MIT 6.875 & Berkeley CS276

Secure two-party computation and Yao Garbled Circuits

Lecture 24

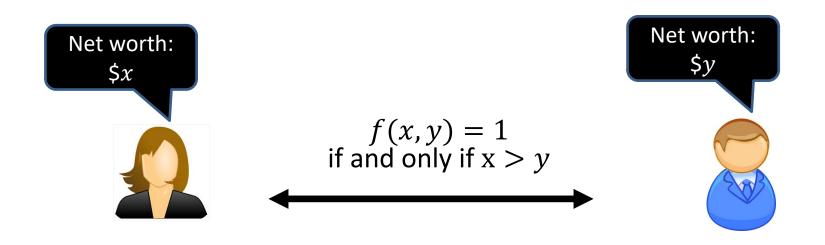
In this lecture...

Recording...

Secure two-party computation:

- Paradigm
- Security definition for semi-honest adversaries
- Construction via Yao garbled circuits

The Millionaires' Problem

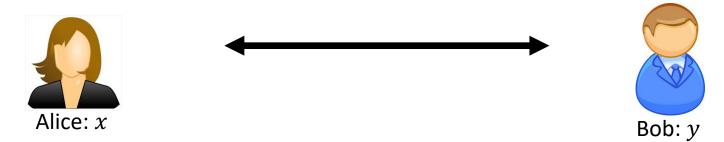


Alice and Bob want to know who is richer without revealing their inputs to each other. How can they compute f(x, y)?

The paradigm of secure computation

Alice and Bob hold inputs x and y and wish to compute f(x, y)

Goal: no one learns anything about x or y other than f(x, y)



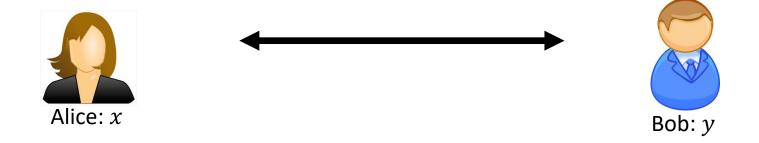
Adversarial models:

- Semi-honest/honest-but-curious: Each party follows the protocol, but tries to learn additional information from the transcript
- Malicious: Parties can behave arbitrarily, even deviate from the protocol in order to learn additional information

The paradigm of secure computation

Alice and Bob hold inputs x and y and wish to compute f(x, y)

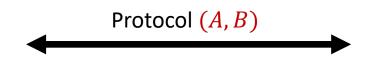
Goal: no one learns anything about x or y other than f(x, y)



How would you define this? simulation paradigm

Notation

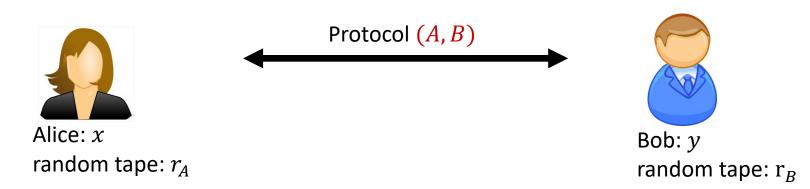
Alice: x random tape: r_A



random tape: r_B

- $\langle A(x), B(y) \rangle (1^n)$ is the distribution of the transcript on inputs x and y
- $out_A[\langle A(x), B(y) \rangle (1^n)]$ is the distribution of A's output
- $out_B[\langle A(x), B(y) \rangle (1^n)]$ is the distribution of B's output
- $view_A[\langle A(x), B(y) \rangle (1^n)]$ is the distribution of A's view: random tape r_A and transcript
- $view_B[\langle A(x), B(y) \rangle (1^n)]$ is the distribution of B's view: random tape r_B and transcript

Security in the semi-honest model



Definition: An efficient protocol $\langle A, B \rangle$ securely computes a deterministic function $f = (f_1, f_2)$ in the semi-honest model if there exist PPT simulators S_A and S_B such that for every $\{x, y\} \in \{0,1\}^*$, the following hold:

Correctness:

$$\Pr[out_A[\langle A(x), B(y) \rangle (1^n)], out_B[\langle A(x), B(y) \rangle (1^n)] = f(x, y)] = 1$$

Security against semi-honest Alice:

$$S_A(x, f_1(x, y)) \approx_c view_A(\langle A(x), B(y) \rangle)$$

Security against semi-honest Bob:

Symmetric

Note that f is known to the simulators since f is set before the exists quantifier on the simulators in the definition statement. This means that the definition does not guarantee privacy of f. Note that privacy of f can be achieved by setting f to be a universal circuit of a max size, and providing the function specific information as another input to this universal circuit.

