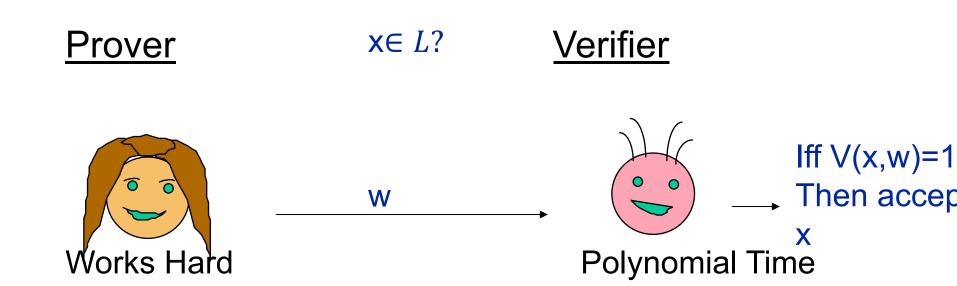
Lecture 15

Zero Knowledge li

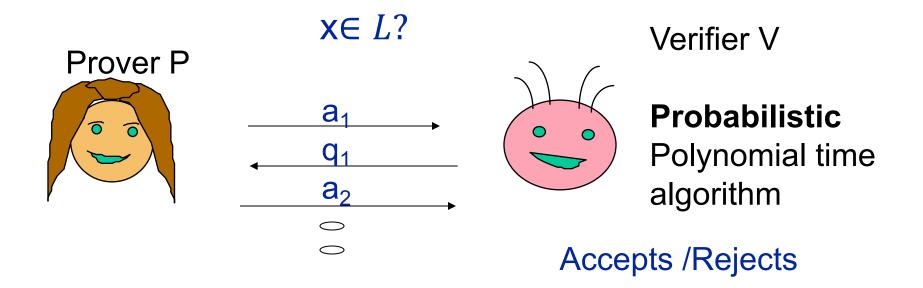
Class NP



NP={D s.t. ∃polynomial time V s.t x∈ D iff ∃w of polynomial size s.t. V(x,w)=1}

Any statement which have Efficiently Verifiable Classical Proofs

Class IP



IP = {L s.t.
$$\exists$$
 (P,V) s.t.
if $x \in L$, then prob((P,V)[x] =accepts] \geq 2/3
if $x \notin L$, then prob((P,V)[x]=accepts]<1/3

Perfect Zero-Knowledge

For a given P and V on input x, define probability space $View_{(P,V)}(x) = \{(q_1,a_1,q_2,a_2,...,coins)\}$ (over coins of V and P)

(P,V) is **honest** verifier perfect zero-knowledge for L if: \exists SIM an expected polynomial time randomized algorithm s.t. \forall x in L, \forall iew_(P,V)(x) = SIM(x)

(P,V) is perfect zero-knowledge for L if: ∀PPT V*
∃SIM an expected polynomial time randomized algorithm s.t. ∀x in L, View_(P,V*)(x) = SIM(x)

Statistical Zero-Knowledge

(P,V) is statistical zero-knowledge for L if: ∀V*

¬SIM expected polynomial time randomized, algorithm

∃SIM expected polynomial time randomized algorithm s.t.∀x ∈L

 $|\sum_{v}|prob[v\in View_{(P,V^*)}(x) - prob[v\in SIM(x)]| < neg(|x|)$

Today

Computational Zero Knowledge

 Every problem in NP has a Computational Zero Knowledge Interactive Proofs

- Is IP greater than NP?
 - Today: examples unknown to be in NP
 - Complexity class IP=PSPACE
- Applications

Computational Zero-Knowledge

(P,V) is **honest** verifier perfect zero-knowledge for L if: \exists SIM an expected polynomial time randomized algorithm s.t. \forall x in L, \forall view_(P,V)(x) \approx c SIM(x)

Relax to "indistinguishable" by any observer who runs In probabilistic polynomial time

