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HOW TO CONSTRUCT NIZK
IN THE CRS MODEL 

Step 1. Review our number theory hammers 
& polish them.

Step 2. Construct NIZK for a special NP language, namely 
quadratic non-residuosity.

Step 3. Bootstrap to NIZK for 3SAT, an NP-complete 
language.



3SAT

Boolean Variables: 𝑥! can be either true (1) or false (0) 

A Literal is either 𝑥! or "𝑥!.

A Clause is a disjunction of literals.

E.g. 𝑥" ∨ 𝑥# ∨ 𝑥$

A Clause is true if any one of the literals is true.



3SAT

Boolean Variables: 𝑥! can be either true (1) or false (0) 

A Literal is either 𝑥! or "𝑥!.

A Clause is a disjunction of literals.

E.g. 𝑥" ∨ 𝑥# ∨ 𝑥$ is true as long as:

(𝑥", 𝑥#, 𝑥$ ) ≠ (0,0,1)



3SAT

Boolean Variables: 𝑥! can be either true (1) or false (0) 

A Literal is either 𝑥! or "𝑥!.

A 3-Clause is a disjunction of 3-literals.

A 3-SAT formula is a conjunction of many 3-clauses.

E.g. 𝚿 = (𝑥" ∨ 𝑥# ∨ 𝑥$) ∧ (𝑥" ∨ 𝑥% ∨ 𝑥&) (𝑥# ∨ 𝑥% ∨ 𝑥$)

A 3-SAT formula 𝚿 is satisfiable if there is an assignment 
of values to the variables 𝑥! that makes all its clauses true. 



3SAT

A 3-SAT formula is a conjunction of many 3-clauses.

E.g. 𝚿 = (𝑥" ∨ 𝑥# ∨ 𝑥$) ∧ (𝑥" ∨ 𝑥% ∨ 𝑥&) (𝑥# ∨ 𝑥% ∨ 𝑥$)

A 3-SAT formula 𝚿 is satisfiable if there is an assignment 
of values to the variables 𝑥! that makes all its clauses true. 

Cook-Levin Theorem: It is NP-complete to decide 
whether a 3-SAT formula 𝚿 is satisfiable.



NIZK for 3SAT: Recall…

𝐽𝑎𝑐'" 𝐽𝑎𝑐("

𝑍)∗
𝑄𝑅)

𝑄𝑁𝑅)

We saw a way to show that a pair (𝑵, 𝒚) is GOOD. That is: 
• the following is the picture of 𝑍)∗ and 
• for every 𝑟 ∈ 𝐽𝑎𝑐(", either 𝑟 or 𝑟𝑦 is a quadratic residue.



NIZK for 3SAT

𝚿 𝚿

Input: 𝚿 = (𝑥" ∨ 𝑥# ∨ 𝑥$) ∧ (𝑥" ∨ 𝑥% ∨ 𝑥&) (𝑥# ∨ 𝑥% ∨ 𝑥$)

Satisfying assignment 
(w!, w", … ,w#)

1. Prover picks an (𝑁, 𝑦) and proves that it is GOOD.  

(𝑁, 𝑦, 𝜋)

𝐶𝑅𝑆 = (𝑟", 𝑟#, … , 𝑟+,-./ 0123/-) ← (𝐽𝑎𝑐)(")+,-./ 0123/-

n variables, m clauses.



NIZK for 3SAT

𝚿 𝚿

Satisfying assignment 
(w!, w", … ,w#)

2. Prover encodes the satisfying assignment

(𝑁, 𝑦, 𝜋)

𝐶𝑅𝑆 = (𝑟", 𝑟#, … , 𝑟+,-./ 0123/-) ← (𝐽𝑎𝑐)(")+,-./ 0123/-

𝑦! ← 𝑄𝑅) if 𝑥! is false
𝑦! ← 𝑄𝑁𝑅) if 𝑥! is true



NIZK for 3SAT

𝚿 𝚿

Satisfying assignment 
(w!, w", … ,w#)

2. Prover encodes the satisfying assignment & ∴ the literals

(𝑁, 𝑦, 𝜋)

𝐶𝑅𝑆 = (𝑟", 𝑟#, … , 𝑟+,-./ 0123/-) ← (𝐽𝑎𝑐)(")+,-./ 0123/-

𝐸𝑛𝑐 𝑥! = 𝑦!, then 𝐸𝑛𝑐 "𝑥! = 𝑦𝑦!
∴ exactly one of 𝐸𝑛𝑐 𝑥! 𝑜𝑟 𝐸𝑛𝑐 "𝑥! is a non-residue. 



