Lecture 15

Zero Knowledge i



Class NP

Prover X€e L? Verifier

o= Iff V(X,w)=
6 W ., Then accep
orks Hard Polynomial Tlme

NP={D s.t. 3polynomial time V s.t
x€ D iff 3w of polynomial size s.t. V(x,w)=1}

Any statement which have
Efficiently Verifiable Classical Proofs




Class IP

XE L?

Verifier V
Prover P
— a, , Probabilistic
) d1 Polynomial time
C. R algorithm
= Accepts /Rejects

IP={Ls.t. 3 (P\V) s.t.
if x € L, then prob((P,V)[x] =accepts] >2/3
if x & L, then prob((P,V)[x]=accepts]<1/3



Perfect Zero-Knowledge

For a given P and V on input x, define probability
space Viewp\y(X)= {(q4,a4,d2,85,...,c0INS)} (over
coins of V and P)

(P,V) is honest verifier perfect zero-knowledge for L if:
3SIM an expected polynomial time randomized
algorithm s.t. ¥xin L, Viewp,,(x) = SIM(x)

(P,V) is perfect zero-knowledge for L if : VPPT V*

3SIM an expected polynomial time randomized
algorithm s.t. ¥xin L, Viewp« (x) = SIM(x)



Statistical Zero-Knowledge

(P,V) is statistical zero-knowledge for L if : VV*

3SIM expected polynomial time randomized algorithm
s.t.vx €L

| 2 vIprob[veView py+ (X) — prob[veSIM(x)]| < neg(|x|)



Today

Computational Zero Knowledge

Every problem in NP has a
Computational Zero Knowledge
Interactive Proofs

Is IP greater than NP?

— Today: examples unknown to be in NP
— Complexity class IP=PSPACE

Applications



Computational Zero-Knowledge

(P,V) is honest verifier perfect zero-knowledge for L if:
3SIM an expected polynomial time randomized

algorithm s.t. vxin L, Viewp,)(x) = ¢ SIM(x)

Relax to “indistinguishable” by any obsﬁrver who runs
In probabilistic polynomial time

(P,V) is computational
zero-knowledge for L if : VPPT V*

3SIM an expected polynomial time randomized
algorithm s.t. vxin L, Viewpy+ (x) = ¢ SIM(x)

Notation: View,-(x) =.SIM(x)



Prover Gives Perfect
Zero Knowledge

* |f: we can efficiently simulate the view of any
verifier s.t. Simulated views’ ‘real verifier” are
iIndistinguishable by any PPT distinguisher

J p_kp;_.v |
X acg:ept/ ri—
reject
The observer

Any Probabilistic Poly Time Algorithm




Zero Knowledge for all of NP

Theorem: If one-way permutations exist, then every
problem in NP has a computational zero knowledge
interactive proofs

* The assumption can be relaxed to one-way functions

Building Block: One Way Functions imply
Commitments schemes

* To prove the theorem, should we construct ZK proof

for every NP language? Not efficient!



-— J Wl V w8 §

How can you prove something so general?

ldea: Show a zero knowledge interactive proof for
Complete Problem for NP.

3COLOR = all graphs which can be colored with 3 cdlors
s.t for for all edges (u,v) color(u) #color(v)

NP Completeness [Cook-Levin-Karp]: Given L in NP.
Instances x is polynomial time reducible to G,
xelL = G,is 3 colorable .

xg&L == G,isnot3 colorable Zero-knowledge
Proof for 3-colorinc



Physical Intuition for Protocol
On common input graph G =(V,E) and
Provers private input coloring : V— {0,1,2}

» P picks a random permutation o of the coloring © &
color the graph with coloring a=c(n). It hides the color
a(u) of each vertex inside a locked box

* V Select a random edge (u,v)
* P opens boxes corresponding to u and v

« V accepts if and only if (1) # a(v)
[ colors are different]



Intuition for Completeness and

Soundness
« Completeness: if prover uses a proper
3-coloring, the verifier will accept.

- Soundness: Let k = |E|?
If G is not 3-colroable, then for all P*
Prob[(P*,V)(G) accepts]<1- 1/|E|

Repeat k times.
Soundness Prob[(P*,V)(G) accepts]<
(1-1/|[E)k < 1/elEl



From Intuition to a Proof

To “digitze” the above proof, we need to implement locked
boxes

Need two properties from digital locked boxes:

 Hiding: Vshould not be able to see the content inside
a locked box

 Binding: P should not be able to modify the content
iInside a box once its locked



Commitment Scheme
(Digital analogue of locked boxes)

An efficient two-stage protocol between a sender S
and receiver R on input (1K) s.t.:

commit stage: S has private input b € {0, 1};
At the end of the commit stage

— both parties hold output com (called the commitment)
— S holds a private output dec (called the de-commitment)

reveal stage: S sends the pair (dec , b) to R.
R accepts or rejects



Properties of a Commitment Scheme

Completeness: R always accepts in an honest
execution of S.
Hiding:v R*, b #b' € {0,1}, In commit stage
{View (S(b),R*)(1%)} =, {View(S(b'),R*)(1¥)}.
Binding: Let com be output of commit stage V S

