MIT 6.875 & Berkeley CS276

Foundations of Cryptography
Lecture 21

TODAY: Homomorphic Encryption

1. Secure Outsourcing

ﬁ\Program:P
Encﬁ Y o

b Client Server (the Cloud)

A Special Case: Encrypted Database Lookup

— also called “private information retrieval” (next lec)

2. Secure Collaboration
(also called Secure Computation)

Genomics

ID Genome

ﬁ

“Parties learn the genotype-phenotype correlations and nothing else”

Homomorphic Encryption: Syntax
(can be either secret-key or public-key enc)

4-tuple of PPT algorithms (Gen, Enc, Dec, Eval) s.t.
e (sk,ek) « Gen(1M).

PPT Key generation algorithm generates a secret key as well as a
(public) evaluation key.

¢ « Enc(sk,m).
Encryption algorithm uses the secret key to encrypt message m.

¢ « Eval(ek, f,c).
Homomorphic evaluation algorithm uses the evaluation key to
produce an “evaluated ciphertext” ¢'.

e m <« Dec(sk,c).
Decryption algorithm uses the secret key to decrypt ciphertext c.

Homomorphic Encryption: Correctness

Dec(sk, Eval(ek, f,Enc(x))) = f(x).

Enc Dec

Homomorphic Encryption: Security

Function: f

Enc(sk,x)

ya
- 1=
- 1=
- 1=
L N

b Client Server (the Cloud)

Security against the curious cloud = standard IND-
security of secret-key encryption

Key Point: Eval is an entirely public algorithm with public
iInputs.

Here is a homomorphic encryption scheme...

o (sk,—) « Gen(1™M).

Use any old secret key enc scheme.

e ¢« Enc(sk,m).
Just the secret key encryption algorithm...

¢ « Eval(ek,f,c).
Output ¢’ =c || f. So Eval is basically the identity function!!

« m « Dec(sk,c).
Parse ¢’ = c||f as a ciphertext concatenated with a function
description. Decrypt ¢ and compute the function f.

This is correct and it is IND-secure.

Homomorphic Encryption: Compactness

The size (bit-length) of the evaluated ciphertext and the
runtime of the decryption is independent of the
complexity of the evaluated function.

A Relaxation: The size (bit-length) of the evaluated
ciphertext and the runtime of the decryption depends
sublinearly on the complexity of the evaluated function.

Big Picture: Two Steps to FHE

Leveled Secret-key Homomorphic Encryption:
Evaluate circuits of a-priori bounded depth d

“you give me a depth bound d, | will give you a homomorphic scheme that
handles depth-d circuits...”

Bootstrapping Theorem:
From “circular secure” Leveled FHE to Pure FHE
(at the cost of an additional assumption)

“I will give you homomorphic scheme that handles circuits of ANY size/depth”

How to Compute Arbitrary Functions

For us, programs = functions = Boolean circuits with
XOR (+mod 2) and AND (X mod 2) gates.

| Enc((xy + x2)x3x4)

(]

Enc(x; + x2) | | Enc(x3x,)

A

Enc(xy) Enc(xy) Enc(x3) Enc(xy)

Takeaway: If you can compute XOR and AND on
encrypted bits, you can compute everything.

Learning with Errors (LWE)

Given: A and A

GOAL: Finds.

Parameters: dimensions n and m, modulus g, error
distribution y = uniform in some interval [—B, ..., B].

A is chosen at random from Zg**", s from Zg
and e from y™.

Setting Parameters

Put together, we are safe with:

n = security parameter (= 1 — 10K)
m = arbitrary poly in n
B = small poly in n, say \n

g = polyinn, larger than B, and could be

. 0.99
as large as sub-exponential, say 2™

even from quantum computers, AFAWK! %

Decisional LWE

Can you distinguish between:

and

Theorem: “Decisional LWE is as hard as LWE".