(P,V) is computational

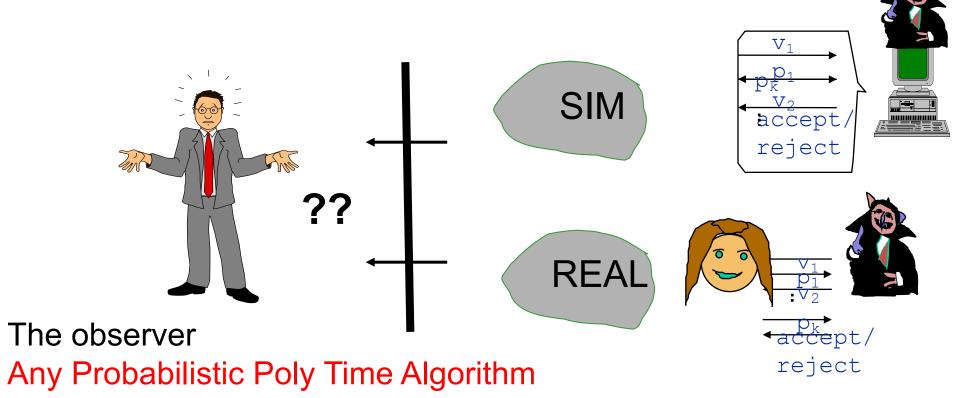
zero-knowledge for L if : ∀PPT V*

∃SIM an expected polynomial time randomized algorithm s.t. $\forall x$ in L, $\bigvee_{(P,V^*)}(x) \approx c \; SIM(x)$

Notation: View $_{V^*}(x) \approx_c SIM(x)$

Prover Gives Perfect Zero Knowledge

• If: we can efficiently simulate the view of any verifier s.t. `Simulated views' `real verifier" are indistinguishable by any PPT distinguisher



Zero Knowledge for all of NP

Theorem: If one-way permutations exist, then every problem in NP has a computational zero knowledge interactive proofs

The assumption can be relaxed to one-way functions

Building Block: One Way Functions imply Commitments schemes

 To prove the theorem, should we construct ZK proof for every NP language? Not efficient!

How can you prove something so general?

Idea: Show a zero knowledge interactive proof for Complete Problem for NP.

3COLOR = all graphs which can be colored with 3 colors s.t for for all edges (u,v) color $(u) \neq color(v)$

NP Completeness [Cook-Levin-Karp]: Given L in NP.

Instances x is polynomial time reducible to G_x

$$x \in L \longrightarrow G_x$$
 is 3 colorable Show a $x \notin L \longrightarrow G_x$ is not 3 colorable Zero-knowledge

Show a Proof for 3-coloring

Physical Intuition for Protocol

On common input graph G = (V,E) and Provers private input coloring $\pi: V \longrightarrow \{0,1,2\}$

- P picks a random permutation σ of the coloring $\underline{\pi}$ & color the graph with coloring $\alpha = \sigma(\pi)$. It hides the color $\alpha(\mathbf{u})$ of each vertex inside a locked box
- V Select a random edge (u,v)
- P opens boxes corresponding to u and v
- V accepts if and only if α(u) ≠ α(v)
 [colors are different]

Intuition for Completeness and Soundness

 Completeness: if prover uses a proper 3-coloring, the verifier will accept.

Soundness: Let k = |E|²
 If G is not 3-colroable, then for all P*
 Prob[(P*,V)(G) accepts]<1- 1/|E|

Repeat k times.

Soundness Prob[(P*,V)(G) accepts]< $(1-1/|E|)^{k.} < 1/e^{|E|}$

From Intuition to a Proof

To "digitze" the above proof, we need to implement locked boxes

Need two properties from digital locked boxes:

 Hiding: V should not be able to see the content inside a locked box

• **Binding**: *P* should not be able to modify the content inside a box once its locked

Commitment Scheme (Digital analogue of locked boxes)

- An efficient two-stage protocol between a sender S and receiver R on input (1^k) s.t.:
- commit stage: S has private input b ∈ {0, 1};
 At the end of the commit stage
 - both parties hold output com (called the commitment)
 - S holds a private output dec (called the de-commitment)
- reveal stage: S sends the pair (dec , b) to R.
 R accepts or rejects

Properties of a Commitment Scheme

Completeness: R always accepts in an honest execution of S.

```
Hiding: \forall R^*, b ≠ b' ∈ {0,1}, In commit stage {View (S(b),R*)(1<sup>k</sup>)} ≈<sub>c</sub> {View(S(b'),R*)(1<sup>k</sup>)}.
```

Binding: Let *com* be output of commit stage ∀ *S** Prob[S* can reveal two pairs (dec,b) & (dec',b')

s.t. R(com, dec, b) =

R(com, dec', b') =Accept]<neg(k)

Ex: c ∈Enc(r,b) for semantically secure PK enc. Comm=c, Dec={r,b}

Commitment Schemes: Remarks

The previous definition only guarantees hiding for one bit and one commitment

Claim: One-bit commitment implies multiple string commitment (using hybrid argument as in encryption)

Commitment Schemes

Can be implemented using interactive protocols, but we will consider non-interactive case. Both commit and reveal phases will consist of single messages

One- Way function based commitments require 2 rounds of interaction in commit stage

