MIT 6.875 & Berkeley CS276

Foundations of Cryptography Lecture 17

HOW TO CONSTRUCT NIZK IN THE CRS MODEL

Step 1. **Review** our number theory hammers & polish them.

Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.

Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.

Boolean Variables: x_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or $\overline{x_i}$.

A <u>Clause</u> is a *disjunction* of literals.

E.g.
$$x_1 \vee x_2 \vee \overline{x_5}$$

A <u>Clause</u> is true if any one of the literals is true.

Boolean Variables: x_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or $\overline{x_i}$.

A <u>Clause</u> is a *disjunction* of literals.

E.g. $x_1 \vee x_2 \vee \overline{x_5}$ is true as long as:

$$(x_1, x_2, x_5) \neq (0,0,1)$$

Boolean Variables: x_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or $\overline{x_i}$.

A <u>3-Clause</u> is a *disjunction* of 3-literals.

A <u>3-SAT formula</u> is a *conjunction* of many 3-clauses.

E.g.
$$\Psi = (x_1 \lor x_2 \lor \overline{x_5}) \land (x_1 \lor x_3 \lor x_4) (\overline{x_2} \lor x_3 \lor \overline{x_5})$$

A <u>3-SAT formula</u> Ψ is **satisfiable** if there is an assignment of values to the variables x_i that makes all its clauses true.

Cook-Levin Theorem: It is NP-complete to decide whether a 3-SAT formula Ψ is satisfiable.

A <u>3-SAT formula</u> is a *conjunction* of many 3-clauses.

E.g.
$$\Psi = (x_1 \lor x_2 \lor \overline{x_5}) \land (x_1 \lor x_3 \lor x_4) (\overline{x_2} \lor x_3 \lor \overline{x_5})$$

A <u>3-SAT formula</u> Ψ is **satisfiable** if there is an assignment of values to the variables x_i that makes all its clauses true.

NIZK for 3SAT: Recall...

We saw a way to show that a pair (N, y) is GOOD. That is:

- the following is the picture of Z_N^* and
- for every $r \in Jac_{+1}$, either r or ry is a quadratic residue.

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

1. Prover picks an (N, y) and proves that it is GOOD.

Input: $\Psi = (x_1 \lor x_2 \lor \overline{x_5}) \land (x_1 \lor x_3 \lor x_4) (\overline{x_2} \lor x_3 \lor \overline{x_5})$ *n variables, m clauses.*

$$CRS = (r_1, r_2, \dots, r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

2. Prover encodes the satisfying assignment

$$y_i \leftarrow QR_N$$
 if x_i is false $y_i \leftarrow QNR_N$ if x_i is true

$$CRS = (r_1, r_2, \dots, r_{large\;number}) \leftarrow (Jac_N^{+1})^{large\;number}$$

2. Prover encodes the satisfying assignment & ∴ the literals

$$Enc(x_i) = y_i$$
, then $Enc(\overline{x_i}) = yy_i$

 \therefore exactly one of $Enc(x_i)$ or $Enc(\overline{x_i})$ is a non-residue.

$$CRS = (r_1, r_2, \dots, r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

2. Prover encodes the satisfying assignment & ∴ the literals

$$Enc(x_i) = y_i$$
, then $Enc(\overline{x_i}) = yy_i$

 \therefore exactly one of $Enc(x_i)$ or $Enc(\overline{x_i})$ is a non-residue.

$$CRS = (r_1, r_2, \dots, r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

3. Prove that (encoded) assignment satisfies each clause.

For each clause, say $x_1 \vee x_2 \vee \overline{x_5}$, let $(a_1 = y_1, b_1 = y_2, (a_1 + b_1)y_3)$ denote the encoded variables.

So, each of them is either y_i (if the literal is a var) or yy_i (if the literal is a negated var).

$$CRS = (r_1, r_2, \dots, r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

3. Prove that (encoded) assignment satisfies each clause.

For each clause, say $x_1 \vee x_2 \vee \overline{x_5}$, let (a_1, b_1, c_1) denote the encoded variables.

WANT to SHOW: $x_1 OR x_2 OR \overline{x_5}$ is true.

$$CRS = (r_1, r_2, \dots, r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

$$\Psi \qquad \qquad (N,y,\pi) \qquad \Psi$$
Satisfying assignment $(w_1,w_2,...,w_n)$ Encode vars: $(y_1,...,y_n)$

3. Prove that (encoded) assignment satisfies each

For each clause, say $x_1 \vee x_2 \vee \overline{x_5}$, let (a_1, b_1, c_1) denote the encoded variables.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

Prove that (encoded) assignment satisfies each clause.

WANT to SHOW: a_1 OR b_1 OR c_1 is a non-residue.

Equiv: The "signature" of (a_1, b_1, c_1) is **NOT** (QR, QR, QR).

CLEVER IDEA: Generate seven additional triples

CLEVER IDEA: Generate seven *additional* triples

<u>Proof of Coverage</u>: For each of poly many triples (r, s, t) from CRS, show one of the 8 triples has the same signature.

That is, there is a triple (a_i, b_i, c_i) s.t. (ra_i, sb_i, tc_i) is (QR, QR, QR).

$$CRS = (r_1, r_2, \dots, r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

3. Prove that (encoded) assignment satisfies each clause.

For each clause, construct the proof ρ = (7 additional triples, square root of the second triples, proof of coverage).

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

Completeness & Soundness: Exercise.

Zero Knowledge: Simulator picks (N, y) where y is a quadratic residue.

Now, encodings of ALL the literals can be set to TRUE!!

