MIT 6.875 & Berkeley CS276

Foundations of Cryptography Lecture 16

Today: Non-Interactive Zero-Knowledge (NIZK)

In Two Days: An Application of NIZK

NP Proofs

For the NP-complete problem of graph 3-coloring

Prover P has a witness, the 3-coloring of G

Verifier V checks:

- (a) only 3 colors are used &
- (b) any two vertices connected by an edge are colored differently.

Zero-Knowledge (Interactive) Proof

Because NP proofs reveal too much

Zero-Knowledge (Interactive) Proof

Because NP proofs reveal too much

- **1. Completeness:** For every $G \in 3COL$, V accepts P's proof.
- **2. Soundness:** For every $G \notin 3COL$ and any cheating P^* , V rejects P^* 's proof with probability $\geq 1 \text{neg}(n)$
- **3. Zero Knowledge:** For every cheating V^* , there is a PPT simulator S such that for every $G \in 3COL$, S *simulates the view* of V^* .

TODAY:

Can we make proofs non-interactive again?

Why?

- 1. V does not need to be online during the proof process.
- 2. Proofs are not ephemeral, can stay into the future.

TODAY:

Can we make proofs non-interactive again?

YES, WE CAN!

Suppose there were an NIZK proof system for 3COL.

Step 1. When G is in 3COL, V accepts the proof π . (Completeness)

Suppose there were an NIZK proof system for 3COL.

Step 2. **PPT** Simulator S, **given only G in 3COL**, produces an indistinguishable proof $\tilde{\pi}$ (Zero Knowledge).

In particular, V accepts $\widetilde{\pi}$.

Suppose there were an NIZK proof system for 3COL.

Step 3. Imagine running the Simulator S on a $G \notin 3$ COL. It produces a proof $\tilde{\pi}$ which the verifier still accepts!

(WHY?! Because S and V are PPT. They together cannot tell if the input graph is 3COL or not)

Suppose there were an NIZK proof system for 3COL.

Step 4. Therefore, S is a cheating prover!

Produces a proof for a $G \notin 3COL$ that the verifier nevertheless accepts.

Ergo, the proof system is NOT SOUND!

THE END

Or, is it?

Enter: The Common Random String

Enter: The Common Reference String

NIZK in the CRS Model

- **1. Completeness:** For every $G \in 3COL$, V accepts P's proof.
- **2. Soundness:** For every $G \notin 3COL$ and any "proof" π^* , $V(CRS, \pi^*)$ accepts with probability $\leq \operatorname{neg}(n)$

NIZK in the CRS Model

3. Zero Knowledge: There is a PPT simulator S such that for every $G \in 3COL$, S *simulates the view* of the verifier V.

$$S(G) \approx (CRS \leftarrow D, \pi \leftarrow P(G, colors))$$

NIZK in the CRS Model

3. Zero Knowledge: There is a PPT simulator S such that for every $x \in L$ and witness w, S **simulates the view** of the verifier V.

$$S(x) \approx (CRS \leftarrow D, \pi \leftarrow P(x, w))$$

HOW TO CONSTRUCT NIZK IN THE CRS MODEL

- 1. Blum-Feldmam-Miccalli 888 (Equatication esidos itity)
- 2. Feige-Lapidot-Shamir'90 (factoring)
- 3. Groth-Ostrovsky-Sahai'06 (bilinear maps)
- 4. Canetti-Chen-Holmgren-Lombardi-Rothblum²-Wichs'19 and Peikert-Shiehian'19 (learning with errors)

HOW TO CONSTRUCT NIZK IN THE CRS MODEL

Step 1. **Review** our number theory hammers & polish them.

Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.

Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.

Let N = pq be a product of two large primes.

$$Z_{N}^{*}$$

$$Jac_{-1}$$

$$\{x: {x \choose N} = -1\}$$

$$\{x: {x \choose N} = +1\}$$

Let N = pq be a product of two large primes.

$$Z_{N}^{*}$$

$$Jac_{-1}$$

$$\{x: {x \choose N} = -1\}$$

$$\{x: {x \choose N} = +1\}$$

Jac divides Z_N^* evenly unless N is a perfect square.

