
Lecture 15

Zero Knowledge Ii



Class NP

Prover Verifier

Works Hard     Polynomial Time

x∈ 𝐿?

w 
Iff V(x,w)=1
Then accept
x

NP={D s.t. ∃polynomial time V s.t
x∈ D iff ∃𝑤 of polynomial size s.t. V(x,w)=1}

Any statement which have 
Efficiently Verifiable Classical Proofs



Class IP

a1
q1
a2

Accepts /Rejects 

Verifier V

Probabilistic
Polynomial time 
algorithm

Prover P

IP = {L s.t. ∃ (P,V) s.t.
if x ∈ L, then prob((P,V)[x] =accepts] ≥2/3
if x ∉ L, then prob((P,V)[x]=accepts]<1/3

x∈ 𝐿?



Perfect Zero-Knowledge

For a given P and V on input x, define probability 
space View(P,V)(x)= {(q1,a1,q2,a2,…,coins)} (over 
coins of V and P) 

(P,V) is honest verifier perfect zero-knowledge for L if:
∃SIM an  expected polynomial time randomized 
algorithm s.t. ∀x in L, View(P,V)(x) = SIM(x)

(P,V) is perfect zero-knowledge for L if : ∀PPT V*
∃SIM an expected polynomial time randomized  

algorithm s.t. ∀x in L, View(P,V*) (x) = SIM(x)



Statistical  Zero-Knowledge

(P,V) is statistical zero-knowledge for L if : ∀V*
∃SIM expected polynomial time randomized  algorithm 

s.t.∀x ∈L
| ∑v|prob[v∈View(P,V*) (x) – prob[v∈SIM(x)]| < neg(|x|)



Today
• Computational Zero Knowledge

• Every problem in NP has a  
Computational Zero Knowledge 
Interactive Proofs

• Is IP greater than NP? 
– Today: examples unknown to be in NP
– Complexity class IP=PSPACE

• Applications



Computational Zero-Knowledge
(P,V) is honest verifier perfect zero-knowledge for L if:
∃SIM an  expected polynomial time randomized 
algorithm s.t. ∀x in L, View(P,V)(x) ≈ 𝑐 SIM(x)

(P,V) is computational
zero-knowledge for L if : ∀PPT V*
∃SIM an expected polynomial time randomized  

algorithm s.t. ∀x in L, View(P,V*) (x) ≈ 𝑐 SIM(x)

Relax to “indistinguishable” by any observer who runs
In probabilistic polynomial time

Notation: ViewV*(x) ≈cSIM(x)



Prover Gives Perfect
Zero Knowledge

• If: we can efficiently simulate the view of any 
verifier s.t. `Simulated views’ `real verifier” are 
indistinguishable by any PPT distinguisher 

The observer
Any Probabilistic Poly Time Algorithm

??

SIM

REAL v1p1v2
pkaccept/

reject

v1
p1
v2

pk

accept/
reject



Zero Knowledge for all of NP

Theorem: If one-way permutations exist, then every 
problem in NP  has a computational zero knowledge 
interactive proofs 

• The assumption can be relaxed to one-way functions

• To prove the theorem, should we construct ZK proof 

for every NP language?  Not efficient!

Building Block: One Way Functions  imply 
Commitments schemes



Idea: Show a zero knowledge interactive proof for 
Complete Problem for NP.

3COLOR = all graphs which can be colored with 3 colors 
s.t for for all edges (u,v) color(u) ≠color(v)

NP Completeness [Cook-Levin-Karp]: Given L in NP. 
Instances x is polynomial time reducible to Gx

x ∈ L               Gx is 3 colorable
x ∉ L             Gx is not 3 colorable

How can you prove something so general?

