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Today: 
Non-Interactive Zero-Knowledge (NIZK)

In Two Days: 
An Application of NIZK



NP Proofs

Proof = 

For the NP-complete problem of graph 3-coloring

Prover P has a witness, 
the 3-coloring of G

Verifier V checks:
(a) only 3 colors are used &
(b) any two vertices 
connected by an edge are 
colored differently. 



Zero-Knowledge (Interactive) Proof

Commitments

𝑒 ← 𝐸

Because NP proofs reveal too much



Zero-Knowledge (Interactive) Proof
Because NP proofs reveal too much

1. Completeness: For every 𝐺 ∈ 3COL, V accepts P’s proof. 

2. Soundness: For every 𝐺 ∉ 3COL and any cheating 𝑃∗, V 
rejects 𝑃∗’s proof with probability ≥ 1 − neg(𝑛)

3. Zero Knowledge: For every cheating 𝑉∗, there is a PPT simulator 
S such that for every G ∈ 3COL, S simulates the view of 𝑉∗.



TODAY:

Can we make proofs non-interactive 
again?

Why?
1. V does not need to be online during the proof process.
2. Proofs are not ephemeral, can stay into the future. 



TODAY:

Can we make proofs non-interactive 
again?

NO!YES, WE CAN!



Non-Interactive ZK is Impossible

𝜋

Suppose there were an NIZK proof system for 3COL.

Graph G Graph G

Step 1. When G is in 3COL, V accepts the proof 𝜋.
(Completeness)



Non-Interactive ZK is Impossible

!𝜋

Suppose there were an NIZK proof system for 3COL.

Graph G Graph G

Step 2. PPT Simulator S, given only G in 3COL, produces 
an indistinguishable proof "𝜋 (Zero Knowledge).

In particular, V accepts #𝝅. 



Non-Interactive ZK is Impossible

"𝜋

Suppose there were an NIZK proof system for 3COL.

Graph G Graph G

Step 3. Imagine running the Simulator S on a 𝐺 ∉ 3COL. 
It produces a proof "𝜋which the verifier still accepts!

(WHY?! Because S and V are PPT. They together 
cannot tell if  the input graph is 3COL or not)



Non-Interactive ZK is Impossible

𝜋

Suppose there were an NIZK proof system for 3COL.

Graph G Graph G

Step 4. Therefore, S is a cheating prover! 
Produces a proof for a 𝐺 ∉ 3COL that the verifier 
nevertheless accepts.

Ergo, the proof system is NOT SOUND!



THE END

Or, is it?



Enter: The Common Random String

𝜋
Graph G Graph G

010111000101010010CRS



Enter: The Common Reference String

𝜋
Graph G Graph G

𝐶𝑅𝑆 ← 𝐷
(e.g., CRS = product of two primes)



NIZK in the CRS Model

𝜋
Graph G Graph G

010111000101010010CRS

1. Completeness: For every 𝐺 ∈ 3COL, V accepts P’s proof. 

2. Soundness: For every 𝐺 ∉ 3COL and any “proof” 𝜋∗, 
𝑉(𝐶𝑅𝑆, 𝜋∗) accepts with probability ≤ neg(𝑛)



NIZK in the CRS Model

𝜋
Graph G Graph G

010111000101010010CRS

3. Zero Knowledge: There is a PPT simulator S such that for 
every G ∈ 3COL, S simulates the view of the verifier V.

𝑆(𝐺) ≈ (𝐶𝑅𝑆 ← 𝐷, 𝜋 ← 𝑃(𝐺, 𝑐𝑜𝑙𝑜𝑟𝑠))



NIZK in the CRS Model

𝜋
Graph G Graph G

010111000101010010CRS

3. Zero Knowledge: There is a PPT simulator S such that for every 
𝑥 ∈ L and witness 𝑤, S simulates the view of the verifier V.

𝑆(𝑥) ≈ (𝐶𝑅𝑆 ← 𝐷, 𝜋 ← 𝑃(𝑥,𝑤))



HOW TO CONSTRUCT NIZK
IN THE CRS MODEL 

1. Blum-Feldman-Micali’88 (quadratic residuosity)

2. Feige-Lapidot-Shamir’90 (factoring)

3. Groth-Ostrovsky-Sahai’06 (bilinear maps)

4. Canetti-Chen-Holmgren-Lombardi-Rothblum!-Wichs’19
and Peikert-Shiehian’19    (learning with errors)

1. Blum-Feldman-Micali’88 (quadratic residuosity)



HOW TO CONSTRUCT NIZK
IN THE CRS MODEL 

Step 1. Review our number theory hammers 
& polish them.