Let N = pq be a product of two large primes.

$$Z_{N}^{*}$$

$$\int ac_{-1} \qquad \int ac_{+1}$$

$$\{x: {x \choose N} = -1\} \qquad \{x: {x \choose N} = +1\}$$

Surprising fact: Jacobi symbol $\binom{x}{N} = \binom{x}{p} \binom{x}{q}$ is computable in poly time without knowing p and q.

Let N = pq be a product of two large primes.

So:
$$QR_N = \{x: {x \choose p} = {x \choose q} = +1\}$$

$$QNR_N = \{x: \binom{x}{p} = \binom{x}{q} = -1\}$$

 QR_N is the set of squares mod N and QNR_N is the set of non-squares mod N with Jacobi symbol +1.

Exactly half residues even if

$$N = p^i q^j$$
, $i, j \ge 1$, not both even.

 QR_N is the set of squares mod N and QNR_N is the set of non-squares mod N with Jacobi symbol +1.

Exactly half residues even if

$$N = p^i q^j$$
, $i, j \ge 1$, not both even.

IMPORTANT PROPERTY: If y_1 and y_2 are both in QNR, then their product y_1y_2 is in QR.

The fraction of residues smaller if *N* has three or more prime factors!

IMPORTANT PROPERTY: If y_1 and y_2 are both in QNR, then their product y_1y_2 is in QR.

Let N = pq be a product of two large primes.

Quadratic Residuosity Assumption (QRA)

No PPT algorithm can distinguish between a random element of QR_N from a random element of QNR_N given only N.

HOW TO CONSTRUCT NIZK IN THE CRS MODEL

Step 1. **Review** our number theory hammers & polish them.

Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.

Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.

Define the NP language GOOD with instances (N, y) where

- N is good: has exactly two prime factors and is not a perfect square; and
- $y \in QNR_N$ (that is, y has Jacobi symbol +1 but is not a square mod N)

$$CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$$

 $\begin{array}{c}
(N,y) \\
\hline
\mathbf{P} \\
\end{array}$

If N is good and $y \in QNR_N$: either r_i is in QR_N or yr_i is in QR_N so I can compute $\sqrt{r_i}$ or $\sqrt{yr_i}$.

If not ... I'll be stuck!

$$CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$$

Check:

- N is not a prime power,
- N is not a perfect square; and
- I received either a mod-N square root of r_i or yr_i

Soundness (what if *N* has more than 2 prime factors)

No matter what y is, for half the r_i , both r_i and yr_i are **not** quadratic residues.

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

$$\begin{array}{c}
(N,y) \\
 \hline
 P & \forall i: \sqrt{r_i} \text{ OR } \sqrt{yr_i} \\
 \hline
\end{array}$$

Soundness (what if *N* has more than 2 prime factors)

No matter what y is, **for half the** r_i , both r_i and yr_i are **not** quadratic residues.

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

$$(N, y)$$

$$\forall i: \sqrt{r_i} \text{ OR } \sqrt{yr_i}$$

$$\downarrow$$

Soundness (what if y is a residue)

Then, if r_i happens to be a non-residue, both r_i and yr_i are **not** quadratic residues.

$$CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$$

$$\mathbf{P} \xrightarrow{\forall i: \pi_i = \sqrt{r_i} \text{ OR } \sqrt{yr_i}} \mathbf{V}$$

(Perfect) Zero Knowledge Simulator S:

First pick the proof π_i to be random in Z_N^* .

Then, reverse-engineer the CRS, letting $r_i = \pi_i^2$ or $r_i = \pi_i^2/y$ randomly.

$$CRS = (r_1, r_2, \dots, r_m) \leftarrow (Jac_N^{+1})^m$$

CRS depends on the instance N. Not good.

Soln: Let CRS be random numbers. Interpret them as elements of Z_N^* and both the prover and verifier filter out Jac_N^{-1} .

NEXT LECTURE

Step 1. **Review** our number theory hammers & polish them.

Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.

Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.