Security in the Semi-Honest Model

Theorem (Yao '86):

Assuming the existence of a secure Oblivious Transfer protocol in the semi-honest model, any efficiently-computable deterministic two-output function can be securely computed in the semi-honest model.

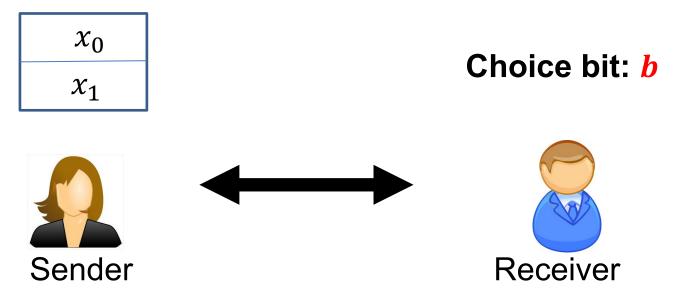
$$f(x,y) = (f_1(x,y), f_2(x,y))$$

- Groundbreaking result initiating research on secure computation
- Inspired fundamental protocols for the multi-party & malicious models
- Various applications beyond secure computation

Tools to recall

- Oblivious Transfer (OT)
- CPA-secure privacy-key encryption scheme

Recall: Oblivious Transfer (OT)



- Sender holds two bits x_0 and x_1 .
- Receiver holds a choice bit b.
- Receiver should learn x_b , sender should learn nothing.

"Special" CPA Encryption

- We will use a CPA-secure private-key encryption scheme (G, E, D) with two additional properties
- Notation: Range_n(k) $\stackrel{\text{def}}{=} \{ E_k(x) : x \in \{0,1\}^n \}$

Property 1: Elusive range

For every PPT algorithm A there exists a negligible function $\nu(\cdot)$ such that

$$\Pr_{k \leftarrow \mathsf{G}(1^n)}[A(1^n) \in \mathsf{Range}_n(k)] \le \nu(n)$$

Property 2: Efficiently verifiable range

There exists a PPT algorithm M such that $M(1^n, k, c) = 1$ if and only if $c \in \text{Range}_n(k)$

Ideas how to construct?

Construction

Property 1: Elusive range

For every PPT algorithm A there exists a negligible function $\nu(\cdot)$ such that

$$\Pr_{k \leftarrow G(1^n)}[A(1^n) \in \text{Range}_n(k)] \le \nu(n)$$

Property 2: Efficiently verifiable range

There exists a PPT algorithm M such that $M(1^n, k, c) = 1$ if and only if $c \in \text{Range}_n(k)$

Construction:

• Let F be a PRF where $F_k: \{0,1\}^n \to \{0,1\}^{2n}$ for $k \in \{0,1\}^n$

$$E_k(x;r) = (r, F_k(r) \oplus x0^n)$$

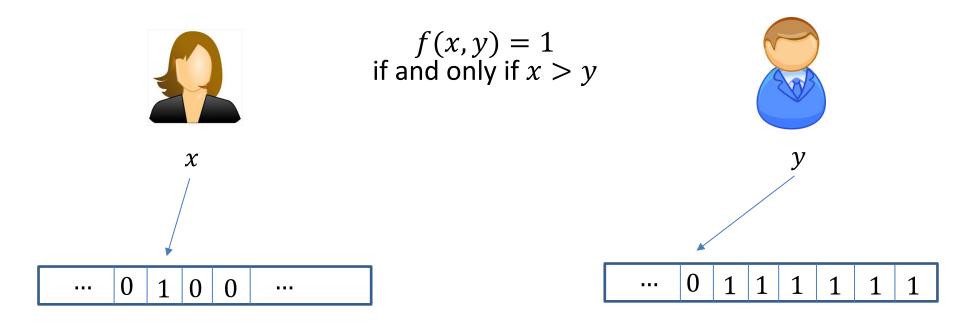
Why does it satisfy the two properties?

Boolean circuits

Gates are Boolean gates (AND, XOR, OR) taking as input two bits and outputting one bit

• How would you express the millionaire's f(x,y) = x > y as a Boolean circuit C?

