MIT 6.875 & Berkeley CS276

Foundations of Cryptography Lecture 22

TODAY: Oblivious Transfer and Private Information Retrieval

Basic Problem: Database Access

Database D

0	x_0		
1	x_1		
2	x_2		Index: i
3	x_3		
4	x_4		
5	x_5		1720
6	x_6	Server	Client
7	<i>x</i> ₇		

Correctness: Client gets D[i].

Privacy (for client): Server gets no information about *i*.

Here is a Tsvool utiasyrs' to The versus movements threats it he liby B to the client.

Oblivious Transfer (OT)

Add'l property: server privacy

Private Information Retrieval (PIR)
Add'l property: succinctness

Symmetric PIR = Succinctness + Server privacy

Oblivious Transfer (OT)

- Sender holds two bits x_0 and x_1 .
- Receiver holds a choice bit b.
- Receiver should learn x_b, sender should learn nothing.
 (We will consider honest-but-curious adversaries; formal definition in a little bit...)

Why OT? The Dating Problem

Alice and Bob want to compute the AND $\alpha \land \beta$.

Why OT? The Dating Problem

Alice and Bob want to compute the AND $\alpha \land \beta$.

Choice bit $b = \beta$

Bob gets α if β =1, and 0 if β =0

Here is a way to write the OT selection function: $x_1b + x_0(1-b)$ which, in this case is $= \alpha\beta$.

The Billionaires' Problem

Who is richer?

The Billionaires' Problem

Unit Vector $u_X = 1$ in the X^{th} location and 0 elsewhere

Vector $v_Y = 1$ from the $(Y + 1)^{th}$ location onwards

$$f(X,Y) = \langle u_X, v_Y \rangle = \sum_{i=1}^{o} u_X[i] \wedge v_Y[i]$$

Compute each AND individually and sum it up?

Detour: OT ⇒ **Secret-Shared-AND**

Alice gets random γ , Bob gets random δ s.t. $\gamma \oplus \delta = \alpha \beta$.

Output: δ

Output: γ

 $x_1 = \alpha \oplus \gamma$

Choice bit $b = \beta$

Alice outputs γ .

Bob gets $x_1b + x_0(1 \oplus b) = (x_1 \oplus x_0)b + x_0 = \alpha\beta \oplus \gamma := \delta$

The Billionaires' Problem

f(X,Y) = 1 if and only if X > Y

Vector v_v

Unit Vector u_X

$$f(X,Y) = \langle u_X, v_Y \rangle = \sum_{i=1}^{U} u_X[i] \wedge v_Y[i]$$

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t.

$$\gamma_i \oplus \delta_i = u_X[i] \wedge v_Y[i]$$

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$.

Check (correctness):
$$\gamma \oplus \delta = \langle u_X, v_Y \rangle = f(X, Y)$$
.

The Billionaires' Problem

f(X,Y) = 1 if and only if X > Y

Vector v_v

Unit Vector u_X

$$f(X,Y) = \langle u_X, v_Y \rangle = \sum_{i=1}^{U} u_X[i] \wedge v_Y[i]$$

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t.

$$\gamma_i \oplus \delta_i = u_X[i] \wedge v_Y[i]$$

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$.

Check (privacy): Alice & Bob get a bunch of random bits.

"OT is Complete"

Theorem (lec23-27): OT can solve not just love and money, but **any** two-party (and multi-party) problem.

Receiver Security: Sender should not learn b.

Define Sender's view $View_S(x_0, x_1, b)$ = her random coins and the protocol messages.

Receiver Security: Sender should not learn b.

There exists a PPT simulator SIM_S such that for any x_0,x_1 and b:

$$SIM_S(x_0, x_1) \cong View_S(x_0, x_1, b)$$

Sender Security: Receiver should not learn x_{1-b} .

Define Receiver's view $View_R(x_0, x_1, b)$ = his random coins and the protocol messages.

Sender Security: Receiver should not learn x_{1-b} .

There exists a PPT simulator SIM_R such that for any x_0,x_1 and b:

$$SIM_R(b, x_b) \cong View_S(x_0, x_1, b)$$

For concreteness, let's use the RSA trapdoor permutation.

Input bits: (x_0, x_1)

Choice bit: b

Pick N = PQ and RSA exponent e.

 S_0, S_1

Choose random r_b and set $s_b = r_b^e \mod N$

Choose random s_{1-h}

Compute r_0, r_1 and one-time pad x_0, x_1 using hardcore bits

$$x_0 \oplus HCB(r_0)$$

$$x_1 \oplus HCB(r_1)$$

Bob can recover x_b but not x_{1-b}

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Alice's view is s_0 , s_1 one of which is chosen randomly from Z_N^* and the other by raising a random number to the e-th power. They look exactly the same!