NIZK for 3SAT

𝚿 𝚿

Satisfying assignment 
(w!, w", … ,w#)

2. Prover encodes the satisfying assignment & ∴ the literals

(𝑁, 𝑦, 𝜋)

𝐶𝑅𝑆 = (𝑟", 𝑟#, … , 𝑟+,-./ 0123/-) ← (𝐽𝑎𝑐)(")+,-./ 0123/-

𝐸𝑛𝑐 𝑥! = 𝑦!, then 𝐸𝑛𝑐 "𝑥! = 𝑦𝑦!
∴ exactly one of 𝐸𝑛𝑐 𝑥! 𝑜𝑟 𝐸𝑛𝑐 "𝑥! is a non-residue. 

Encode vars: (𝑦!, … , 𝑦")



NIZK for 3SAT

𝚿 𝚿

Satisfying assignment 
(w!, w", … ,w#)

3. Prove that (encoded) assignment satisfies each clause.

(𝑁, 𝑦, 𝜋)

𝐶𝑅𝑆 = (𝑟", 𝑟#, … , 𝑟+,-./ 0123/-) ← (𝐽𝑎𝑐)(")+,-./ 0123/-

Encode vars: (𝑦!, … , 𝑦")

For each clause, say 𝑥" ∨ 𝑥# ∨ 𝑥$, 
let (𝑎", 𝑏", 𝑐") denote the encoded variables. 

So, each of them is either 𝑦! (if the literal is a var) or 
𝑦𝑦! (if the literal is a negated var).   

For each clause, say 𝑥" ∨ 𝑥# ∨ 𝑥$, let (𝑎" = 𝑦", 𝑏" =
𝑦#, 𝑐" = 𝑦𝑦$) denote the encoded variables. 



NIZK for 3SAT

𝚿 𝚿

Satisfying assignment 
(w!, w", … ,w#)

3. Prove that (encoded) assignment satisfies each clause.

(𝑁, 𝑦, 𝜋)

𝐶𝑅𝑆 = (𝑟", 𝑟#, … , 𝑟+,-./ 0123/-) ← (𝐽𝑎𝑐)(")+,-./ 0123/-

Encode vars: (𝑦!, … , 𝑦")

For each clause, say 𝑥" ∨ 𝑥# ∨ 𝑥$, 
let (𝑎", 𝑏", 𝑐") denote the encoded variables. 

WANT to SHOW: 𝑥" 𝑂𝑅 𝑥# 𝑂𝑅 𝑥$ is true.



NIZK for 3SAT

𝚿 𝚿

Satisfying assignment 
(w!, w", … ,w#)

3. Prove that (encoded) assignment satisfies each clause.

(𝑁, 𝑦, 𝜋)

𝐶𝑅𝑆 = (𝑟", 𝑟#, … , 𝑟+,-./ 0123/-) ← (𝐽𝑎𝑐)(")+,-./ 0123/-

Encode vars: (𝑦!, … , 𝑦")

For each clause, say 𝑥" ∨ 𝑥# ∨ 𝑥$, 
let (𝑎", 𝑏", 𝑐") denote the encoded variables. 

WANT to SHOW: 𝑎" 𝑂𝑅 𝑏" 𝑂𝑅 𝑐" is a non-residue.



NIZK for 3SAT

Prove that (encoded) assignment satisfies each clause.

WANT to SHOW: 𝑎" 𝑂𝑅 𝑏" 𝑂𝑅 𝑐" is a non-residue.

Equiv: The “signature” of  (𝑎", 𝑏", 𝑐") is NOT (QR, QR, QR).