The Millionaires' Function as a Circuit



Unit Vector $u_x = 1$ in the x^{th} location and 0 elsewhere

Vector v_y = 1 from the $(y + 1)^{th}$ location onwards

$$f(x,y) = \langle u_x, v_y \rangle = \sum_{i=1}^{o} u_x[i] \wedge v_y[i]$$

An AND for each u_i , v_i , then OR between all results in a tree-like fashion

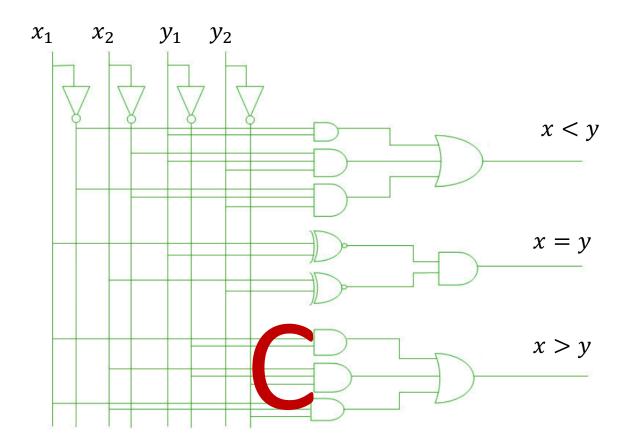
Or use comparison circuit

f(x, y) = 1if and only if x > y

 χ

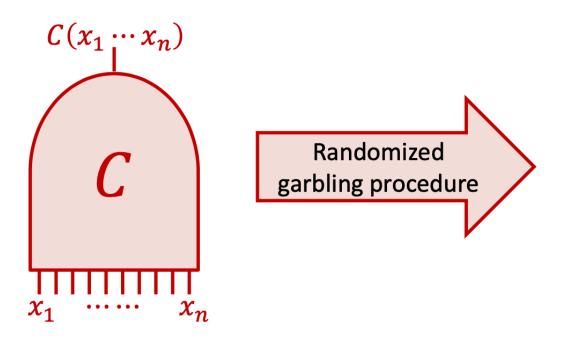
y

Magnitude comparator for 2-bit numbers



Garbling Boolean Circuits

- Input: Boolean circuit $C: \{0,1\}^n \rightarrow \{0,1\}$
- Output: Garbled circuit G(C) and input labels $\{(L_1^0, L_1^1), ..., (L_n^0, L_n^1)\}$



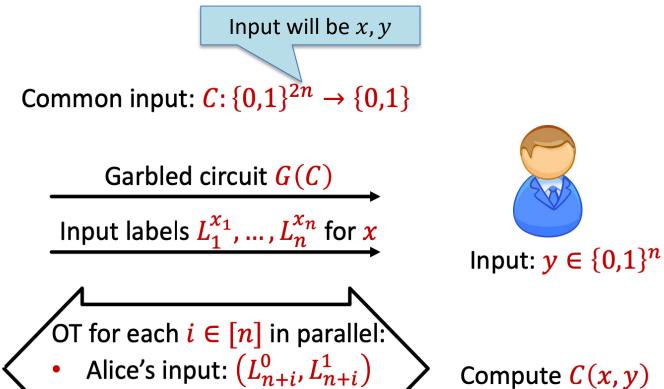
G(C) $L_{1}^{x_{1}} \cdots L_{n}^{x_{n}}$

Goal: Given G(C) and $L_1^{x_1}, ..., L_n^{x_n}$

- It is possible to compute $C(x_1 \cdots x_n)$
- It is not possible to learn any additional information other than size of circuit or input

For example, for x = 010, labels are L_1^0, L_2^1, L_3^0

Using garbled circuits for secure 2-party computation



Input: $x \in \{0,1\}^n$ Compute G(C) and labels $\left\{\left(L_i^0, L_i^1\right)\right\}_{i \in [2n]}$

Alice's input: (L_{n+i}^0, L_{n+i}^1)

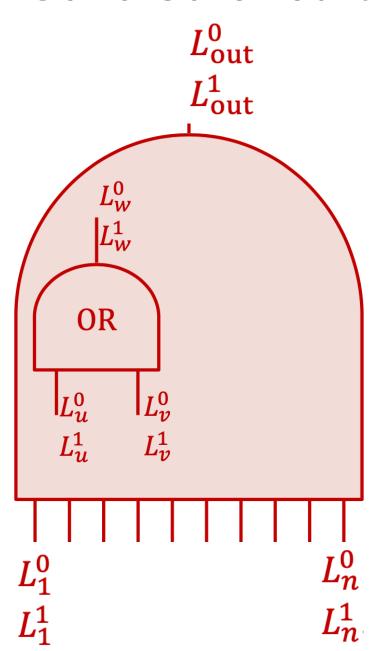
C(x,y)

