofs[GMR85]

Statement: T

a1
q1
a2

Accepts /Rejects 

Verifier V

Probabilistic
Polynomial time 
algorithm

Prover P

(P,V) is an interactive proof system for T if

Completeness: if T is true, then V will always accept

Soundness: if T is false,  then regardless of prover P*strategy,
V will reject with overwhelming probability



Interactive Proofs for Language 
Membership [GMR85]

a1
q1
a2

Accepts /Rejects 

Verifier V

Probabilistic
Polynomial time 
algorithm

Prover P

for L if



Remarks: Interactive Proofs

Accepts 
/Rejects 

Verifier V

Probabilistic
Polynomial time 

Prover P

• P and V are a pair of interactive Algorithms, each
having private inputs and private coins
as well as a common public input.

• V additionally must run in polynomial time

• (P,V) satisfy completeness c(x) & soundness s(x) if
x∈ L, Prob((P,V)[x]= accepts)> c(x)
x∉ L, ∀P*, Prob[(P*,V)[x]=accepts]<s(x)

• Suffice to require: c(x)=2/3 and s(x)=1/3



Class IP

a1
q1
a2

Accepts /Rejects 

Verifier V

Probabilistic
Polynomial time 
algorithm

Prover P

IP = {L s.t. there exists (P,V) interactive proof system 
for L with completeness c(x)=2/3 

and soundness s(x)=1/3}

Is IP greater than NP?



Zero Knowledge Interactive Proofs

After interactive proof, V “knows”:  
• T is true (or x ∈ L)
• A view of interaction (=transcript + coins V tossed)
P gives Zero- Knowledge to V: when T  is true, 
the view gives V nothing he couldn’t have obtained on 
his own without interacting

Prover 
P 

Verifier V
Statement: T

q1
a1
q2

Accepts /Rejects T

Probabilistic
Polynomial time 
algorithm



How Do we Capture Getting 
“Nothing Extra”(when T is true)

If: the verifier’s view can be efficiently simulated 
so that `simulated views’ and `real views’ are 
indistinguishable by an observer

The observer

??

SIMULATED
VIEWS

REAL
VIEWS

v1p1v2
pkaccept/

reject

v1
p1
v2

pk

Accept/
reject



Perfect Zero Knowledge
(when T is true)

If: the verifier’s view can be efficiently simulated 
so that `Simulated views’ = `real views’

??

SIMULATED
VIEWS

REAL
VIEWS

v1p1v2
pkaccept/

reject

v1
p1
v2

pk

Ac
cept/
reject

The observer
Any Algorithm



Formal Definition:
Perfect Zero-Knowledge

For a given P and V on input x, define probability 
space View(P,V)(x)= {(q1,a1,q2,a2,…,coins of V)} (over 
coins of V and P) 

(P,V) is honest verifier perfect zero-knowledge for L if:
∃SIM a polynomial time randomized 
algorithm s.t. ∀x in L, View(P,V)(x) = SIM(x)

Will allow SIM
Expected polynomial
time



b

If b=0: send g0
If b=1: send g0 s-1 (where s(G0)=G1)

Toss
coin b

Recall: Isomorphism Example

Choose 
random g0
permutation  
of vertices  
of G0. Set 
H=g0(G0)

Graph H

View of Bob=
{(H, b, random isomorphism from Gb to H}



SIMULATOR M: 
• toss coin to 
• If coin=head:     

choose random g0
set H= g0 (G0)

• If coin=tail    
choose random g1
set H= g1 (G1)

View of Bob=
{(H, coin, random isomorphism  of Gb to H}

Zero Knowledge 

H

coin

gcoin



What if V is not honest:
Perfect Zero-Knowledge (Final def)

For a given P and V on input x, define probability 
space View(P,V)(x)= {(q1,a1,q2,a2,…,coins)} (over 
coins of V and P) 

(P,V) is honest verifier perfect zero-knowledge for L if:
∃SIM an  expected polynomial time randomized 
algorithm s.t. ∀x in L, View(P,V)(x) = SIM(x)

(P,V) is perfect zero-knowledge for L if : ∀PPT V*
∃SIM an expected polynomial time randomized  

algorithm s.t. ∀x in L, View(P,V*) (x) = SIM(x)



Prover Gives Perfect
Zero Knowledge

• If: we can efficiently simulate the view of any 
verifier s.t. `Simulated views’ = `real verifier” for 
any poly time verifier

The observer
Any Algorithm

??

=
SIM

REAL v1p1v2
pkaccept/

reject

v1
p1
v2

pk

accept/
reject



SIMULATOR SIM: 
1. toss coin

2. If coin=head:     
choose random g0 
set H= g0 (G0)
If coin=tail
choose random g1
set H= g1(G21

3. Feed H to V*=
4. If  V* outputs

coin==coin
output (H, coin, gcoin)
Else abort and 
goto 1 again.Claim: 

prob[coin=coin] = ½,
Expected [number of repetitions of SIM] = 2. 
For k repetitions, SIM expected trials = 2k

Zero Knowledge Proof that 
G1 isomorphic to G2

H

coin

if coin=coin. answer
Else abort and try again



Consider the two equations 

z= [r2 mod n]

zy=[(rx)2 mod n]

• If I gave you solutions to both, that is r and 
rx, you would be convinced that the claim 
is true but also know x 

• Instead, I will give you a solution to only 
one equation, either r or rx but you can 
choose which!