' Prob[S* can reveal two pairs (dec,b) & (dec’,b’)
s.t. R(com, dec, b) =

R(com, dec’, b") =Accept]<neg(k)

Ex: ¢ eEnc(r,b) for semantically secure PK enc.
Comm=c, Dec={r,b}



Commitment Schemes: Remarks

The previous definition only guarantees hiding for one
bit and one commitment

Claim: One-bit commitment implies multiple string
commitment (using hybrid argument as in encryption)



Commitment Schemes

Can be implemented using interactive protocols, but we
will consider non-interactive case. Both commit and
reveal phases will consist of single messages

One- Way function based commitments require 2 rounds
of interaction in commit stage



Construction of Bit Commitments

Construction: Let f be a OWP, B be the hard core predicate
for f

Commit phase(b): Sender chooses r, sends Comm = f(r), b @B(r)

Reveal phase: Sender reveals (b, r). Receiver accepts
If Comm= (f(r), b @B(r)), and rejects otherwise

Security:

Binding follows from construction since f is a
permutation

Hiding follows in the same manner as IND-CPA security



ZK interactive proof for G3COL

On common input graph G =(V,E) and private prover

input coloring n: V.—{0,1,2}

* P —> V: Pick a random permutation ¢ of the coloring
& color the graph with coloring a(z)=c(n(v)). Send
commitments Enc(r,, a(v))V vertex v.

+ V — P: Select a random edge (u,v) and send it

+ P > V: reveal colors of uand v committed in
Enc(r,a(u)) and Enc(r,a(v)) by releasing r,and r,

* If a(v)) # a(u)V rejects, otherwise repeat and
V accepts after k iterations.




Honest Verifier Computational
ZK

Simulator S in input G=(V,E) : guess in advance
the challenge (a,b) of the honest verifier V.

* Choose random edge (a,b) in G

« Choose a, a, in {0,1,2} s.t a,#a, at random and
forall v#a,b seta,= 2.

e Output SIM =
(Enc(rv, av)v (a! b)v ra, rb )
Claim: SIM= ¢ View p\/ (G)



Computational ZK:

Simulation for any Verifier V*
Simulator SIM on input G and verifier V*:
Fix random tape w for V*
Fori=1to |E|%
« Choose random edge (a, b) and generate vector
com = Enc(r,, a,) as in honest verifier simulation.
« Run V*(com; w) to obtain challenge (ax*, bx);
if (ax, bx) = (a, b), then output transcript as
in honest verifier case , transcript=Enc(r,, a,), (a, b), r, ry )
If all iterations fail, output L.

Theorem: If Enc is semantically secure with respect to non-
uniform adversaries, then

Claim 1: VG, (a true coloring) : prob[L output]=neg(|E|)
Claim 2 :if L is not output, then simulated-view =_real-view



Simulation for any Verifier V*

Claim 1: vG,r (a true coloring) : prob[L output]=neg(|E|)

Proof: By Hybrid argument.

Hybrid 1 (G6):Fix random tape w for V*
Fori=1to |E|*

1. Choose random edge (a, b)

2. Let com=vector of encrypted colored vertices s.t all vertices v are colored
by o(v) each with randomness ra(v) [as prover does in real protocol] .

3. Run V*(com)=(a*,b*). If (a*,b*)=(a,b),
output transcript (com, (a*,b*), ry 1, )
If all iterations fail, output L.

Lemma: Hybrid 1 and View ) (&) are statistically close
(chance of 1 is negligible)

LemmaZ2: Hybrid 1 and SIM(G,V*) are computationally
indistinguishable if Enc is semantically secure



Examples of NP-assertions

e graph G is 3-colorable

« graph G has a traveling salesman tour of
cost C,

 NP=Given encrypted inputs E(x) and program
PROG, y=PROG(x)....



Many, Many Applications:

«Can prove properties about m without ever revealing
m, only E(m)

« Can prove relationships between m1 and m2 never
revealing either one, only E(m1) and E(m2).

For example: L = {(C4, C,): there exists r4, r,, M
s.t. C,=E,(r;, M) and C,=E,(r,,M) } is in NP

Generally: A tool to enforce honest behavior without
forcing to reveal information.



General Cryptographic Importance

* Proving correctness of protocols is complex even
If users are honest; If users deviate from protocol in
arbitrary ways, almost impossible in a case-by-case
manner, need tools and framework to prove
correctness.

* Proof of proper behavior is fundamental tool for design
of secure protocols

« Zero Knowledge Proofs enable automatic
conversion of any protocol proven secure against
honest-but-curious adversaries to protocol secure
against deviating adversaries



Today

Computational Zero Knowledge

Every problem in NP has a
Computational Zero Knowledge
Interactive Proofs

Is IP greater than NP?

— Today: examples unknown to be in NP
— Complexity class IP=PSPACE

Applications



Zero Knowledge Proof

Prove to color blind bob that colors exist

Claim: there

are 2 colors on
this page, red to

Bob color blind
®

Bob tosses coin

If Heads keep red on
top.

Tails flip to green on
top.