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Exercise: Show how to construct the simulator.

How about Alice's security

(a.k.a. Why does Bob not learn both of Alice's bits)?

Assuming Bob is semi-honest, he chose s_{1-b} uniformly at random, so the hardcore bit of $s_{1-b} = r_{1-b}^d$ is computationally hidden from him.

How about Alice's security

(a.k.a. Why does Bob not learn both of Alice's bits)?

Exercise: Show how to construct the simulator.

OT Protocol 2: Additive HE

Input bits: (x_0, x_1)

Homomorphically evaluate the selection function

$$SEL_{x_0,x_1}(b) = (x_1 \oplus x_0)b + x_0$$

Encrypt choice bit b

$$c \leftarrow \operatorname{Enc}(sk, b)$$

$$c' = \text{Eval}(SEL_{x_0,x_1}(b),c)$$

Decrypt to get x_b

Bob's security: computational, from CPA-security of Enc.

Alice's security: statistical, from circuit-privacy of Eval.

Many More Constructions of OT

Theorem: OT protocols can be constructed based on the hardness of the Diffie-Hellman problem, factoring, quadratic residuosity, LWE, elliptic curve isogeny problem etc. etc.

Two ways to overcome the triviality

Oblivious Transfer (OT)

Add'l property: server privacy

Private Information Retrieval (PIR)
Add'l property: succinctness

Symmetric PIR = Succinctness + Server privacy

Private Information Retrieval

0	x_0 x_1		
2	x_2		Index: i
3	x_3	Query q	Client
4	x_4	Answer	
5	x_5		
6	<i>x</i> ₆		
7	<i>x</i> ₇		

Privacy (for client): Server gets no information about *i*.

Succinctness: Total communication < N bits, ideally $O(\log N)$.

Lower Bound

Theorem: Any PIR protocol that communicates < *N* bits cannot be information-theoretically (client-)private.

Idea: Pigeon-hole principle.

Consider the function (parameterized by the query) that maps databases to answers.

Lower Bound

Theorem: Any PIR protocol that communicates < *N* bits cannot be information-theoretically (client-)private.

The two databases differ in at least one index, say i^* .

By correctness, the queried index could not have been i^* . This reveals some information about the query. QED.

Construction 0: Using Additive HE

Database D

Pretty long! $O(N\lambda)$ bits.

Client wants to retrieve index *i*

Homomorphically compute inner product with the database

$$Enc(\operatorname{sk}, \overrightarrow{u_i} \cdot D) = Enc(\operatorname{sk}, D_i)$$

Pretty short! $O(\lambda)$ bits, where λ is the security parameter.

Constr. 1: Using Additive HE (better)

Database D

Database $D = \sqrt{N}$ by \sqrt{N} matrix

$$O(\sqrt{N}\lambda)$$
 bits.

$$Enc(\operatorname{sk},\overrightarrow{u_i})$$

Client wants to retrieve index (i, j)

Homomorphically compute inner product with each column

$$O(\sqrt{N}\lambda)$$
 bits.

$$Enc(\operatorname{sk}, \overrightarrow{u_i} \cdot D_1)$$

$$Enc(\operatorname{sk}, \overrightarrow{u_i} \cdot D_2)$$

• • •

$$Enc(\operatorname{sk},\overrightarrow{u_i}\cdot D_{\sqrt{N}})$$

$$= Enc(sk, D_{i,1})$$

$$= Enc(sk, D_{i,2})$$

$$= Enc(sk, D_{i,j})$$

$$= Enc(sk, D_{i,\sqrt{N}})$$

Construction 2 (The "Ultimate" PIR)

Write the database access function:

$$F_D(x_1 x_2 \dots x_n) = \sum_{i=i_1 i_2 \dots i_n} D_i \cdot (x =_? i)$$

$$= \sum_{i=i_1 i_2 \dots i_n} D_i \cdot \prod_{j=1}^n (x_j = i_j)$$

This is 1 if and only if x = i.

 $O(\log N \cdot \lambda)$ bits.

Client encrypts x. Server homomorphically evaluates F_D .

Can we Achieve Unconditionally Secure PIR?

Change the model: two or more non-communicating servers!

(you will come up with a solution in PS6)

WE SAW: Oblivious Transfer and Private Information Retrieval

The rest of the course: How to solve any two-party (and multi-party) problem.