Construction of Bit Commitments

Construction: Let *f* be a OWP, *B* be the hard core predicate for *f*

Commit phase(b): Sender chooses r, sends Comm = f(r), $b \oplus B(r)$

Reveal phase: Sender reveals (b, r). Receiver accepts If $Comm = (f(r), b \oplus B(r))$, and rejects otherwise

Security:

Binding follows from construction since f is a permutation

Hiding follows in the same manner as IND-CPA security

ZK interactive proof for G3COL

On common input graph G = (V,E) and private prover input coloring π : $V = \{0,1,2\}$

- P \rightarrow V: Pick a random permutation σ of the coloring & color the graph with coloring $\alpha(\pi) = \sigma(\pi(v))$. Send commitments $Enc(r_v, \alpha(v)) \forall vertex v$.
- $V \rightarrow P$: Select a random edge (u,v) and send it
- P \rightarrow V: reveal colors of u and v committed in $Enc(r_u,\alpha(u))$ and $Enc(r_v,\alpha(v))$ by releasing r_u and r_v
- If $\alpha(v)$) $\neq \alpha(u)$ <u>V rejects</u>, otherwise repeat and <u>V accepts</u> after k iterations.

Honest Verifier Computational ZK

Simulator S in input G=(V,E): guess in advance the challenge (a,b) of the honest verifier V.

- Choose random edge (a,b) in G
- Choose a_{a,}a_b in {0,1,2} s.t a_a≠a_b at random and for all v ≠a,b set a_a= 2.
- Output SIM = $(Enc(r_v, a_v), (a, b), r_{a_i} r_b)$

Claim: SIM $\approx c$ View _(P,V) (G)

Computational ZK: Simulation for any Verifier V*

Simulator SIM on input G and verifier V*:

```
Fix random tape \omega for V*
For i = 1 to |E|^2:
```

- Choose random edge (a, b) and generate vector com = Enc(r_v, a_v) as in honest verifier simulation.
- Run V*(com; ω) to obtain challenge (a*, b*);
 if (a*, b*) = (a, b), then output transcript as
 in honest verifier case, transcript=Enc(r_v, a_v), (a, b), r_{a,} r_b)
 If all iterations fail, output ⊥.

Theorem: If Enc is semantically secure with respect to nonuniform adversaries, then

Claim 1: ∀G,π (a true coloring) : prob[⊥ output]=neg(|E|) Claim 2 :if ⊥ is not output, then simulated-view ≈_creal-view

Simulation for any Verifier V*

Claim 1: $\forall G,\pi$ (a true coloring): prob[\bot output]=neg(|E|)

Proof: By Hybrid argument.

Hybrid 1 (*G*):Fix random tape ω for V* For i = 1 to $|E|^2$:

- 1. Choose random edge (a, b)
- 2. Let com=vector of encrypted colored vertices s.t all vertices v are colored by $\alpha(v)$ each with randomness ra(v) [as prover does in real protocol].
- 3. Run V*(com)=(a*,b*). If (a*,b*)=(a,b), output transcript (com, (a*,b*), $r_{a_1}r_{b_2}$)
 If all iterations fail, output \bot .

Lemma1: Hybrid 1 and View $_{(P,V^*)}(G)$ are statistically close (chance of \bot is negligible)

Lemma2: Hybrid 1 and SIM(G,V*) are computationally indistinguishable if Enc is semantically secure

Examples of NP-assertions

graph G is 3-colorable

 graph G has a traveling salesman tour of cost C,

. . .

 NP=Given encrypted inputs E(x) and program PROG, y=PROG(x)....

Many, Many Applications:

- •Can prove properties about m without ever revealing m, only E(m)
- Can prove relationships between m1 and m2 never revealing either one, only E(m1) and E(m2).

For example:
$$L = \{(C_1, C_2): \text{ there exists } r_1, r_2, M$$

s.t. $C_1 = E_1(r_1, M) \text{ and } C_2 = E_2(r_2, M) \}$ is in NP

Generally: A tool to enforce honest behavior without forcing to reveal information.