Claim: y = x2   mod N is solvable

Flip a  b=              to choose an equation

Accepts claim
only if gets
correct 
solution

mod N

Gives a solution to the equation 
requested

Choose
1<r<n at 
random

1-( 1/2 )100

Repeat 100 times



SIMULATOR SIM: 
1. toss coin

2. If coin=head:              
choose random r
set z=r2 mod n

If coin=tail

choose random r

set z=(ry-1)2 mod n

3. Feed z to V*=
4. If V*(z)  outputs coin≠coin

abort and goto 1
else for coin=head
output(H, coin, r) &
for coin=tail, 
output(H, coin, r)

Zero Knowledge Proof that 
Y=x2 mod N

z

coin

if coin ≠ coin abort
If coin=coin, send r



SIMULATOR SIM: 
1. toss coin

2. If coin=head:              
choose random r
set z=r2 mod n

If coin=tail

choose random r

set z=(ry-1)2 mod n

3. Feed z to V*=
4. If V*(z)  outputs coin≠coin

abort and goto 1
else for coin=head
output(H, coin, r) &
for coin=tail, 
output(H, coin, r)

Claim: 
prob[coin=coin] = ½,
Expected [number of repetitions of M] = 2. 
For k repetitions, M expected trials = 2k

Zero Knowledge Proof that 
Y=x2 mod N

z

coin

if coin ≠ coin abort
If coin=coin, send r



SIM: Expected Polynomial Time

• Analysis can be confusing
• Instead can change def to allow

– SIM(x)  to output ⊥ with probability at most 
1/2 and require

– View (x)= SIM(x) to be conditioned on the 
event that M(x) does not output  ⊥

– 1/2 can be relaxed to neg(x)



What Made it possible?

Randomness

– The statement to be proven has many possible proofs of 
which the prover chooses one at random.

– Each such proof is made up of exactly 2 parts:  seeing either 
part on its own gives the verifier no  knowledge; seeing both 
parts imply 100% correctness. 

– Verifier chooses at random which of the two parts of the 
proof he wants the prover to give him. The ability of the 
prover to provide either part, convinces the verifier 



Recall, being able to quickly find a root of 
random number is equivalent to being 
able to factor n.

• Let A be an algorithm which can compute one 
root of a random input x.

• Pick r at random. Let x=r2. r1 = A(x).
• With 50% chance r and r1 are different and 

you can factor n. Repeat until n is factored.

Q: How to convert the proof that y is a 
quadratic residue to proving that you 
know the factorization of n



Actually,  Alice seems to have proved 
more: that she actually “knows” the 

isomorphism  (square root)

We say that (P,V) is a proof of knowledge for LV
[or that  P on x  knows  w] if: 
∃an extractor algorithm E s.t. for all x 
EP(x) outputs w  in expected polynomial time 

EP(x): E can run P on the same randomness repeatedly
asking P different questions in multiple executions:
This is called the rewinding technique

Let V be polynomial time relation. Let (x,w) ∈ V
V defines Language LV= {x|∃𝑤 𝑠. 𝑡. 𝑉 𝑥, 𝑤 = 1}.

ZKPOK: zero knowledge proof of knowledge



Extractor     : 

1) On input H
set coin=head
Store g0

2) Rewind and 2nd time 
set coin=tail    
Store g1

3) Output g1
-1(g0)

ZKPOK that  Prover knows 
an isomorphism from G1 to G2

H

Extractor
Algorithm



ZKPOK

We say that (P,V) is a proof of knowledge for LR
[or that  P on x knows  w] if: 
∃an extractor algorithm E s.t. for all x and for all P’, 

If Prob[(P’,V)[x] = accepts] = a, Then 
EP (x) outputs  w in expected polynomial time (|x|, 1/a )

Let V be polynomial time relation. Let (x,w) ∈ V
V defines Language LV= {x|∃𝑥 𝑠. 𝑡. 𝑅 𝑥, 𝑤 = 1}.



Why did we disturb the classical 
notion of proof ?

• Preventing Identity Theft 

• Proving Properties of secrets

• Can verify statements not verifiable
efficiently with classical NP proofs

• Secure Protocols



Classicial Passwords: Identity  Theft

Alice                                  Amazon (Bob)

...

For Settings:
• Alice = Smart Card.
• Over the Net
Passwords are no good

I accept you as Alice

password



Zero Knowledge: Preventing Identity 
Theft

PROVER VERIFIER

To identify itself prover proves  that he knows a 
proof of the theorem.

Smart Card

Hard Theorem:   I know a
Square root of y mod N

Proof: zero knowledge 
proof

ATM/Main
Frame



More generally, 

PROVER VERIFIER

To identify itself Prover proves in zero-
knowledge it knows a proof of the hard 
theorem.

Smart Card
Hard Theorem

Proof

ATM/Main
Frame



Schnorr Identification

Input: g, y

R = gr mod p

c

z=r+cs mod q

Knows 
s

Let G be a a cyclic group of prime order q,
Let both prover and verifier know y in G and
Prover know s such that y=gs

4. Accept iff
gz=Ryc mod p,

Claim: (P,V) is ZKPOX for the discrete log of y

1. Choose r 
At random
In Zq

3. Let z=r+cs

2. Choose c
At random in {0,1}