Step 2. Construct NIZK for a special NP language, namely 
quadratic non-residuosity.

Step 3. Bootstrap to NIZK for 3SAT, an NP-complete 
language.



Quadratic Residuosity

Let 𝑁 = 𝑝𝑞 be a product of two large primes.

𝐽𝑎𝑐"# 𝐽𝑎𝑐$#
𝑍%∗

{𝑥:
𝑥
𝑁

= −1} {𝑥:
𝑥
𝑁

= +1}



Quadratic Residuosity

Let 𝑁 = 𝑝𝑞 be a product of two large primes.

𝐽𝑎𝑐"# 𝐽𝑎𝑐$#
𝑍%∗

{𝑥:
𝑥
𝑁

= −1} {𝑥:
𝑥
𝑁

= +1}

𝑱𝒂𝒄 divides 𝒁𝑵∗ evenly unless N is a perfect square. 



Quadratic Residuosity

Let 𝑁 = 𝑝𝑞 be a product of two large primes.

𝐽𝑎𝑐"# 𝐽𝑎𝑐$#
𝑍%∗

{𝑥:
𝑥
𝑁

= −1} {𝑥:
𝑥
𝑁

= +1}

Surprising fact: Jacobi symbol (
% = (

)
(
* is 

computable in poly time without knowing 𝒑 and 𝒒.  



Quadratic Residuosity

Let 𝑁 = 𝑝𝑞 be a product of two large primes.

𝐽𝑎𝑐$#

𝑄𝑅% is the set of squares mod 𝑁 and 𝑄𝑁𝑅% is the set 
of non-squares mod 𝑁 with Jacobi symbol +1.

𝑄𝑅%

𝑄𝑁𝑅%

So: 𝑄𝑅! = {𝑥: "
# = "

$ = +1}

𝑄𝑁𝑅! = {𝑥: "
# = "

$ = −1}



Quadratic Residuosity

𝐽𝑎𝑐$#

𝑄𝑅% is the set of squares mod 𝑁 and 𝑄𝑁𝑅% is the set 
of non-squares mod 𝑁 with Jacobi symbol +1.

𝑄𝑅%

𝑄𝑁𝑅%

Exactly half residues even if 
𝑵 = 𝒑𝒊𝒒𝒋, 𝒊, 𝒋 ≥ 𝟏, 𝐧𝐨𝐭 𝐛𝐨𝐭𝐡 𝐞𝐯𝐞𝐧.



Quadratic Residuosity

𝐽𝑎𝑐$#

IMPORTANT PROPERTY:  If 𝑦# and 𝑦! are both in 
𝑄𝑵𝑅, then their product 𝑦#𝑦! is in 𝑄𝑅.

𝑄𝑅%

𝑄𝑁𝑅%

Exactly half residues even if 
𝑁 = 𝑝8𝑞9 , 𝑖, 𝑗 ≥ 1, not both even.



Quadratic Residuosity

𝐽𝑎𝑐$#𝑄𝑅%

𝑄𝑁𝑅%

The fraction of residues smaller if 
𝑵 has three or more prime factors!

IMPORTANT PROPERTY:  If 𝑦# and 𝑦! are both in 
𝑄𝑵𝑅, then their product 𝑦#𝑦! is in 𝑄𝑅.



Quadratic Residuosity

Let 𝑁 = 𝑝𝑞 be a product of two large primes.

Quadratic Residuosity Assumption (QRA)

No PPT algorithm can distinguish between a random 
element of 𝑄𝑅% from a random element of 𝑄𝑁𝑅%
given only 𝑁.



HOW TO CONSTRUCT NIZK
IN THE CRS MODEL 

Step 1. Review our number theory hammers 
& polish them.

Step 2. Construct NIZK for a special NP language, namely 
quadratic non-residuosity.

Step 3. Bootstrap to NIZK for 3SAT, an NP-complete 
language.