CLEVER IDEA: Generate seven additional triples
(𝑎!, 𝑏!, 𝑐!)
(𝑎", 𝑏", 𝑐")
(𝑎#, 𝑏#, 𝑐#)

(𝑎$, 𝑏$, 𝑐$)
(𝑎%, 𝑏%, 𝑐%)
(𝑎&, 𝑏&, 𝑐&)
(𝑎', 𝑏', 𝑐')
(𝑎(, 𝑏(, 𝑐()

original triple

show this is a QR: 
reveal the square roots

“Proof of Coverage”: 
show that the 8 triples span 
all possible QR signatures



NIZK for 3SAT

CLEVER IDEA: Generate seven additional triples
(𝑎!, 𝑏!, 𝑐!)
(𝑎", 𝑏", 𝑐")
(𝑎#, 𝑏#, 𝑐#)

(𝑎$, 𝑏$, 𝑐$)
(𝑎%, 𝑏%, 𝑐%)
(𝑎&, 𝑏&, 𝑐&)
(𝑎', 𝑏', 𝑐')
(𝑎(, 𝑏(, 𝑐()

original triple

show this is a QR: 
reveal the square roots

“Proof of Coverage”: 
show that the 8 triples span 
all possible QR signatures

Proof of Coverage: For each of poly many triples (𝑟, 𝑠, 𝑡)
from CRS, show one of the 8 triples has the same signature.

That is, there is a triple (𝑎! , 𝑏! , 𝑐!) s.t. (𝑟𝑎! , 𝑠𝑏! , 𝑡𝑐!) is 
𝑄𝑅, 𝑄𝑅, 𝑄𝑅 .



NIZK for 3SAT

𝚿 𝚿

Satisfying assignment 
(w!, w", … ,w#)

3. Prove that (encoded) assignment satisfies each clause.

(𝑁, 𝑦, 𝜋)

𝐶𝑅𝑆 = (𝑟", 𝑟#, … , 𝑟+,-./ 0123/-) ← (𝐽𝑎𝑐)(")+,-./ 0123/-

Encode vars: (𝑦!, … , 𝑦")

For each clause, construct the proof ρ = (7 
additional triples, square root of the second triples, 
proof of coverage).

For each clause 𝜓: 𝜌#



NIZK for 3SAT

𝚿 𝚿

Satisfying assignment 
(w!, w", … ,w#)

Completeness & Soundness: Exercise.

(𝑁, 𝑦, 𝜋)

𝐶𝑅𝑆 = (𝑟", 𝑟#, … , 𝑟+,-./ 0123/-) ← (𝐽𝑎𝑐)(")+,-./ 0123/-

Encode vars: (𝑦!, … , 𝑦")

Zero Knowledge:  Simulator picks (𝑁, 𝑦) where 𝑦 is a 
quadratic residue. 
Now, encodings of ALL the literals can be set to TRUE!!

For each clause 𝜓: 𝜌#



HOW TO CONSTRUCT NIZK
IN THE CRS MODEL 

Step 1. Review our number theory hammers 
& polish them.

Step 2. Construct NIZK for a special NP language, namely 
quadratic non-residuosity.

Step 3. Bootstrap to NIZK for 3SAT, an NP-complete 
language.



An Application of NIZK: 

Non-malleable and Chosen Ciphertext 
Secure Encryption Schemes



Non-Malleability

c ← Enc(pk,m)
sk

Bob pk

m ← Dec(sk,c)

Public-key directory



Active Attacks 1: Malleability

c ← Enc(pk,$100)
sk

ATTACK: Adversary could modify (“maul”) an encryption 
of m into an encryption of a related message m’.

c’ =Enc(pk,$101)



Active Attacks 2: Chosen-Ciphertext Attack

c* ← Enc(pk,m)
sk

ATTACK: Adversary may have access to a decryption 
“oracle” and can use it to break security of a ”target” 
ciphertext c* or even extract the secret key!

In fact, Bleichenbacher showed how to extract the entire 
secret key given only a “ciphertext verification” oracle.

http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf


IND-CCA Security

EveChallenger

𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛 1)
𝑝𝑘

𝑏 ← 0,1 ; 𝑐∗ ← 𝐸𝑛𝑐(𝑝𝑘,𝑚+
∗)

𝑏′

Eve wins if 𝑏$ = 𝑏. 
IND-CCA secure  if no 
PPT Eve can win with 
prob. > !%+ negl(𝑛).

