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TODAY: Oblivious Transfer and
Private Information Retrieval
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Correctness: Client gets D[i].

Privacy (for client): Server gets no information about i.
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Oblivious Transfer (OT)

Choice bit: b

Sender Receiver

« Sender holds two bits xy and x;.
 Receiver holds a choice bit b.

* Receiver should learn x;, sender should learn nothing.

(We will consider honest-but-curious adversaries; formal
definition in a little bit...)



Why OT? The Dating Problem
e,



Why OT? The Dating Problem

Alice and Bob want to
compute the ANDa A L.

— 0 Run an OT protocol
X0 = Gy ChoiiCe bit b =

Bob gets a if =1, and 0 if =0

Here is a way to write the OT selection function: x1b + x¢(1 — b)

which, in this case is = af.



The Billionaires’ Problem

Net worth:

Who is richer?



The Billionaires’ Problem
FX,7) =1

ﬂ ifandonlyif X >Y

O0/1/0/0]| - - 071111 1]|1

Unit Vector uy = 1 in the X" Vector vy = 1 from the (Y + 1)"

location and 0 elsewhere location onwards
U

FOLY) = (ux,vy) = ) uyli] Avyi]

i=1




Detour: OT = Secret-Shared-AND

Alice gets random y, Bob gets
random o s.t.y @06 = apf.

Output: y Output: &
— Run an OT protocol
X1 =ady

Alice outputs y.
Bob gets x1b + x0(169b) = (x1 D xo)b +Xx9 = af®y =90



The Billionaires’ Problem

fxy)=1
ﬂ ifandonlyif X >Y
0/1.0/0]| - - 101 1 1
Unit Vector uy U Vector vy
FXY) = (ux,vy) = ) uyli] Avyli
i=1

1. Alice and Bob run many OTs to get (y;, 6;) s.t.
Yi®d; = uxli] Avyli]
2. Alice computes y = @, y; and Bob computes § = &; ;.

Check (correctness): y 5 = (uy,vy) = f(X,Y).



The Billionaires’ Problem

fX,Y)=1
ﬂ ifandonlyif X >Y
0[1]0]0 11
Unit Vector uy U
FOLY) = (uy, vy) = ) uxli] Avyli]
i=1

1. Alice and Bob run many OTs to get (y;, 6;) s.t.
Yi®d; = uxli] Avyli]
2. Alice computes y = @, y; and Bob computes § = &; ;.

Check (privacy): Alice & Bob get a bunch of random bits.



llOT iS COmp|ete,,

Theorem (lec23-27): OT can solve not just love and
money, but any two-party (and multi-party) problem.
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OT Definition

Choice bit: b

Sender Receiver

Receiver Security: Sender should not learn b.

Define Sender’s view Views(x, x1, b) = her random coins
and the protocol messages.



OT Definition

Choice bit: b

Sender Receiver

Receiver Security: Sender should not learn b.

There exists a PPT simulator SIM¢ such that for any
Xg,X1 and b:

SIM¢(xg,x1) = Views(xg, X1, b)



OT Definition

Choice bit: b

Sender Receiver

Sender Security: Receiver should not learn x;_;.

Define Receiver’s view Viewg(xg, x1, b) = his random coins
and the protocol messages.



OT Definition

Choice bit: b

Sender Receiver

Sender Security: Receiver should not learn x;_;.

There exists a PPT simulator SIMgp such that for any
Xg,X1 and b:

SIMgp (b, xp) = Views(xg, X1, b)



OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

Input bits: (xg, x1) Choice bit: b

Pick N = PQ and N,e
RSA exponent e. >

Choose random r;, and
set s, = rf mod N

50,51
« Choose random s;_,
Compute ry, 4 and
one-time pad xg, x4 Xo@®HCB (1y) .
i - » Bob can recover x
using hardcore bits x,®HCB () b

but not x;_,



OT Protocol 1: Trapdoor Permutations

N, e

>
So, S1
Input bits: (xg, x1) Choice bit: b
xo®HCB (1)
>
x1@®HCB(ry)

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

Alice’s view is sy, s; one of which is chosen randomly
from Zy and the other by raising a random number to
the e-th power. They look exactly the same!