General Cryptographic Importance

- Proving correctness of protocols is complex even if users are honest; If users deviate from protocol in arbitrary ways, almost impossible in a case-by-case manner, need tools and framework to prove correctness.
- Proof of proper behavior is fundamental tool for design of secure protocols
- Zero Knowledge Proofs enable automatic conversion of any protocol proven secure against honest-but-curious adversaries to protocol secure against deviating adversaries

Today

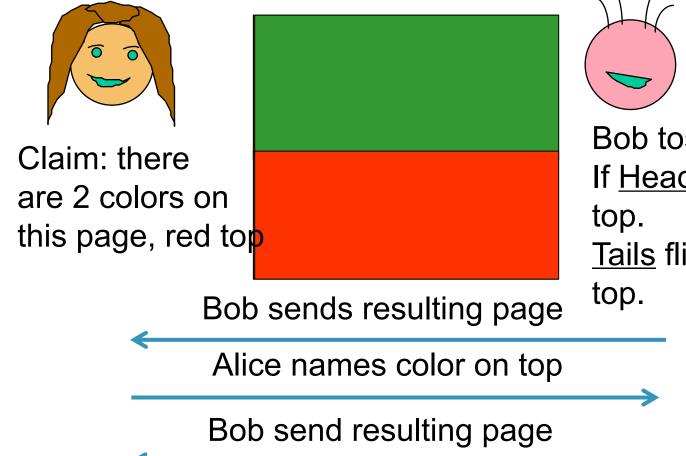
Computational Zero Knowledge

 Every problem in NP has a Computational Zero Knowledge Interactive Proofs

- Is IP greater than NP?
 - Today: examples unknown to be in NP
 - Complexity class IP=PSPACE
- Applications

Zero Knowledge Proof

Prove to color blind bob that colors exist



Alice names color on top

Bob color blind

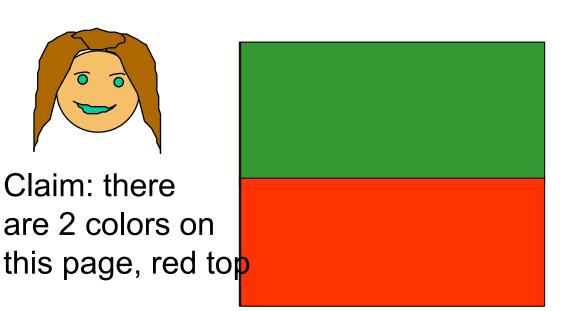
Bob tosses coin If <u>Heads</u> keep red on

Tails flip to green on

if Alice is wrong, Chance that chance₁that

Zero Knowledge Proof

Prove to color blind bob that colors exist



Bob color blind

Bob tosses coin

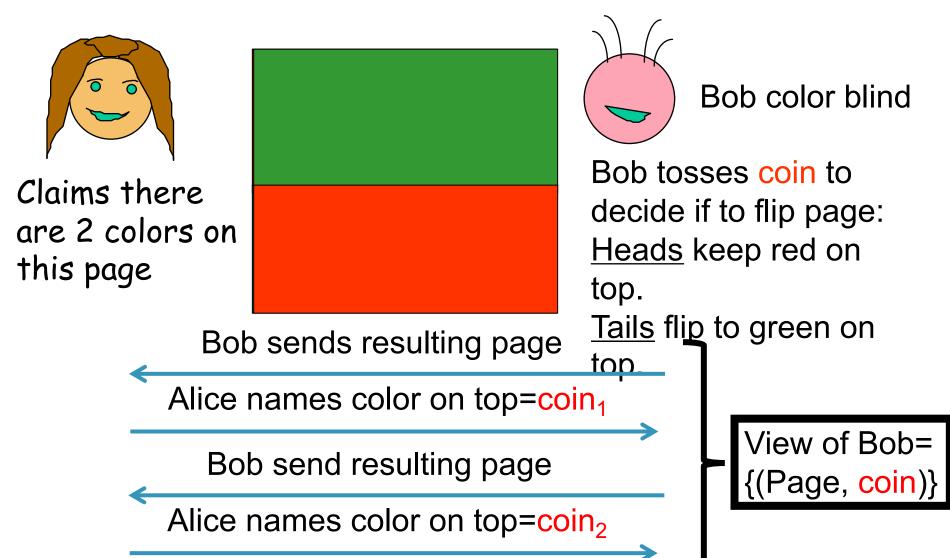
If <u>Heads</u> keep red on top.

Tails flip to green on

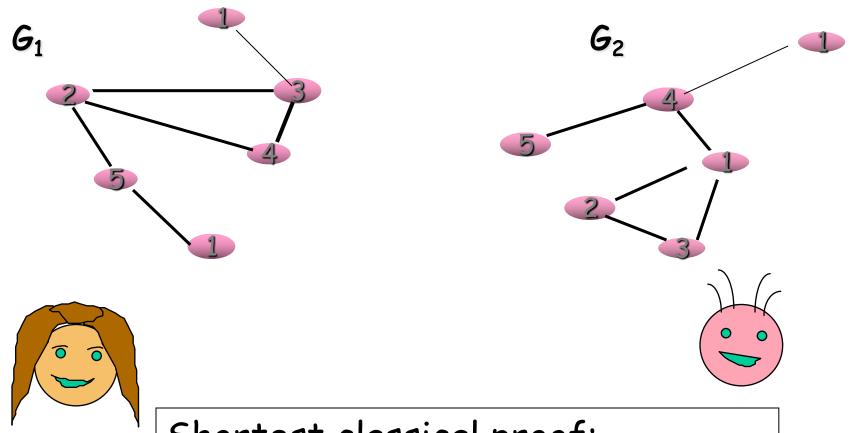
Completeness: if there are 2 colors, Bob will always accept
Soundness: if there is only 1 color, then
Probability that after 100 iterations Bob will reject > the color and the color accept.