Bob's input: y_i

using G(C) and $L_1^{x_1}, \dots, L_n^{x_n}, L_{n+1}^{y_1}, \dots, L_{2n}^{y_n}$

- Assign two random labels (L_w^0, L_w^1) to each wire w
 - $L_w^0 \leftarrow G(1^n)$ corresponds to value 0 on wire w
 - $L_w^1 \leftarrow G(1^n)$ corresponds to value 1 on wire w

Garbled circuit

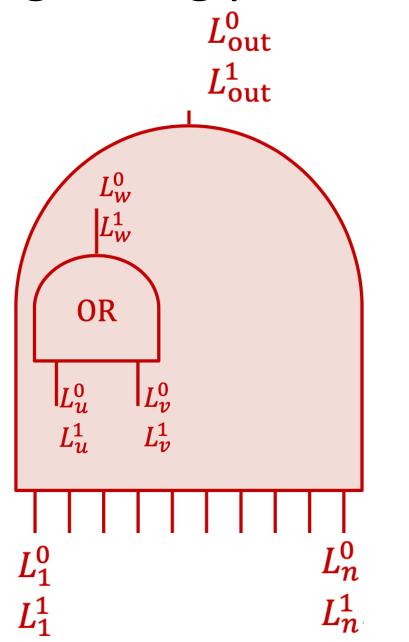


- Assign two random labels (L_w^0, L_w^1) to each wire w
 - $L_w^0 \leftarrow G(1^n)$ corresponds to value 0 on wire w
 - $L_w^1 \leftarrow G(1^n)$ corresponds to value 1 on wire w
- For each gate g construct a doubly-encrypted translation table with randomly permuted rows

0	0	g(0,0)
0	1	g(0,1)
1	0	g(1,0)
1	1	g(1,1)

- Assign two random labels (L_w^0, L_w^1) to each wire w
 - $L_w^0 \leftarrow G(1^n)$ corresponds to value 0 on wire w
 - $L_w^1 \leftarrow G(1^n)$ corresponds to value 1 on wire w
- For each gate g construct a doubly-encrypted translation table with randomly permuted rows

L_u^0	L_v^0	$L_w^{g(0,0)}$
L_u^0	L^1_v	$L_w^{g(0,1)}$
L_u^1	L_{v}^{0}	$L_w^{g(1,0)}$
L_u^1	L^1_v	$L_w^{g(1,1)}$



- Assign two random labels (L_w^0, L_w^1) to each wire w
 - $L_w^0 \leftarrow G(1^n)$ corresponds to value 0 on wire w
 - $L_w^1 \leftarrow G(1^n)$ corresponds to value 1 on wire w
- For each gate g construct a doubly-encrypted translation table with randomly permuted rows

L_u^0	L_v^0	$L_w^{g(0,0)}$
L_u^0	L^1_v	$L_w^{g(0,1)}$
L_u^1	L_v^0	$L_w^{g(1,0)}$
L_u^1	L_v^1	$L_w^{g(1,1)}$

Why can't I leave the output labels this way? Because they leak (e.g. type of gate)

- Assign two random labels (L_w^0, L_w^1) to each wire w
 - $L_w^0 \leftarrow G(1^n)$ corresponds to value 0 on wire w
 - $L_w^1 \leftarrow G(1^n)$ corresponds to value 1 on wire w
- For each gate g construct a doubly-encrypted translation table with randomly permuted rows

L_u^0	L_{v}^{0}	$E_{L_{u}^{0}}\left(E_{L_{v}^{0}}\left(L_{w}^{g(0,0)}\right)\right)$
L_u^0	L^1_v	$E_{L_{u}^{0}}\left(E_{L_{v}^{1}}\left(L_{w}^{g(0,1)}\right)\right)$
L_u^1	L_{v}^{0}	$E_{L_u^1}\left(E_{L_v^0}\left(L_w^{g(1,0)}\right)\right)$
L_u^1	L^1_v	$E_{L_{u}^{1}}\left(E_{L_{v}^{1}}\left(L_{w}^{g(1,1)}\right)\right)$

- Assign two random labels (L_w^0, L_w^1) to each wire w
 - $L_w^0 \leftarrow G(1^n)$ corresponds to value 0 on wire w
 - $L_w^1 \leftarrow G(1^n)$ corresponds to value 1 on wire w
- For each gate g construct a doubly-encrypted translation table with randomly permuted rows

