MIT 6.875 & Berkeley CS276

Foundations of Cryptography
Lecture 2

Administrivia

o Piazza Time-zone Survey & Office hours

o PS1 Released, due Sept 15

The Secure Communication Problem

ﬂ:f M -

Key k Key k
Bob

Alice

o Alice and Bob have a common key k

o Algorithms (Gen, Enc, Dec)
o Correctness: Dec(k, Enc(k,m)) =m
o Security: No Eve learns anything about m.

How to Define Security

Perfect secrecy: A Posteriori = A Priori

Forallm,c: PriM = m |E(K,M) = c] = Pr[M = m]

Perfect indistinguishability:

For all my, mq, c: Pr[E(K,my) = c|] = Pr[E(K,my) =]

The two definitions are equivalent!

Is there a perfectly secure scheme?

 One-time Pad: E(k,m) = k®m
* However: Keys are as long as Messages

« WORSE, Shannon’s theorem:
for any perfectly secure scheme, |key|>|message|.

Can we overcome Shannon’s conundrum?

Let’s first rewrite...

Perfect indistinguishability: as a Turing test

For all my, mq, c: Pr[E(K,my) = c|] = Pr[E(K,m,) = c]

g World O:) g World 1:)
k « K k — K
\ C=E(k,m0) j \ C=E(k)m1) j

“@g is a, distinguisher.

For all EVE and all mgy, m: Prlk « K;c = E(k,my): EVE(c) = 0]
= Prlk « K;c = E(k,mq{): EVE(c) = 0]

Let’s first rewrite...

Perfect indistinguishability: as a Turing test

For all my, mq, c: Pr[E(K,my) = c|] = Pr[E(K,m,) = c]

g World O:) g World 1:)
k « K k — K
\ C=E(k,m0) j \ C=E(k)m1) j

“@g is a, distinguisher.

For all EVE and all mg, m4 -
Prlk « ;b < {0,1}; c = E(k,my): EVE(c) = b] =1/2

The Axiom of Modern Crypto

Feasible Computation = Probabilistic polynomial-time *
(P.P.t. = Probabilistic polynomial-time)

(polynomial in a security parameter n)

So, Alice and Bob are fixed p.p.t. algorithms.
(e.g., run in time n"2)

Eve is any p.p.t. algorithm.
(e.g., run in time n™4, or n™100, or n*10000,...)

* in recent years, quantum polynomial-time

Computational Indistinguishability (take 1)

g World O: A 4 World 1:; A
k « K k « K
\ C=E(k,m0) / \ C=E(k,m1) /

“@! is a p.p.t. distinguisher.

For all p.p.t. EVE and all my, m; .
Prlk « ;b < {0,1}; c = E(k,my): EVE(c) =b] =1/2

.08 : : . s -
@ Still subject to Shannon’s impossibility !

_— Still subject to Shannon’s impossibility!

Messages n+1 bits ciphertexts

Set of messages

congsistent with ¢
= {D(k,c): all k}

.ml

Consider Eve that picks a random key k and
outputs 0 if D(k,c) =m, W.p=1/2"
outputs 1 if D(k,c)=m;y w.p=0
and a random bit if neither holds.

Bottomline: Pr[EVE succeeds] = 1/ + 1/2"

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function u: N — R is negligible if
for every polynomial function p,

there exists an n, s.t.
for all n > ny:

p(n) <1/p(n)

Key property: Events that occur with negligible probability
look to poly-time algorithmslike they never occur.

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function u: N — R is negligible if
for every polynomial function p,

there exists an n, s.t.
for all n > ny:

p(n) <1/p(n)

Question: Let u(n) = 1/n'°8™, Is u negligible?

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function u: N — R is negligible if
for every polynomial function p,

there exists an n, s.t.
for all n > ny:

p(n) <1/p(n)

Question: Let u(n) = 1/n1% if n is prime and

u(n) = 1/2" otherwise. Is u negligible?

Computational Indistinguishability

4 World O: A 4 World 1: A
k « K k « K
\ C=E(k,m0) / \ C=E(k,m1) /
“@{ is a distinguisher. \0-0/

For all P.P.X. EVE, there is a negligible function u
s.t. forallmgy, my -

Prlk « ;b < {0,1}; c = E(k,my): EVE(c) = b] < % + u(n)

Our First Crypto Tool:
Pseudorandom Generators (PRG)

PRG Definition

A function G:{0,1}"*- {0,1}**! is a pseudorandom generator
if for no p.p.t. EVE can distinguish between ¢ (U,) and U, ;1.

U,,= uniform distribution on n bits.

U,,+1= uniform distribution on n+1 bits.

PRG Definition

A function G: {0,1}"- {0,1}"*! is a pseudorandom generator
if for for all p.p.t. EVE, there is a negligible function u s.t.

|Prly « Upyq: EVE(y) = 0] —
Pr(x « Up;y = G(x):EVE(y) = 0]| < u(n)

Question: What happens to this definition if EVE is unbounded?

PRG = Overcoming Shannon’s Conundrum
(or, How to Encrypt n+1 bits using an n-bit key)

Gen(1™): Generate a random n-bit key k.