𝒄∗
𝑠. 𝑡. 𝑚,

∗ = |𝑚!
∗|𝑚,

∗ , 𝑚!
∗

𝑫𝒆𝒄(𝒔𝒌, 𝒄𝒊)

𝒄𝒊

𝑫𝒆𝒄(𝒔𝒌, 𝒄𝒊)

𝒄𝒊
𝑫𝒆𝒄(𝒔𝒌, 𝒄𝒊)

𝒄𝒊 ≠ 𝒄∗



Constructing CCA-Secure Encryption

NIZK Proofs of Knowledge should help!

Idea: The encrypting party attaches an NIZK proof of 
knowledge of the underlying message to the 
ciphertext. 

𝐶: (c = CPAEnc 𝑚; 𝑟 , proof π 𝑡ℎ𝑎𝑡 “𝐼 𝑘𝑛𝑜𝑤 𝑚 𝑎𝑛𝑑 𝑟”)

This idea will turn out to be useful, but NIZK proofs 
themselves can be malleable!

(Intuition)



Constructing CCA-Secure Encryption

OUR GOAL: Hard to modify an encryption of m into 
an encryption of a related message, say m+1. 
OUR GOAL: Hard to modify an encryption of m into 
an encryption of a related message, say m+1. 

Digital Signatures should help!

(Intuition)



Constructing CCA-Secure Encryption

𝐶: (c = CPAEnc 𝑝𝑘,𝑚; 𝑟 , 𝑆𝑖𝑔𝑛P.Q 𝑐 , 𝑣𝑘)𝐶: (c = CPAEnc 𝑝𝑘,𝑚; 𝑟 , 𝑆𝑖𝑔𝑛 𝑐 )

Let’s start with Digital Signatures.

where the encryptor produces a signing / verification key pair 
by running  𝑠𝑔𝑘, 𝑣𝑘 ← 𝑆𝑖𝑔𝑛. 𝐺𝑒𝑛(1")

Is this CCA-secure/non-malleable?

If the adversary changes 𝑣𝑘, 
all bets are off! 

Lesson: NEED to “tie” the ciphertext c
to 𝑣𝑘 in a “meaningful” way.



Observation: 
IND-CPA ⟹ “Different-Key Non-malleability”

Different-Key NM: Given 𝑝𝑘, 𝑝𝑘R, CPAEnc 𝑝𝑘,𝑚; 𝑟 ,
can an adversary produce CPAEnc 𝑝𝑘′,𝑚 + 1; 𝑟 ?

NO! Suppose she could. Then, I can come up with a 
reduction that breaks the IND-CPA security of 
CPAEnc 𝑝𝑘,𝑚; 𝑟 .



Observation: 
IND-CPA ⟹ “Different-Key Non-malleability”

Different-Key NM: Given 𝑝𝑘, 𝑝𝑘R, CPAEnc 𝑝𝑘,𝑚; 𝑟 ,
can an adversary produce CPAEnc 𝑝𝑘′,𝑚 + 1; 𝑟 ?

Diff-Key NM
adversary

𝑝𝑘, 𝑝𝑘′

𝐶𝑃𝐴𝐸𝑛𝑐(𝑝𝑘,𝑚)

𝑪𝑷𝑨𝑬𝒏𝒄(𝒑𝒌.,𝒎 + 𝟏)

Reduction = CPA adversary

𝑝𝑘

𝐶𝑃𝐴𝐸𝑛𝑐(𝑝𝑘,𝑚)

Pick (𝒑𝒌., 𝒔𝒌.)

Decrypt and 
subtract 1.

𝒎



Putting it together

CCA Public Key: 𝟐𝒏 public keys of the CPA scheme 
(where 𝑛 = |𝑣𝑘|)

𝑝𝑘",_
𝑝𝑘","

𝑝𝑘#,_
𝑝𝑘#,"

𝑝𝑘0,_
𝑝𝑘0,"

…

CCA Encryption:

𝑐𝑡",`Q! 𝑐𝑡#,`Q" 𝑐𝑡0,`Q#…
First, pick a sign/ver key pair (𝑠𝑔𝑘, 𝑣𝑘)