Show a 
Zero-knowledge
Proof for 3-coloring

Statement:



Physical Intuition for Protocol
On common input graph G =(V,E) and 
Provers private input coloring p: V     {0,1,2}

• P picks a random permutation s of the coloring p & 
color the graph with coloring a=s(p). It hides the color
a(u)  of each vertex inside a locked box 

• V Select a random edge (u,v)
• P opens boxes corresponding to u and v

• V accepts  if and only if a(u) ≠ a(v) 
[ colors are different]



Intuition for Completeness and 
Soundness

• Completeness: if prover uses  a proper 
3-coloring, the verifier will accept. 

• Soundness: Let k = |E|2
If G is not 3-colroable,  then for all P*
Prob[(P*,V)(G) accepts]<1- 1/|E|

Repeat k times.
Soundness Prob[(P*,V)(G) accepts]< 

(1-1/|E|)k.  <  1/e|E|



From Intuition to a Proof

To “digitze” the above proof, we need to implement locked
boxes

Need two properties from digital locked boxes:

• Hiding: V should not be able to see the content inside 
a locked box  

• Binding: P should not be able to modify the content 
inside a box  once its locked



Commitment Scheme
(Digital analogue of locked boxes)

• An efficient two-stage protocol between a sender S 
and receiver R on input (1k) s.t.:

• commit stage: S has private input b ∈ {0, 1}; 
At the end of the commit stage 
– both parties hold output com (called the commitment)
– S holds a private output dec (called the de-commitment)

• reveal stage: S sends the pair (dec , b) to R.
R accepts or rejects



Properties of a Commitment Scheme
Completeness: R always accepts in an honest 
execution of S.
Hiding:∀ R∗,  b ≠ b′ ∈ {0,1}, In commit stage

{View (S(b),R∗)(1k)} ≈c {View(S(b′),R∗)(1k)}.
Binding: Let com be output of commit stage ∀ 𝑆
∗

Prob[S∗ can reveal two pairs (dec,b) & (dec’,b’) 
s.t. R(com, dec, b) = 

R(com, dec′, b′) =Accept]<neg(k)

Ex: c ÎEnc(r,b) for semantically secure PK enc.
Comm=c,  Dec={r,b}



Commitment Schemes: Remarks

The previous definition only guarantees hiding for one 
b i t and one commitment

Claim: One-bit commitment implies multiple string
commitment (using hybrid argument as in encryption)



Commitment Schemes

Can be implemented using interactive protocols, but we 
will  consider non-interactive case. Both commit and 
reveal phases will  consist of single messages

One- Way function based commitments require 2 rounds
of interaction in commit stage

I n s t r u c t o r :  O m k a n t P a n d e y



Construction of Bit Commitments

Construction: Let f  be a OWP, B be the hard core predicate 
for f

Commit phase(b): Sender chooses r, sends Comm = f (r), b⊕B (r)

Reveal phase: Sender reveals (b, r). Receiver accepts
If Comm= ( f (r), b⊕B(r)), and rejects otherwise

Security:

Binding follows from construction since f  is a
permutation
Hiding follows in the same manner as IND-CPA security



ZK interactive proof for G3COL
On common input graph G =(V,E) and private prover
input coloring p: V     {0,1,2}

• P ® V:  Pick a random permutation s of the coloring 
& color the graph with coloring a(p)=s(p(v)). Send 
commitments Enc(rv , a(v)) ∀ vertex v.

• V ® P: Select a random edge (u,v) and send it
• P ® V: reveal colors of u and v committed in 
Enc(ru,a(u)) and Enc(rv,a(v)) by releasing ru and rv

• If a(v)) ≠ a(u) V rejects,  otherwise repeat and 
V accepts  after k iterations.



Honest Verifier Computational 
ZK

Simulator S in input G=(V,E) : guess in advance 
the challenge (a,b) of the honest verifier V.
• Choose random edge (a,b) in G
• Choose aa,ab in {0,1,2} s.t aa≠ab at random and 

for all v ≠a,b set aa= 2 .
• Output SIM =

(Enc(rv, av), (a, b), ra, rb )
Claim: SIM≈ 𝑐 View (P,V) (G)



Computational ZK:
Simulation for any Verifier V*

Simulator SIM on input G and verifier V*:
Fix random tape ω for V*
For i = 1 to |E|2:

• Choose random edge (a, b) and generate vector 
com = Enc(rv, av) as in honest verifier simulation. 

