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TODAY: Oblivious Transfer and 
Private Information Retrieval



Basic Problem: Database Access
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Index: i

0
1

2
3
4
5

6
7

𝑥!
𝑥"
𝑥#
𝑥$
𝑥%
𝑥&

𝑥'
𝑥(

Server

Database D

Correctness: Client gets 𝐷[𝑖]. 

Privacy (for client): Server gets no information about 𝑖. 



Here is a “solution”. The server sends the DB to the client.Two ways to overcome the triviality

Oblivious Transfer (OT)
Add’l property: server privacy

Private Information Retrieval (PIR)
Add’l property: succinctness

Symmetric PIR = 
Succinctness + 
Server privacy



Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥!
𝑥"

• Sender holds two bits 𝑥! and 𝑥".

• Receiver holds a choice bit 𝑏.

• Receiver should learn 𝑥), sender should learn nothing. 
(We will consider honest-but-curious adversaries; formal 
definition in a little bit…)

Sender



Why OT? The Dating Problem
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice and Bob want to 

compute the AND 𝛼 ∧ 𝛽.



Why OT? The Dating Problem
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice and Bob want to 

compute the AND 𝛼 ∧ 𝛽.

𝑥! = 0
𝑥" = 𝛼

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets 𝛼 if 𝛽=1, and 0 if 𝛽=0 

Here is a way to write the OT selection function: 𝒙𝟏𝒃 + 𝒙𝟎 𝟏 − 𝒃

which, in this case is = 𝛼𝛽. 



The Billionaires’ Problem
Net worth: 

$X
Net worth: 

$Y

Who is richer?



The Billionaires’ Problem

𝑋 𝑌

𝑓(𝑋, 𝑌) = 1
if and only if 𝑋 > 𝑌

Unit Vector 𝑢4 = 1 in the 𝑋56
location and 0 elsewhere

10 0 0 ……

Vector 𝑣7 = 1 from the (𝑌 + 1)56
location onwards

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =>
𝒊;𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

Compute each AND individually and sum it up? 



Detour: OT ⇒ Secret-Shared-AND
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice gets random 𝛾, Bob gets 

random 𝛿 s.t. 𝛾 ⨁𝛿 = 𝛼𝛽.

𝑥! = 𝛾
𝑥" = 𝛼⨁ 𝛾

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets 𝒙𝟏𝒃 + 𝒙𝟎 𝟏⨁𝒃

Output: 𝛾 Output: 𝛿

= (𝒙𝟏⨁ 𝒙𝟎)𝒃 + 𝒙𝟎 = 𝛼𝛽⨁𝛾 ≔ 𝛿

Alice outputs 𝛾.



The Billionaires’ Problem
𝑓(𝑋, 𝑌) = 1

if and only if 𝑋 > 𝑌

Unit Vector 𝑢4

10 0 0 ……

Vector 𝑣7

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =>
𝒊;𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get (𝛾=, 𝛿=) s.t.

𝛾=⨁𝛿= = 𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

2. Alice computes 𝛾 = ⨁= 𝛾= and Bob computes 𝛿 = ⨁= 𝛿=.

Check (correctness): 𝛾⨁𝛿 = 𝒖𝑿, 𝒗𝒀 = 𝒇 𝑿, 𝒀 .



The Billionaires’ Problem
𝑓(𝑋, 𝑌) = 1

if and only if 𝑋 > 𝑌

Unit Vector 𝑢4

10 0 0 ……

Vector 𝑣7

10 1 1… 1 1 1

𝒇 𝑿, 𝒀 = 𝒖𝑿, 𝒗𝒀 =>
𝒊;𝟏

𝑼

𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get (𝛾=, 𝛿=) s.t.

𝛾=⨁𝛿= = 𝒖𝑿 𝒊 ∧ 𝒗𝒀[𝒊]

2. Alice computes 𝛾 = ⨁= 𝛾= and Bob computes 𝛿 = ⨁= 𝛿=.

Check (privacy): Alice & Bob get a bunch of random bits.