𝐶𝑇 =

Output (𝐶𝑇, 𝑣𝑘, 𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑔𝑘, 𝐶𝑇)).

where 𝑐𝑡!,a ← 𝐶𝑃𝐴𝐸𝑛𝑐(𝑝𝑘!,a , 𝑚)



Putting it together

CCA Encryption:

𝑐𝑡",`Q! 𝑐𝑡#,`Q" 𝑐𝑡0,`Q#…
First, pick a sign/ver key pair (𝑠𝑔𝑘, 𝑣𝑘)

𝐶𝑇 =

Output (𝐶𝑇, 𝑣𝑘, 𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑔𝑘, 𝐶𝑇)).

where 𝑐𝑡!,a ← 𝐶𝑃𝐴𝐸𝑛𝑐(𝑝𝑘!,a , 𝑚)

Non-malleability rationale: Either
• Adversary keeps 𝑣𝑘 the same (in which case she 

has to break the signature scheme); or
• She changes the 𝑣𝑘 in which case she breaks the 

diff-NM game, and therefore CPA security.



Call it a day?

CCA Encryption:

𝑐𝑡",`Q! 𝑐𝑡#,`Q" 𝑐𝑡0,`Q#…
First, pick a sign/ver key pair (𝑠𝑔𝑘, 𝑣𝑘)

𝐶𝑇 =

Output (𝐶𝑇, 𝑣𝑘, 𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑔𝑘, 𝐶𝑇)).

where 𝑐𝑡!,a ← 𝐶𝑃𝐴𝐸𝑛𝑐(𝑝𝑘!,a , 𝑚)

We are not done!! Adversary could create ill-formed 
ciphertexts (e.g. the different 𝑐𝑡s encrypt different 
messages) and uses it for a Bleichenbacher-like attack.



NIZK Proofs to the Rescue…

CCA Encryption:

𝑐𝑡",`Q! 𝑐𝑡#,`Q" 𝑐𝑡0,`Q#…
First, pick a sign/ver key pair (𝑠𝑔𝑘, 𝑣𝑘)

𝐶𝑇 =

where 𝑐𝑡!,a ← 𝐶𝑃𝐴𝐸𝑛𝑐(𝑝𝑘!,a , 𝑚; 𝑟!,a)

CCA Public Key: 𝟐𝒏 public keys of the CPA scheme 

𝑝𝑘",_
𝑝𝑘","

𝑝𝑘#,_
𝑝𝑘#,"

𝑝𝑘0,_
𝑝𝑘0,"

…

π =	NIZK proof that “CT is well-formed” 

NP statement: “there exist 
𝑚, 𝑟!,a such that each 𝑐𝑡!,a =
𝐶𝑃𝐴𝐸𝑛𝑐(𝑝𝑘!,a , 𝑚; 𝑟!,a)”

, 𝑪𝑹𝑺

Output (𝐶𝑇, 𝑣𝑘, 𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑔𝑘, 𝐶𝑇)).Output (𝐶𝑇, π, 𝑣𝑘, 𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑔𝑘, 𝑪𝑻, π )).



Are there other attacks?
Did we miss anything else?

Turns out NO. We can prove that this is CCA-secure. 

For a proof sketch, see the next few 
slides  and for a proof, read DDN.

https://www.cs.huji.ac.il/~dolev/pubs/nmc.pdf


We saw: 
Non-Interactive Zero-Knowledge (NIZK) Proofs

We saw: 
How to Construct CCA-secure encryption 

using NIZK proofs



Proof Sketch
Let’s play the CCA game with the adversary. 
We will use her to break either the NIZK soundness/ZK, 
the signature scheme or the CPA-secure scheme.



Proof Sketch
Let’s play the CCA game with the adversary. 

Hybrid 0:  Play the CCA game as prescribed.

Hybrid 1:  Observe that 𝒗𝒌𝒊 ≠ 𝒗𝒌∗. 
(Otherwise break signature)

Observe that this means each query ciphertext-tuple 
involves a different public-key from the challenge 
ciphertext. Use the “different private-key” to decrypt. 
(If the adv sees a difference, she broke NIZK soundness)

Hybrid 2:  Now change the CRS/π into simulated CRS/π!
(OK by ZK)

If the Adv wins in this hybrid, she breaks IND-CPA!