• Run V*(com; ω) to obtain challenge (a∗, b∗);
if (a∗, b∗) = (a, b), then output transcript as  
in honest verifier case , transcript=Enc(rv, av), (a, b), ra, rb )

If all iterations fail, output ⊥.
Theorem: If Enc is semantically secure with respect to non-
uniform adversaries, then
Claim 1: ∀G,p (a true coloring) : prob[⊥ output]=neg(|E|) 
Claim 2 :if ⊥ is not output, then simulated-view ≈creal-view



Simulation for any Verifier V*
Claim 1 : ∀G,p (a true coloring) : prob[⊥ output]=neg(|E|) 
Proof: By Hybrid argument.
Hybrid 1 (G):Fix random tape ω for V*

For i = 1 to |E|2:
1. Choose random edge (a, b)
2. Let com=vector of encrypted colored vertices s.t all vertices v are colored 

by a(v) each with randomness ra(v) [as prover does in real protocol] .
3. Run V*(com)=(a*,b*). If (a*,b*)=(a,b), 

output transcript (com, (a*,b*),  ra, rb )
If all  iterations  fail, output ⊥.

Lemma1: Hybrid 1 and View (P,V*) (G) are statistically close 
(chance of ⊥ is negligible)
Lemma2: Hybrid 1 and SIM(G,V*) are computationally  
indistinguishable if Enc is semantically secure



Examples of NP-assertions

• graph G is 3-colorable

• graph G has a traveling salesman tour of
cost C, 

…

• NP=Given encrypted inputs E(x) and program 
PROG, y=PROG(x)….



Many, Many Applications: 

•Can prove properties about m without ever revealing 
m, only   E(m)

• Can prove relationships between m1 and m2 never 
revealing either one, only E(m1) and E(m2).

For example: L = {(C1, C2): there exists r1, r2, M 
s.t. C1=E1(r1, M) and C2=E2(r2,M) } is in NP

Generally: A tool to enforce honest behavior without 
forcing to reveal information.



General Cryptographic Importance

• Proving correctness of protocols is complex even 
if users are honest;  If users deviate from protocol in 
arbitrary ways,  almost impossible in a case-by-case 
manner, need tools and framework to prove 
correctness.

• Proof of proper behavior is fundamental tool for design 
of secure protocols

• Zero Knowledge Proofs enable automatic 
conversion of any protocol proven secure against 
honest-but-curious adversaries to protocol secure 
against deviating adversaries



Today
• Computational Zero Knowledge

• Every problem in NP has a  
Computational Zero Knowledge 
Interactive Proofs

• Is IP greater than NP? 
– Today: examples unknown to be in NP
– Complexity class IP=PSPACE

• Applications



Bob tosses coin 
If Heads keep red on 
top.
Tails flip to green on 
top.  Bob sends resulting page if Alice is wrong,

Reject the claim

If Alice is correct 
½ chance that 
its just luck

Zero Knowledge Proof
Prove to color blind bob that colors exist

Alice names color on top

Bob send resulting page
Do it Again
Chance that 
Alice lucky
twice = ¼ Alice names color on top

Claim: there
are 2 colors on
this page, red top  

Bob color blind
$



Bob tosses coin 
If  Heads keep red on 
top.
Tails flip to green on 
top.  Bob sends resulting page if Alice is wrong,

Reject the claim

If Alice is correct 
½ chance that 
its just luck

Zero Knowledge Proof
Prove to color blind bob that colors exist

Alice names color on top

Bob send resulting page
Do it Again
Chance that 
Alice lucky
twice = ¼ Alice names color on top

Claim: there
are 2 colors on
this page, red top  

Bob color blind
$

Completeness: if there are 2 colors, Bob will always 
accept
Soundness: if there is only 1 color,  then
Probability that after 100 iterations Bob will reject > 
1-1/2100