“OT is Complete”

Theorem (lec23-27): OT can solve not just love and 
money, but any two-party (and multi-party) problem.



OT Definition

Receiver

Choice bit: 𝒃
𝑥!
𝑥"

Receiver Security: Sender should not learn b.

Sender

Define Sender’s view 𝑉𝑖𝑒𝑤>(𝑥!, 𝑥", 𝑏) = her random coins 
and the protocol messages.



OT Definition

Receiver

Choice bit: 𝒃
𝑥!
𝑥"

Receiver Security: Sender should not learn b.

Sender

There exists a PPT simulator 𝑆𝐼𝑀> such that for any 
𝑥!,𝑥" and 𝑏: 

𝑆𝐼𝑀&(𝑥', 𝑥() ≅ 𝑉𝑖𝑒𝑤&(𝑥', 𝑥(, 𝑏)



OT Definition

Receiver

Choice bit: 𝒃
𝑥!
𝑥"

Sender Security: Receiver should not learn 𝑥"?).

Sender

Define Receiver’s view 𝑉𝑖𝑒𝑤@(𝑥!, 𝑥", 𝑏) = his random coins 
and the protocol messages.



OT Definition

Receiver

Choice bit: 𝒃
𝑥!
𝑥"

Sender Security: Receiver should not learn 𝑥"?).

Sender

There exists a PPT simulator 𝑆𝐼𝑀@ such that for any 
𝑥!,𝑥" and 𝑏: 

𝑆𝐼𝑀)(𝑏, 𝑥*) ≅ 𝑉𝑖𝑒𝑤&(𝑥', 𝑥(, 𝑏)



OT Protocol 1: Trapdoor Permutations

Pick 𝑁 = 𝑃𝑄 and 
RSA exponent 𝑒.

𝑁, 𝑒

Choose random 𝑟) and  
set 𝑠) = 𝑟)A mod 𝑁

For concreteness, let’s use the RSA trapdoor permutation.

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

Choose random 𝑠"?)
𝑠!, 𝑠"

𝑥!⨁𝐻𝐶𝐵 𝑟!
Compute 𝑟!, 𝑟" and 
one-time pad 𝑥!, 𝑥"
using hardcore bits 𝑥"⨁𝐻𝐶𝐵 𝑟"

Bob can recover 𝑥)
but not 𝑥"?)



OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

𝑠!, 𝑠"

𝑥!⨁𝐻𝐶𝐵 𝑟!

How about Bob’s security 
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥"⨁𝐻𝐶𝐵 𝑟"

Alice’s view is 𝑠!, 𝑠" one of which is chosen randomly 
from 𝑍B∗ and the other by raising a random number to 
the 𝑒-th power. They look exactly the same!



OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

𝑠!, 𝑠"

𝑥!⨁𝐻𝐶𝐵 𝑟!

How about Bob’s security 
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥"⨁𝐻𝐶𝐵 𝑟"

Exercise: Show how to construct the simulator.



OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

𝑠!, 𝑠"

𝑥!⨁𝐻𝐶𝐵 𝑟!

How about Alice’s security 
(a.k.a. Why does Bob not learn both of Alice’s bits)?

𝑥"⨁𝐻𝐶𝐵 𝑟"

Assuming Bob is semi-honest, he chose 𝑠"?) uniformly 
at random, so the hardcore bit of 𝑠"?) = 𝑟"?)D is 
computationally hidden from him.



OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

𝑠!, 𝑠"

𝑥!⨁𝐻𝐶𝐵 𝑟!

How about Alice’s security 
(a.k.a. Why does Bob not learn both of Alice’s bits)?

𝑥"⨁𝐻𝐶𝐵 𝑟"

Exercise: Show how to construct the simulator.