OT Protocol 1: Trapdoor Permutations

N, e
>
i .
Input bits: (xg, x1) Choice bit: b
xo®HCB (1)
X ®HCB(ry)

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

Exercise: Show how to construct the simulator.



OT Protocol 1: Trapdoor Permutations

N, e

>
So, S1
Input bits: (xg, x1) Choice bit: b
xo®HCB (1)
>
x1@®HCB(ry)

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Assuming Bob is semi-honest, he chose s;_; uniformly

at random, so the hardcore bit of s,_, = r , is
computationally hidden from him.



OT Protocol 1: Trapdoor Permutations

N, e
>
i .
Input bits: (xg, x1) Choice bit: b
xo®HCB (1)
X ®HCB(ry)

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Exercise: Show how to construct the simulator.



OT Protocol 2: Additive HE

Input bits: (xg, x1) Choice bit: b

Encrypt choice bit b

Homomorphically c ¢ < Enc(sk, b)
evaluate the
selection function

SEL,, ., (b) = ¢’ = Eval(SELy, x, (b), )
(x1 @ x9)b + x9 >

Decrypt to get x,,

Bob’s security: computational, from CPA-security of Enc.

Alice’s security: statistical, from circuit-privacy of Eval.



Many More Constructions of OT

Theorem: OT protocols can be constructed based
on the hardness of the Diffie-Hellman problem,
factoring, quadratic residuosity, LWE, elliptic curve
isogeny problem etc. etc.
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Two ways to overcome the triviality

e

Oblivious Transfer (OT)

\Add’l property: server privacy)

————————————————————————————————————————————

Symmetric PIR =
‘Succinctness +
. _ _ N Server privacy :
Private Information Retrieval (PIR) | 7

Add’l property: succinctness
\. J




Private Information Retrieval

Query g
<

lxnswer !
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Privacy (for client): Server gets no information about i.

Succinctness: Total communication < N bits, ideally O(log N).



Lower Bound

Theorem: Any PIR protocol that communicates < N bits
cannot be information-theoretically (client-)private.

Idea: Pigeon-hole principle.

Consider the function (parameterized by the query) that
maps databases to answers.

Databases {0,1}" Answers {0,1}<VN



Lower Bound

Theorem: Any PIR protocol that communicates < N bits
cannot be information-theoretically (client-)private.

The two databases differ in at least one index, say i".

By correctness, the queried index could not have been i*.
This reveals some information about the query. QED.

Databases {0,1}" Answers {0,1}<VN



Construction 0: Using Additive HE

Database D

Homomorphically
compute inner product
with the database

Pretty long! O(NA) bits.

X

Enc(sk, u;) Client wants to retrieve

Enc(sk,u; - D) = Enc(sk,D;)

—\

Pretty short! 0(A) bits, where
A is the security parameter.



Constr. 1: Using Additive HE (better)

Database D

VN

Homomorphically
compute inner product

with each column

0(v/N2) bits.

Database D = v/N by VN matrix

0(+/N2) bits.
Enc(sk, u;) Client wants to retrieve

G—— index (i, j)

fEnc(sk,E{-Dl) = Enc(sk,D; )
Enc(sk, u; - D,) = Enc(sk,D;>)

= Enc(sk, D; ;)

_Enc(sku;-Dyg) = Enc(sk,D; )
— ’



Construction 2
(The “Ultimate” PIR)

Write the database access function:

Foluuty )= ) Di(x = 0)

i=i1ip..in

= )0 ﬂ@e =5)

= l1 l2 ln

Thisis 1 ifand only if x = i.

O(log N - 1) bits.
Client encrypts x. Server homomorphically evaluates Fj,.



Can we Achieve
Unconditionally Secure PIR?

| thought you proved this is impossible?!

Change the model: two or more non-communicating servers!

(you will come up with a solution in PS6)



WE SAW: Oblivious Transfer and
Private Information Retrieval

The rest of the course: How to solve any
two-party (and multi-party) problem.