Basic (Secret-key) Encryption

[Regev095]

n = security parameter, q = “small” modulus

 Secret key sk = Uniformly random vector s € Z7

« Encryption Encg(u): // u e {0,1}

— Sample uniformly random a € Z7, "small” noise e € Z

— The ciphertext c = (a, b =(a, s) + e +u |q/2])

* Decryption Decg(c): Output Round,,(b — (a, s) mod q)

// correctness as long as |e| < g/4

New (Secret-key) Encryption: Take 1
+ Private key: a vector s € Z"
. Private-key Encryption of a bit m € {0, 1}:

c=[%]+mI (aisrandom (n+1)X n matrix)

* Decryption:

sI-11 € = mIsli-] (moda
el I

Priv key = Eigenvector Ciphertext matrix Message = Eigenvalue

= INSECURE! Easy to solve linear equations.

New (Secret-key) Encryption: Take 1

t.C=m.t(modq)

t=[s|[-1]

» Homomorphic addition: C, + C,

— tis an eigenvector of C;+C, with eigenvalue m,;+m,

» Homomorphic multiplication: C,C,

— tis an eigenvector of C,C, with eigenvalue mm,

Proof:

But, remember, the scheme is insecure?

Key idea: fix insecurity while retaining homomorphism.

New (Secret-key) Encryption: Take 2

* Private key: a vectors € Z
 Private-key Encryption of a bit m € {0, 1}:

C= [sAA+ e] +mlI (Ais random (n+1) X n matrix)

* Decryption:

sii-11 C = m [s || -1] (mod q)
Y — Y
Priv key = Approx Ciphertext matrix =~ Message =.Approx
Eigenvector Eigenvalue

& CPA-secure by LWE.

New (Secret-key) Encryption: Take 2

t.C=m.t+e (modq)

t=[s|[-1]

» Homomorphic addition: C, + C,

t-(Cy+ Cy) =tCy +tC,

=myt+é, +myt+e, Noise grows a
little

v

= (my+my)t + (é,+6,)

~ (mq +my)t

New (Secret-key) Encryption: Take 2

t.C=m.t+e (modq)

t=[s|[-1]

» Homomorphic multiplication: C; C, Can also

use CZC1

£ (G- G) =(mt+é)C, Noise grows.
— mlgcz +¢é,C, Need C; to be

S . small! How?!
= ml(mzt + 62) + 8162

— mlmzt +lm1é)2 + 5162'
Y

Emult

Aside: Binary Decomposition

Break each entry in C into its binary representation

1_

C = ?1) i] (mod 8) = bits(C) = (mod 8)

_ O OR Rk O
CORR O

Small entries like we wanted!

Consider the “reverse” operation:
klogqg

—>

kI[]-bitS(C)=C = | t-C=t-G-G1(C)

((

G Denote: G ~1(C) which has “small” entries

New (Secret-key) Encryption: Take 3

* Private key: a vectors € Z
 Private-key Encryption of a bit m € {0, 1}:

C=[A]+mG (A is random (n+1) X n log g matrix)
SA+e

* Decryption:

‘ISII -1]’ C = m[s || -1] G (modq)
Y — Y
Priv key = Approx Ciphertext matrix Message = Approx
Eigenvector “Eigenvalue”

& Still CPA-secure by LWE.

New (Secret-key) Encryption: Take 3

t.C=m.t.G+e (modq)
t=I[s || -1]

» Homomorphic multiplication: | Cmpur = €1 - G~ (C5)

-

3-C-GUC) = (@ +my-8-G) G 1(Cy)
=&,-G1(C))+my-5-G-G1(Cy)
=@é-G () +my-5-Cy
=é,-G Y C)+mqy-(é;+my-5-G6)

= (61 . G_l(Cz) + mq - 52) + mms, - § -G

Cmult

lémuiell Snlogq-lléill + my - ll&;]l < (nlog g + 1) - max{llé, I, llé;l}

Depth d

Let N =nlogq

Homomorphic Circuit Evaluation

Noise grows during homomorphic eval

.