& efficiently verifiable range Given
$$L_u^{\alpha}$$
 and L_v^{β} can identify the row corresponding to inputs (α, β) and compute $L_w^{g(\alpha, \beta)}$

(G, E, D) has elusive

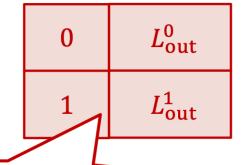
$$E_{L_{u}^{1}}\left(E_{L_{v}^{1}}\left(L_{w}^{g(1,1)}\right)\right)$$

$$E_{L_{u}^{0}}\left(E_{L_{v}^{0}}\left(L_{w}^{g(0,0)}\right)\right)$$

$$E_{L_{u}^{0}}\left(E_{L_{v}^{1}}\left(L_{w}^{g(0,1)}\right)\right)$$

$$E_{L_{u}^{1}}\left(E_{L_{v}^{0}}\left(L_{w}^{g(1,0)}\right)\right)$$

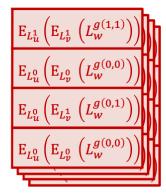
- Assign two random labels (L_w^0, L_w^1) to each wire w
 - $L_w^0 \leftarrow G(1^n)$ corresponds to value 0 on wire w
 - $L_w^1 \leftarrow G(1^n)$ corresponds to value 1 on wire w
- For each gate g construct a doubly-encrypted translation table with randomly permuted rows
- Construct an output translation table

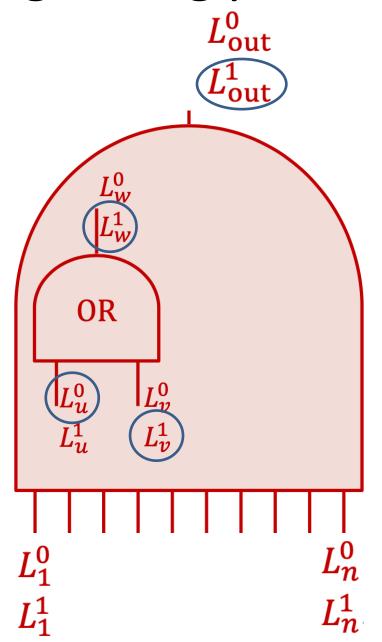


Can handle any number of output wires by constructing a table for each one

- Assign two random labels (L_w^0, L_w^1) to each wire w
 - $L_w^0 \leftarrow G(1^n)$ corresponds to value 0 on wire w
 - $L_w^1 \leftarrow G(1^n)$ corresponds to value 1 on wire w
- For each gate g construct a doubly-encrypted translation table with randomly permuted rows
- Construct an output translation table
- Output all tables

0	$L_{ m out}^0$
1	$L^1_{ m out}$





Yao's protocol

Input: $x \in \{0,1\}^n$ Compute G(C) and labels $\left\{ \left(L_i^0, L_i^1 \right) \right\}_{i \in [2n]}$

Common input: $C: \{0,1\}^{2n} \to \{0,1\}$

Garbled circuit G(C)

Input labels $L_1^{x_1}, \dots, L_n^{x_n}$ for x

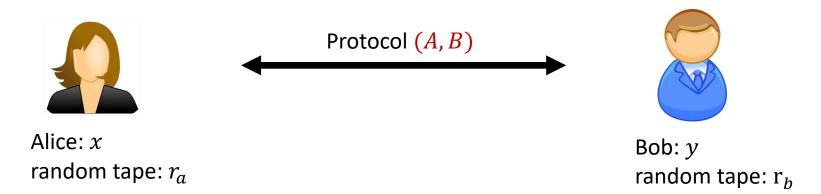
- OT for each $i \in [n]$ in parallel:
- Alice's input: (L_{n+i}^0, L_{n+i}^1)
- Bob's input: y_i

C(x,y)

Input: $y \in \{0,1\}^n$

Compute
$$C(x, y)$$
 using $G(C)$ and $L_1^{x_1}, ..., L_n^{x_n}, L_{n+1}^{y_1}, ..., L_{2n}^{y_n}$

Recall:Security in the semi-honest model



Definition: An efficient protocol $\langle A, B \rangle$ securely computes a deterministic function $f = (f_1, f_2)$ in the semi-honest model if there exist PPT simulators S_A and S_B such that for every $\{x, y\} \in \{0,1\}^*$, the following hold:

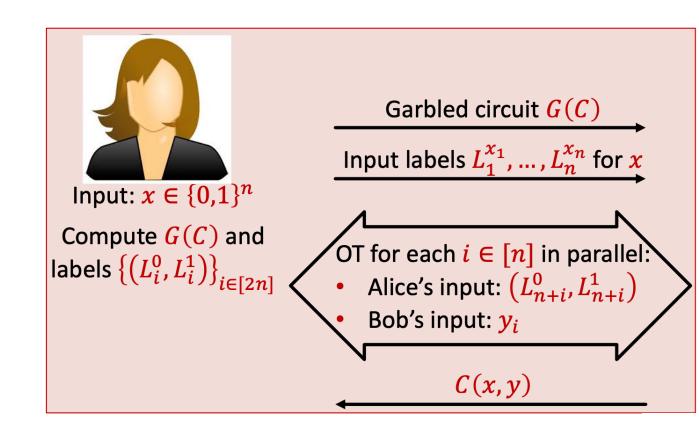
Correctness:

 $\Pr[out_A[\langle A(x), B(y) \rangle(1^n)], out_B[\langle A(x), B(y) \rangle(1^n)] = f(x, y)] = 1$ Security against semi-honest Alice:

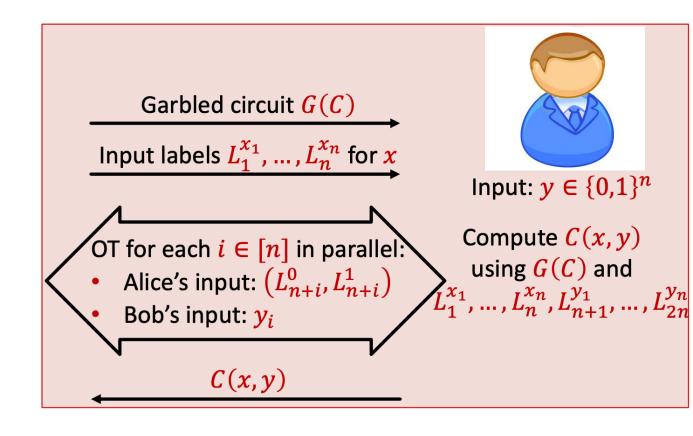
$$S_A(x, f_1(x, y)) \approx_c view_A(\langle A(x), B(y) \rangle)$$

Security against semi-honest Bob: symmetric

Alice's simulator



Bob's simulator

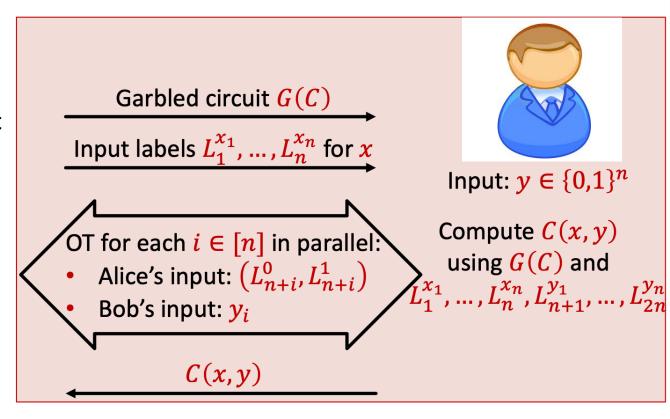


Bob's simulator: step 1

Replace Bob's view in the OTs with the assumed OT simulator S_B^{OT}

Indistinguishable from Bob's original view by the security of the OT (standard hybrid argument over the n OTs)

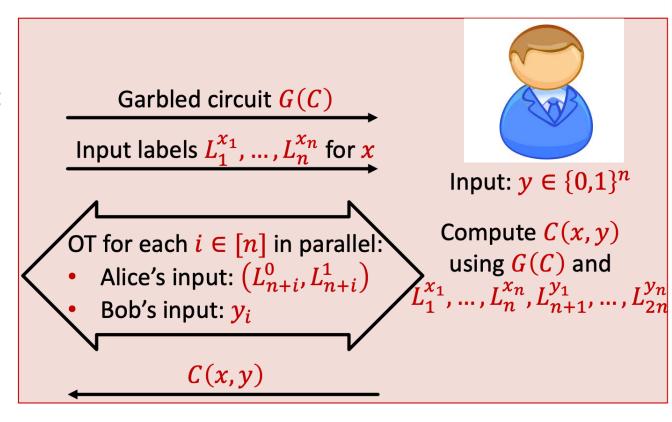
From this point on, S_B needs to know $L_{n+i}^{y_i}$ but does not use $L_{n+i}^{1-y_i}$