Bob tosses coin to 
decide if to flip page: 
Heads keep red on 
top.
Tails flip to green on 
top.  Bob sends resulting page

View of Bob=
{(Page, coin)}

Zero Knowledge Proof
Prove to color blind bob that colors exist

Alice names color on top=coin1

Bob send resulting page

Alice names color on top=coin2

Claims there
are 2 colors on
this page  

Bob color blind



Example: G1 is NOT isomorphic to G2

G1

3

1

2

G2

5
42

5

1

4

3

Shortest classical proof:
»exponential n!
But can convince with an efficient
interactive proof

1

1



Graph Non-Isomorphism  (Non-ISO) in IP

Prover Verifier

input: (G0, G1)

flip coin c Î
{0,1}; pick 
random g

H = g(Gc)
if H isomorphic

to  G0                      
then b = 0,  else 
b = 1

b
Output ACCEPT

iff b = c 
Completeness: if (G0 ,G1)∈ 𝑁𝑜𝑛 − 𝐼𝑆𝑂, then

𝑃𝑟𝑜𝑏[(𝑃, 𝑉)[(G0 ,G1)]=accept]=1
Soundness: if (G0 ,G1)∈ 𝐼𝑆𝑂,

𝑃𝑟𝑜𝑏[(𝑃, 𝑉)[(G0 ,G1)]=accept]≨1/2



GNI Interactive Proof

• completeness:
– if G0 not isomorphic to G1 then H is 

isomorphic to exactly one of (G0, G1) 
– prover will choose correct b=c

• soundness:
if G0 is isomorphic to G1 then prover sees 
same distribution on H for c = 0, c = 1
which no information on c Þ
Prob[prover P* outputs b=c]<=1/2



This is obviously honest verifier zero-knowledge 
(when the graphs are isomorphic):
--All the verifier gets is the coin c he tossed.

But, is it zero-knowledge for all verifiers?
-No. V can use P to find out if H is isomorphic to G0
or isomorphic to G1.

-Instead, the Verifier 
proves in ZK that he knows g
s.t either H=g(G0) or H=g(G1)

H = g(Gc)

b

ZK POK 

Honest Verifier Zero Knowledge



Applications
üPreventing Identity Theft 

• Secure Protocols

• Proving properties of secrets: 
– Commit + prove



Recent Uses of Zero Knowledge Proofs  

2015 Zero Knowledge and Forensics [Naor etal]

2016Zero Cash, crypto currency which protects 
the privacy of transactions [BenSasson,Chiesa, 
Tromer etal]

2014  Zero Knowledge and Nuclear Disarmament: 
projects at Princeton and MIT [Barak etal]

2017 Proof of “compliance” of FISA with secret 
laws



Recent Uses of Zero Knowledge Proofs  

2015 Zero Knowledge and Forensics [Naor etal]

2016Zero Cash, crypto currency which protects 
the privacy of transactions [BenSasson,Chiesa, 
Tromer etal]

2014  Zero Knowledge and Nuclear Disarmament: 
projects at Princeton and MIT [Barak etal]

2017 Proof of “compliance” of FISA with secret 
laws



ZK Arguments

a1
q1
a2

Accepts /Rejects 

Verifier V

Probabilistic
Polynomial time 
algorithm

Prover P
PPT

Completeness: there exists P
if x ∈ L, then prob((P,V)[x] =accepts] ≥2/3

Soundness’: if x ∉ L, then for all probabilistic 
polynomial time provers P* Prob((P,V)[x]=accepts]<1/3

Theorem: Perfect ZK Arguments exist  for all NP if 
one way functions exist [OWF used for soundness’]

x∈ 𝐿?



Basic Questions about Zero Knowledge(I) 

• Q1: Sequential Compositions
• Q2: Parallel Compositions?

– Not always (artificial counter example)
– Known natural examples cannot be 

proved using black box simulation
– A: Weaken definition of ZK to Witness 

Hiding [FeSh87]