Cinput

é output

a;wm

O O

/O\

”é)output” < (N+1)%-By = NBy

= Decryptable if ¢ > N9B,.
(for security: g « 2™")

So this can support d ~ n%?°

<_

— |leip1ll < (N + Dlel|

||5input|| < By

Big Picture: Two Steps to FHE

Leveled Secret-key Homomorphic Encryption:
Evaluate circuits of a-priori bounded depth d

“you give me a depth bound d, | will give you a homomorphic scheme that
handles depth-d circuits...”

Bootstrapping Theorem:
From “circular secure” Leveled FHE to Pure FHE
(at the cost of an additional assumption)

“I will give you homomorphic scheme that handles circuits of ANY size/depth”

From Leveled to Fully Homomorphic

Function: f

Enc(sk,x)

b Client Server (the Cloud)

The cloud keeps homomorphically computing, but

after a certain depth, the ciphertext is too noisy to
be useful. What to do?

Idea: “Bootstrapping’!

But the
evaluator/cloud
“Best P does not have SK! !
| m “Noiselt iphertext”

Dec(:, CT) - “Very Noisy” ciphertext

NN
SK

Decryption Circuit

P 4

= Bootstrapping, Concretely

Next Best = Homomorphic Decryption!

Assume server knows ek = Encgk(SK).

(OK assuming the scheme is “circular secure”)

Encsy(m)

Dec(-,CT)

N
Encgk(SK)

'xBootstrapping, Concretely

ext Best = Homomorp»~} Decryption!

DGC(', CT)‘ """"""""" Noise = Binput

N
Encgk(SK)

Wrap Up: Bootstrapping
|

Assume Circular Security: Function f
Evaluation key is Encgk(SK)

Wrap Up: Bootstrapping
|

Assume Circular Security: Function f
Evaluation key is Encgk(SK)

Each Gate g — Gadget G: g(a,b)
g(a.b) a b

@ Dec(:, cq) Dec(, cp)

a b BEEERERR llllllbll

sk sk

Wrap Up: Bootstrapping
|

Assume Circular Security: Function f
Evaluation key is Encgk(SK)

Each Gate g — Gadget G: Enc(g(a,b))
g(a.b) a b
@ Dec(:, cq) Dec(, cp)
a b BEREEERR llllllbll

Enc(sk) Enc(sk)

How about Function Privacy?

Function: f

Enc(sk,x)

Enc(f(x))

b Client Server (the Cloud)

Security against the curious cloud = standard IND-
security of secret-key encryption

Security against a curious user?

Function Privacy

Function: f

Enc(sk,x)

ya
- 1=
- 1=
- 1=
L N

Enc(f(x))

b Client Server (the Cloud)

Function Privacy: Enc(f(x)) reveals no more
information (about f) than f(x).

HOMOMORPHIC ENCRYPTION IN PRACTICE

DARPA $S60M investment [2012-17].

Many Open Source Libraries.

{ PALISADE } SEAL

\
s

{ HELib } HEEAN
.

APPLICATIONS of HOMOMORPHIC ENCRYPTION

Healthcare
8 Applying genomic analysis
Il to 1K patients

Winner of the 2018 iDash
International Homomorphic
Encryption competition

Collaboration with Dana Farber
and Duality Technologies.

Financial
Benchmarking cyberrisk on
1M

records

111 \@?/ﬁ

Py

Collaboration with Andrew Lo@Sloan and Danny
Weitzner@CSAIL Internet Policy Research Initiative.

Medical Imaging
Breast density detection on
encrypted mammograms

————1
oo oo
oo oo
oo| HH BE oo
%

Hidden
Input
Output

Collaboration with Regina Barzilay@CSAIL
and Anantha Chandrakasan@EECS.

S
?0 Synergy of Algorithms & Data Science & HPC & Crypto

THE DREAM

Bd1

Data Science

Platform‘

Homomorphic
ML Algorithms
%
(@]
E Homomorphic
ke Linear Algebra Layer
<
e
S
S Homomorphic
§ Instruction Set

Many Secure Computing Startups.

Standardization Efforts.

homomorphicencryption.org

Next Lecture:
Homomorphic Encryption and Database Lookup