Bob's simulator: step 2

Replace G(C) with an indistinguishable $\tilde{G}(C)$ that evaluates to C(x,y) on all input labels

Intuition: Bob should not notice that $\tilde{G}(C)$ computes a constant function since he knows only one of $\left(L_{n+i}^0, L_{n+i}^1\right)$ by the security of the OT

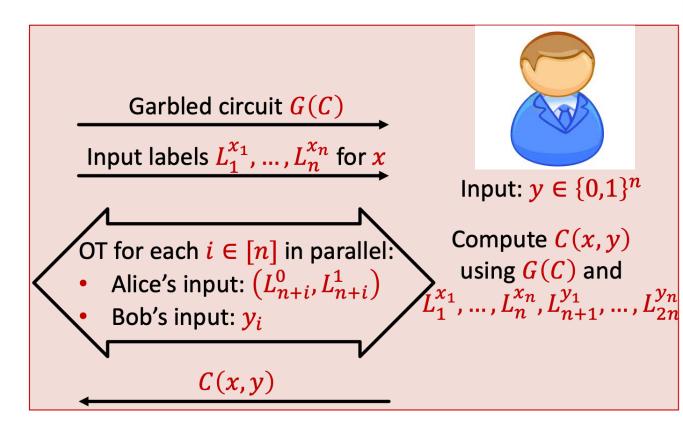


Bob's simulator: step 1

Replace Bob's view in the OTs with the assumed OT simulator S_B^{OT}

Can now replace $L_1^{x_1}, ..., L_n^{x_n}$ with $L_1^0, ..., L_n^0$

This view can be generated given y and C(x,y), and without knowing x



The fake $\tilde{G}(C)$

- Assign two random labels (L_w^0, L_w^1) to each wire w
- For each gate g construct a randomly permuted translation table doubly-encrypting the zero label

Real table

$$E_{L_{u}^{1}}\left(E_{L_{v}^{1}}\left(L_{w}^{g(1,1)}\right)\right)$$

$$E_{L_{u}^{0}}\left(E_{L_{v}^{0}}\left(L_{w}^{g(0,0)}\right)\right)$$

$$E_{L_{u}^{0}}\left(E_{L_{v}^{1}}\left(L_{w}^{g(0,1)}\right)\right)$$

$$E_{L_{u}^{1}}\left(E_{L_{v}^{0}}\left(L_{w}^{g(1,0)}\right)\right)$$

Fake table

$$E_{L_{u}^{1}}\left(E_{L_{v}^{1}}\left(L_{w}^{0}\right)\right)$$

$$E_{L_{u}^{0}}\left(E_{L_{v}^{0}}\left(L_{w}^{0}\right)\right)$$

$$E_{L_{u}^{0}}\left(E_{L_{v}^{1}}\left(L_{w}^{0}\right)\right)$$

$$E_{L_{u}^{1}}\left(E_{L_{v}^{0}}\left(L_{w}^{0}\right)\right)$$

Leverage CPA security of (G, E, D)

Real and fake tables are indistinguishable because only one label is known from each pair (L_u^0, L_u^1) and (L_v^0, L_v^1)

(Subtle hybrid argument due to dependencies between tables corresponding to different gates)

Real table

$$E_{L_{u}^{1}}\left(E_{L_{v}^{1}}\left(L_{w}^{g(1,1)}\right)\right)$$

$$E_{L_{u}^{0}}\left(E_{L_{v}^{0}}\left(L_{w}^{g(0,0)}\right)\right)$$

$$E_{L_{u}^{0}}\left(E_{L_{v}^{1}}\left(L_{w}^{g(0,1)}\right)\right)$$

$$E_{L_{u}^{1}}\left(E_{L_{v}^{0}}\left(L_{w}^{g(1,0)}\right)\right)$$

Fake table

$$E_{L_{u}^{1}}\left(E_{L_{v}^{1}}\left(L_{w}^{0}\right)\right)$$

$$E_{L_{u}^{0}}\left(E_{L_{v}^{0}}\left(L_{w}^{0}\right)\right)$$

$$E_{L_{u}^{0}}\left(E_{L_{v}^{1}}\left(L_{w}^{0}\right)\right)$$

$$E_{L_{u}^{1}}\left(E_{L_{v}^{0}}\left(L_{w}^{0}\right)\right)$$

The fake $\tilde{G}(C)$

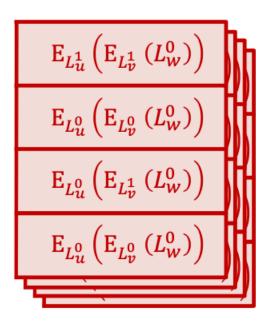
- Assign two random labels (L_w^0, L_w^1) to each wire w
- For each gate g construct a randomly permuted translation table doubly-encrypting the zero label
- Construct an output translation table where L_{out}^0 is translated to C(x,y)