HOW TO CONSTRUCT NIZK IN THE CRS MODEL

- Step 1. **Review** our number theory hammers & polish them.
- Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.
- Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.

An Application of NIZK:

Non-malleable and Chosen Ciphertext Secure Encryption Schemes

Non-Malleability

 $m \leftarrow Dec(sk,c)$

$$c \leftarrow \text{Enc}(\mathbf{pk}, \mathbf{m})$$

Public-key directory

Bob	pk

Active Attacks 1: Malleability

ATTACK: Adversary could modify ("maul") an encryption of m into an encryption of a related message m'.

Active Attacks 2: Chosen-Ciphertext Attack

ATTACK: Adversary may have access to a decryption In fact, Bleichenbacher showed how to extract the entire oracle and can use it to break security of a "target" secret key given only a "ciphertext verification" oracle. Ciphertext c* or even extract the secret key!

 $b \leftarrow \{0,1\}; c^* \leftarrow Enc(pk, m_h^*)$

IND-CCA Security

Eve

$$(pk, sk) \leftarrow Gen(1^n)$$

$$c_i$$

$$Dec(sk, c_i)$$

 m_0^*, m_1^* s.t. $|m_0^*| = |m_1^*|$

$$c_{i} \neq c^{*}$$

$$Dec(sk, c_{i})$$

$$b'$$

c*

Eve wins if b' = b. IND-CCA secure if no PPT Eve can win with prob. $> \frac{1}{2} + \text{negl}(n)$.

Constructing CCA-Secure Encryption (Intuition)

NIZK Proofs of Knowledge should help!

Idea: The encrypting party attaches an NIZK proof of knowledge of the underlying message to the ciphertext.

C: $(c = CPAEnc(m; r), proof \pi that "I know m and r")$

This idea will turn out to be useful, but NIZK proofs themselves can be malleable!

Constructing CCA-Secure Encryption (Intuition)

Digital Signatures should help!

OUR GOAL: Hard to modiffy am emcryptiiom off rm imto an encryption of a related message, say m+1.

Constructing CCA-Secure Encryption

Let's start with Digital Signatures.

C:
$$(c = CPAEnc(pk, m; r), Sign(g)(c), vk)$$

where the encryptor produces a signing / verification key pair by running $(sgk, vk) \leftarrow Sign. Gen(1^n)$

Is this CCA-secure/non-malleable?

If the adversary changes vk, all bets are off!

Lesson: NEED to "tie" the ciphertext c to vk in a "meaningful" way.

Observation: IND-CPA ⇒ "Different-Key Non-malleability"

Different-Key NM: Given pk, pk', CPAEnc(pk, m; r), can an adversary produce CPAEnc(pk', m + 1; r)?

NO! Suppose she could. Then, I can come up with a reduction that breaks the IND-CPA security of CPAEnc(pk, m; r).

Observation:

IND-CPA ⇒ "Different-Key Non-malleability"

Different-Key NM: Given pk, pk', CPAEnc(pk, m; r), can an adversary produce CPAEnc(pk', m + 1; r)?

Reduction = CPA adversary

Putting it together

CCA Public Key: 2n public keys of the CPA scheme

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m)$

Output $(CT, vk, \sigma = Sign(sgk, CT))$.

Dutting it together

Non-malleability rationale: Either

- Adversary keeps vk the same (in which case she has to break the signature scheme); or
- She changes the vk in which case she breaks the diff-NM game, and therefore CPA security.

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m)$

Output $(CT, vk, \sigma = Sign(sgk, CT))$.

Call it a day?

We are not done!! Adversary could create ill-formed ciphertexts (e.g. the different cts encrypt different messages) and uses it for a Bleichenbacher-like attack.

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m)$

Output $(CT, vk, \sigma = Sign(sgk, CT))$.

NIZK Proofs to the Rescue...

CCA Public Key: 2n public keys of the CPA scheme

$$\begin{bmatrix} pk_{1,0} & pk_{2,0} & & & pk_{n,0} \\ pk_{1,1} & pk_{2,1} & & & pk_{n,1} \end{bmatrix}$$
 , **CRS**

NP statement: "there exist $m, r_{i,j}$ such that each $ct_{i,j} = CPAEnc(pk_{i,j}, m; r_{i,j})$ "

key pair (sgk, vk)

 ct_{n,vk_n}

where $ct_{i,j}$ $PAEnc(pk_{i,j}, m; r_{i,j})$

 $\pi = NIZK$ proof that "CT is well-formed"

Output $(CT, \pi k y k, \sigma Si Si g \pi g k g k T) GT, \pi))$.

Are there other attacks?

Did we miss anything else?

Turns out NO. We can prove that this is CCA-secure.

For a proof sketch, see the next few slides and for a proof, read <u>DDN</u>.

We saw:

Non-Interactive Zero-Knowledge (NIZK) Proofs

We saw:

How to Construct CCA-secure encryption using NIZK proofs

Proof Sketch

Let's play the CCA game with the adversary.

We will use her to break either the NIZK soundness/ZK, the signature scheme or the CPA-secure scheme.

Proof Sketch

Let's play the CCA game with the adversary.

Hybrid 0: Play the CCA game as prescribed.

Hybrid 1: Observe that $vk_i \neq vk^*$.

(Otherwise break signature)

Observe that this means each query ciphertext-tuple involves a different public-key from the challenge ciphertext. Use the "different private-key" to decrypt.

(If the adv sees a difference, she broke NIZK soundness)

Hybrid 2: Now change the CRS/ π into simulated CRS/ π ! (OK by ZK)

If the Adv wins in this hybrid, she breaks IND-CPA!