NIZK for Quadratic Non-Residuosity

Define the NP language 𝐺𝑂𝑂𝐷 with instances (𝑵, 𝒚) where
• 𝑁 is	good:	has	exactly	two	prime	factors	and	is	not	a	

perfect square;  and
• 𝑦 ∈ 𝑄𝑁𝑅% (that is, 𝑦 has Jacobi symbol +1 

but is not a square mod 𝑁)

𝐽𝑎𝑐"# 𝐽𝑎𝑐$#

𝑍%∗
𝑄𝑅%

𝑄𝑁𝑅%



NIZK for Quadratic Non-Residuosity

𝐶𝑅𝑆 = (𝑟#, 𝑟!, … , 𝑟:) ← (𝐽𝑎𝑐%$#):

(𝑁, 𝑦) (𝑁, 𝑦)

If 𝑵 is good and 𝒚 ∈ 𝑸𝑵𝑹𝑵:
either 𝒓𝒊 is in 𝑸𝑹𝑵 or 𝒚𝒓𝒊 is in 𝑸𝑹𝑵
so I can compute 𝒓𝒊 or 𝒚𝒓𝒊.

If not … I’ll be stuck!



NIZK for Quadratic Non-Residuosity

𝐶𝑅𝑆 = (𝑟#, 𝑟!, … , 𝑟:) ← (𝐽𝑎𝑐%$#):

(𝑁, 𝑦) (𝑁, 𝑦)
∀𝑖: 𝑟8 OR 𝑦𝑟"

Check:
• 𝑁 is	not	a	prime	power,	
• 𝑁 is	not	a	perfect	square;	and	
• I received either a mod-N 

square root of 𝑟8 or 𝑦𝑟8



NIZK for Quadratic Non-Residuosity

𝐶𝑅𝑆 = (𝑟#, 𝑟!, … , 𝑟:) ← (𝐽𝑎𝑐%$#):

(𝑁, 𝑦) (𝑁, 𝑦)
∀𝑖: 𝑟8 OR 𝑦𝑟"

Soundness (what if 𝑁 has more than 2 prime factors)

No matter what 𝑦 is, for half the 𝑟8, both 𝑟8 and 𝑦𝑟8 are 
not quadratic residues. 



NIZK for Quadratic Non-Residuosity

𝐶𝑅𝑆 = (𝑟#, 𝑟!, … , 𝑟:) ← (𝐽𝑎𝑐%$#):

(𝑁, 𝑦) (𝑁, 𝑦)
∀𝑖: 𝑟8 OR 𝑦𝑟"

Soundness (what if 𝑁 has more than 2 prime factors)

No matter what 𝑦 is, for half the 𝑟8, both 𝑟8 and 𝑦𝑟8 are 
not quadratic residues. 



NIZK for Quadratic Non-Residuosity

𝐶𝑅𝑆 = (𝑟#, 𝑟!, … , 𝑟:) ← (𝐽𝑎𝑐%$#):

(𝑁, 𝑦) (𝑁, 𝑦)
∀𝑖: 𝑟8 OR 𝑦𝑟"

Soundness (what if 𝑦 is a residue)

Then, if 𝑟8 happens to be a non-residue, both 𝑟8 and 𝑦𝑟8
are not quadratic residues. 



NIZK for Quadratic Non-Residuosity

𝐶𝑅𝑆 = (𝑟#, 𝑟!, … , 𝑟:) ← (𝐽𝑎𝑐%$#):

(𝑁, 𝑦) (𝑁, 𝑦)
∀𝑖: 𝜋8 = 𝑟8 OR 𝑦𝑟"

(Perfect) Zero Knowledge Simulator S:

First pick the proof 𝜋8 to be random in 𝑍%∗ .
Then, reverse-engineer the CRS, letting 𝑟8 = 𝜋8! or 𝑟8 =
𝜋8!/𝑦 randomly.



NIZK for Quadratic Non-Residuosity

𝐶𝑅𝑆 = (𝑟#, 𝑟!, … , 𝑟:) ← (𝐽𝑎𝑐%$#):

(𝑁, 𝑦) (𝑁, 𝑦)

CRS depends on the instance N. Not good.

Soln: Let CRS be random numbers. 
Interpret them as elements of 𝑍%∗ and both 
the prover and verifier filter out 𝐽𝑎𝑐%"#. 



NEXT LECTURE

Step 1. Review our number theory hammers 
& polish them.

Step 2. Construct NIZK for a special NP language, namely 
quadratic non-residuosity.

Step 3. Bootstrap to NIZK for 3SAT, an NP-complete 
language.