Enc(k,m) where m is an (n + 1)-bit message:
Expand k into a (n+1)-bit pseudorandom string k' = G (k)

One-time pad with K’: ciphertextis k'@®m

Dec(k, c) outputs G(k)®c

Correctness:
Dec(k, c) outputs G(k)®c = G(k)DBG(k)dm = m

PRG = Overcoming Shannon’s Conundrum

Security: by contradiction.

Suppose for contradiction that there is a p.p.t. EVE, a polynomial
function p and my, m4 s.t.

Prlk « K;b < {0,1}; c = E(k,mp): EVE(c) = b] 2%+ 1/p(n)

PRG = Overcoming Shannon’s Conundrum

Security: by contradiction.

Suppose for contradiction that there is a p.p.t. EVE, a polynomial
function p and my, mq s.t.

p=Prlk «<{0,1}";b « {0,1}; c = G(k)®my: EVE(c) = b]

1
= E + 1/p(n)
Letp’ = Pr[k’ « {0,1}"*};b « {0,1}; c = K'@®m,: EVE(c) = b]
1
T2

This will give us a distinguisher EVE’ for G, contradicting the
assumption that G is a pseudorandom generator. QED.

PRG = Overcoming Shannon’s Conundrum

Distinguisher EVE’ for G.

Get as input a string y, run EVE(y&@m,) for a random b, and let EVE’s
output be b’. Output “PRG” if b=b” and “RANDOM” otherwise.

Pr|EVE'outputs “PRG” | y is pseudorandom]
1
=p=z35+1/p(n)

1
Pr[EVE'outputs “PRG” | y is random] = p' = >

Therefore, Pr[EVE'outputs “PRG” | y is pseudorandom] —
Pr[EVE'outputs “PRG” | y is random]

= 1/p(n) .

PRG = Overcoming Shannon’s Conundrum
(or, How to Encrypt n+1 bits using an n-bit key)

Q]_: Do PRGs exist?

(Exercise: If P=NP, PRGs do not exist.)

100

QZ: How do we encrypt n~"" message bits with n key bits?

(Length extension: If there is a PRG that stretches by one bit,
there is one that stretches by polynomially many bits)

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. “appropriately chosen functions composed
appropriately many times look random™)

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. “appropriately chosen functions composed

appropriately many times look random™)

2. Come up with a candidate construction

=5 5~ Rijndael
—=iwi—— (now the Advanced

e = @444+ Encryption Standard)
e 'o ;.é_r.g)_r,ékmum

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. “appropriately chosen functions composed

appropriately many times look random™)

&. Come up with a candidate construction

3. Do extensive cryptanalysis.

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

Reduce to simpler primitives.

“Science wins either way” -Silvio Micali

Digital
Signatures PRF

PRG

Hashing

“owr
i

well-studied, average-case hard, problems

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

A PRG Candidate from the hardness of Subset-sum:
G(ay, o) Apyy X1, ooy X)) = (A1, e, Ay 2t q X;a; O 271

where a; are random (n+1)-bit numbers, and x;
are random bits.

Beautiful Function:

If G is a one-way function, then G is a PRG (Pset 1).

If lattice problems are hard on the worst-case, G is a
PRG (6.876 Falll8 / CS294-168 Springl0)

PRG = Overcoming Shannon’s Conundrum
(or, How to Encrypt n+1 bits using an n-bit key)

Q]_: Do PRGs exist?

(Exercise: If P=NP, PRGs do not exist.)

100

QZ: How do we encrypt n~"" message bits with n key bits?

(Length extension: If there is a PRG that stretches by one bit,
there is one that stretches by polynomially many bits)

Length extension: One bit to Many bits

Let G: {0,1}" - {0,1}"*! be a pseudorandom generator.

Goal: use G to generate many pseudorandom bits.

Length extension: One bit to Many bits

Let G: {0,1}" - {0,1}"*! be a pseudorandom generator.

Goal: use G to generate poly many pseudorandom bits.

Length extension: One bit to Many bits

Let G: {0,1}" - {0,1}"*! be a pseudorandom generator.

Goal: use G to generate poly many pseudorandom bits.

Construction of G’(xq)

X0 x1 = G(xp)
—e—

Length extension: One bit to Many bits

Let G: {0,1}" - {0,1}"*! be a pseudorandom generator.

Goal: use G to generate poly many pseudorandom bits.

Construction of G’(xq)

X0 b4y
—o —

Length extension: One bit to Many bits

Let G: {0,1}" - {0,1}"*! be a pseudorandom generator.

Goal: use G to generate poly many pseudorandom bits.
Construction of G’(xy) Output b, b, bs b, bs ... y;.

X0 Y1 Y2 YL-1
[\

| } } VN
b1 b2 bL—l bL yl‘

Also called a stream cipher by the applied people.

Are we all set with encryption?

To encrypt the i-th bit, use the i-th pseudorandom bit.
Two problems:

1. Runtime (an efficiency issue)

2. Need to remember state (a security issue)

In a couple of weeks, Shafi will solve both
problems in one shot.

Next Lecture:

Define one-way functions (OWF),
Hardcore bits (HCB),
Goldreich-Levin Theorem: every OWF has a HCB.

Show that OWF = PRG
(how to construct a PRG from any OWEF *)