Zero Knowledge Proof

Prove to color blind bob that colors exist



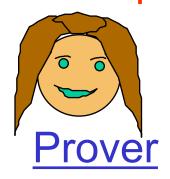
Example: G_1 is NOT isomorphic to G_2



Shortest classical proof: ≈exponential n!

But can convince with an efficient interactive proof

Graph Non-Isomorphism (Non-ISO) in IP



input: (G_0, G_1)

$$H = \gamma(G_c)$$

if H isomorphic

to
$$G_0$$

then b = 0, else
b = 1

b

Verifier

flip coin $c \in \{0,1\}$; pick random γ

Output ACCEPT

iff b = c

Completeness: if
$$(G_0 G_1) \in Non - ISO$$
, then

$$Prob[(P, V)[(G_0 G_1)]=accept]=1$$

Soundness: if $(G_0 G_1) \in ISO$,

$$Pr\acute{o}b[(P, V)[(G_0 G_1)]=accept] \leq 1/2$$

GNI Interactive Proof

completeness:

- if G₀ not isomorphic to G₁ then H is isomorphic to exactly one of (G₀, G₁)
- prover will choose correct b=c

soundness:

if G_0 is isomorphic to G_1 then prover sees same distribution on H for c = 0, c = 1 which no information on $c \Rightarrow$ Prob[prover P* outputs b=c]<=1/2

Honest Verifier Zero Knowledge

This is obviously honest verifier zero-knowledge (when the graphs are isomorphic):

--All the verifier gets is the coin c he tossed.

But, is it zero-knowledge for all verifiers?

-No. V can use P to find out if H is isomorphic to G_0 or isomorphic to G_1 .

-Instead, the Verifier proves in ZK that he knows γ s.t either $H=\gamma(G_0)$ or $H=\gamma(G_1)$

$$H = \gamma(G_c)$$

$$ZK POK$$

$$b$$

Applications

✓ Preventing Identity Theft

Secure Protocols

- Proving properties of secrets:
 - Commit + prove

Recent Uses of Zero Knowledge Proofs

2014 Zero Knowledge and Nuclear Disarmament: projects at Princeton and MIT [Barak etal]

2015 Zero Knowledge and Forensics [Naor etal]

Zero Cash, crypto currency which protects 2016 the privacy of transactions [BenSasson, Chiesa,

Tromer etall

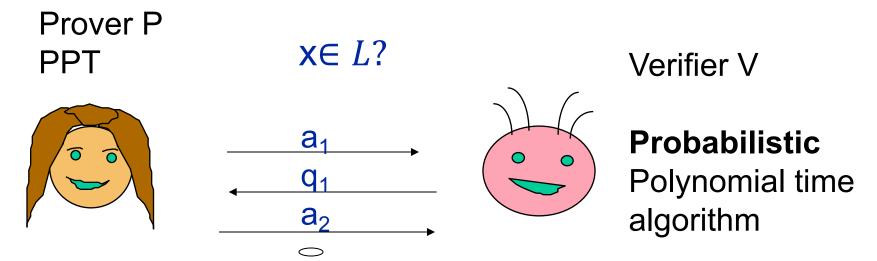
FBI

2017 Proof of "compliance" of FISA with secret

FISA Court The Public

Recent Uses of Zero Knowledge Proofs

ZK Arguments



Completeness: there exists P Accepts /Rejects if $x \in L$, then prob((P,V)[x] =accepts] $\geq 2/3$

Soundness': if x ∉ L, then for all probabilistic polynomial time provers P* Prob((P,V)[x]=accepts]<1/3

Theorem: Perfect ZK Arguments exist for all NP if one way functions exist [OWF used for soundness']

Basic Questions about Zero Knowledge(I)

- · Q1: Sequential Compositions
- · Q2: Parallel Compositions?
 - Not always (artificial counter example)
 - Known natural examples cannot be proved using black box simulation
 - A: Weaken definition of ZK to Witness Hiding [FeSh87]