0	$L_{\mathrm{out}}^{C(x,y)}$
1	$L_{\mathrm{out}}^{1-C(x,y)}$

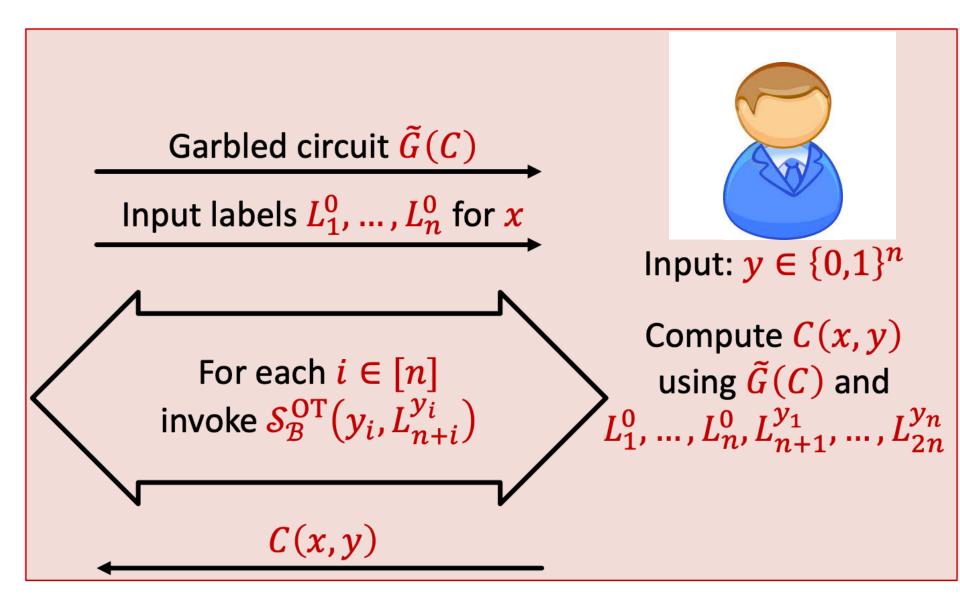
The fake $\tilde{G}(C)$

- Assign two random labels (L_w^0, L_w^1) to each wire w
- For each gate g construct a randomly permuted translation table doubly-encrypting the zero label
- Construct an output translation table where L_{out}^0 is translated to C(x,y)
- Output all tables

0	$L_{\mathrm{out}}^{C(x,y)}$
1	$L_{\mathrm{out}}^{1-C(x,y)}$



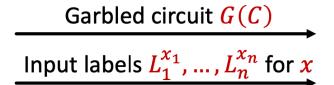
Bob's simulator

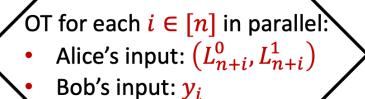


Yao's protocol

Input: $x \in \{0,1\}^n$ Compute G(C) and labels $\left\{ \left(L_i^0, L_i^1\right) \right\}_{i \in [2n]}$

Common input: $C: \{0,1\}^{2n} \to \{0,1\}$





C(x,y)

Input: $y \in \{0,1\}^n$

Compute C(x,y) using G(C) and $L_1^{x_1},\ldots,L_n^{x_n},L_{n+1}^{y_1},\ldots,L_{2n}^{y_n}$

Theorem:

Yao's protocol securely computes any $C: \{0,1\}^{2n} \to \{0,1\}$ in the semi-honest model

Efficiency

- Garbling and evaluation tend to be very efficient because it can be implemented via AES, which is in hardware
- Creating a circuit from a program often results in a big circuit

Questions

Q: Say Alice and Bob want to compare their European and US funds. Can they reuse the garbled circuit?

A: No! Yao garbled circuits are **one-time.** Insecure with multiple input encodings.

Your three instructors had a paper (STOC'11) on how to reuse garbled circuits. Great proof of concept but a very inefficient scheme with nesting of heavy schemes like FHE or ABE.

Q: What are two inputs that reveal all values of f(x, y)?

A: 00000... and 11111.. because Bob receives all possible labels.

Summary

We learned about secure two-party computation

- definition for semi-honest adversaries, and
- a construction via Yao garbled circuits and OT