Bob sends resulting page if Alice is wrong,

<
Alice names color on top Rej 2laim
S B84t K@aﬁjla
Bob send resulting page |f§||?€é‘%eéaﬁtect
<
Alice names color on top %tgﬂ@gge%hat
> itsjustluc




Zero Knowledge Proof

Prove to color blind bob that colors exist

Claim: there

are 2 colors on
this page, red to

Bob color blind
®

Bob tosses coin

If Heads keep red on
top.

Tails flip to green on

tAn

Completeness: if there are 2 colors, Bob will always |
accept 1
Soundness: if there is only 1 color, then

Probability that after 100 iterations Bob will reject > t
1-1/2100




Zero Knowledge Proof

Prove to color blind bob that colors exist

a

Bob color blind

Bob tosses coin to

Claims there decide if to flip page:
are 2 colors on
) Heads keep red on
this page
top.
Bob sends resulting page Tails flip to green on
< top

Alice names color on top=coin;

N " > View of Bob=
. ob send resulting page {(Page, coin)}

Alice names color on top=coin,

>




Example: G; is NOT isomorphic to G,

G, "'\ G, 4
e =

&

Shortest classical proof:
~expohential nl

But can convince with an efficient
interactive proof




Graph Non-lsomorphism (Non-ISO) in |
input: (Gy, Gq)

Prover CH=y4(Gy) Verifier
s . flip coin c €
If H isomorphic {0.1}: pick
to G, ] random vy
thenb=0,else " outputACCEPT
b =1 iffb=c

Completeness: if (G, G,)€ Non — IS0, then
Prob[(P,V)[(G, G4)]=accept]=1
Soundness: if (G, G,)e ISO,
Prob[(P,V)[(G, G,)]=accept]£1/2



GNI Interactive Proof

* completeness:

— if Gy not isomorphic to G, then H is
iIsomorphic to exactly one of (G,, G,)

— prover will choose correct b=c

e soundness:
If Gy is isomorphic to G, then prover sees
same distributionon Hforc=0,c =1
which no information on ¢ =
Prob[prover P* outputs b=c]<=1/2



Honest Verifier Zero Knowledge

This is obviously honest verifier zero-knowledge
(when the graphs are isomorphic):
--All the verifier gets is the coin ¢ he tossed.

But, is it zero-knowledge for all verifiers?
-No. V can use P to find out if H is isomorphic to G,
or isomorphic to G;.

_H=vGe)
-Instead, the Verifier

proves in ZK that he knows vy ZK POK
s.t either H=y(G,) or H=y(G,) X

_




Applications
v Preventing ldentity Theft

« Secure Protocols

* Proving properties of secrets:
— Commit + prove



Recent Uses of Zero Knowledge Proofs

2014 Zero Knowledge and Nuclear Disarmament:
projects at Princeton and MIT [Barak etal]

2015 Zero Knowledge and Forensics [Naor etal]

Zero Cash, crypto currency which protects 2016
the privacy of transactions [BenSasson,Chiesa,

Tromer etall

2017 Proof of ' compllance" of FISA with secret

IGWS Surveillance
T
Q‘.‘:‘:Eﬂ* 0:.’0&)}
7% PR

request S

FISA Court

- Jinee

The Public



Recent Uses of Zero Knowledge Proofs

STANDARDS DOCUMENTS

INTRODUCTION 1ST WORKSHOP

2015 Ze
: The 1st ZKProof Standards Workshop { ]
10-11th May, 2018

Zero Cc #ef
aphic tool that is starting to see adoption. This ; 2 O 1 6

Zero Knowledge Proofs are a cutting edge cryptogr
breakthrough technology forms the basis of severa e trade-offs

the pri
p r' l V‘ between data privacy and integrity. Zero Knowledge Proofs allow a p

Tr‘ omer e. 1- a tational statement is correct without revealing any information except the veracity of the
nitiative of 1

2 O 1 7 P ZKProof.org is an open i
r' | We are planning several workshops to standardize the security, implementation,
kshop will take pllce in Boston in mid May and will bring
2Cre

£ this technology- The first wor
ww ' ww

and industry €
FBI FISA Court The Publi
IC

1 cryptographic applications, improving th
rover to convince a verifier that some
statement.

use of zero knowledge proofs.
applications and all other

compu
ndustry and academia to standardize the

related aspects O
xperts in the field.

I GWS together for the first time academic




ZK Arguments

Prover P
PPT X€ L? Verifier V
"~ a, . Probabilistic
) d1 Polynomial time
C. R algorithm

Completeness: there exists P Accepts /Rejects
if x € L, then prob((P,V)[x] =accepts] >2/3

Soundness’: if x € L, then for all probabilistic
polynomial time provers P* Prob((P,V)[x]=accepts]<1/3

Theorem: Perfect ZK Arguments exist for all NP if
one way functions exist [OWF used for soundness’]



Basic Questions about Zero Knowledge(I)

*+ Q1. Sequential Compositions
* Q2: Parallel Compositions?

- Not always (artificial counter example)

- Known natural examples cannot be
proved using black box simulation

- A: Weaken definition of ZK to Witness
Hiding [FeSh87]