OT Protocol 2: Additive HE

Encrypt choice bit b

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

𝑐 ⟵ Enc(𝑠𝑘, 𝑏)

𝑐E = Eval(𝑆𝐸𝐿F!,F"(𝑏), 𝑐)

Homomorphically 
evaluate the 
selection function

𝑐

𝑺𝑬𝑳𝒙𝟎,𝒙𝟏 𝒃 =
(𝒙𝟏⨁ 𝒙𝟎)𝒃 + 𝒙𝟎

Decrypt to get 𝑥)

Bob’s security: computational, from CPA-security of Enc.
Alice’s security: statistical, from circuit-privacy of Eval.



Many More Constructions of OT

Theorem: OT protocols can be constructed based 
on the hardness of the Diffie-Hellman problem, 
factoring, quadratic residuosity, LWE, elliptic curve 
isogeny problem etc. etc.



Two ways to overcome the triviality

Oblivious Transfer (OT)
Add’l property: server privacy

Private Information Retrieval (PIR)
Add’l property: succinctness

Symmetric PIR = 
Succinctness + 
Server privacy



Private Information Retrieval

Client
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Privacy (for client): Server gets no information about 𝑖. 

Succinctness: Total communication < 𝑁 bits, ideally O(log𝑁).

Query q

Answer a



Lower Bound

Theorem: Any PIR protocol that communicates < 𝑁 bits 
cannot be information-theoretically (client-)private. 

Idea: Pigeon-hole principle.

Consider the function (parameterized by the query) that 
maps databases to answers.

Databases {0,1}'
Answers {0,1}('



Lower Bound

Theorem: Any PIR protocol that communicates < 𝑁 bits 
cannot be information-theoretically (client-)private. 

The two databases differ in at least one index, say 𝒊∗.

By correctness, the queried index could not have been 𝒊∗.
This reveals some information about the query.  QED.

Databases {0,1}'
Answers {0,1}('



Construction 0: Using Additive HE

𝑁

Database 𝐷

𝐸𝑛𝑐(sk, 𝑢=) Client wants to retrieve 
index 𝑖

𝐸𝑛𝑐(sk, 𝑢= h 𝐷)
Homomorphically 
compute inner product 
with the database

= 𝐸𝑛𝑐(sk, 𝐷=)

Pretty short!  𝑂(𝜆) bits, where 
𝜆 is the security parameter.

Pretty long!  𝑂(𝑁𝜆) bits.



Constr. 1: Using Additive HE (better)

Database 𝐷 = 𝑁 by 𝑁 matrix

𝐸𝑛𝑐(sk, 𝑢=) Client wants to retrieve 
index 𝑖, 𝑗

𝑁

𝑁

Database 𝐷

𝐸𝑛𝑐(sk, 𝑢= h 𝐷")
Homomorphically 
compute inner product 
with each column 𝐸𝑛𝑐(sk, 𝑢= h 𝐷#)

𝐸𝑛𝑐(sk, 𝑢= h 𝐷 B)
…

= 𝐸𝑛𝑐(sk, 𝐷=,")
= 𝐸𝑛𝑐(sk, 𝐷=,#)
= 𝐸𝑛𝑐(sk, 𝐷=,G)
= 𝐸𝑛𝑐(sk, 𝐷=, B)

𝑂( 𝑁𝜆) bits.

𝑂( 𝑁𝜆) bits.



Construction 2
(The “Ultimate” PIR)

Write the database access function: 

𝐹H 𝑥"𝑥#…𝑥I = >
=;="=#…=$

𝐷= h (𝑥 =? 𝑖)

= >
=;="=#…=$

𝐷= hk
G;"

I

(𝑥G = 𝑖G)

This is 1 if and only if 𝑥 = 𝑖.

Client encrypts 𝑥. Server homomorphically evaluates 𝐹H.  
𝑂(log𝑁 B 𝜆) bits.



Can we Achieve 
Unconditionally Secure PIR?

Change the model: two or more non-communicating servers!

I thought you proved this is impossible?!

(you will come up with a solution in PS6)



WE SAW: Oblivious Transfer and 
Private Information Retrieval

The rest of the course: How to solve any
two-party (and multi-party) problem.


