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Secure two-party computation
and Yao Garbled Circuits

Lecture 24

Credit: Some slides adapted from Gil Segev



In this lecture...

Recording...

Secure two-party computation:

- Paradigm

- Security definition for semi-honest adversaries
- Construction via Yao garbled circuits



The Millionaires’ Problem

g

 fxy) =1
ifandonlyifx > vy

il

Alice and Bob want to know who is richer
without revealing their inputs to each other.

How can they compute f(x,y)?




The paradigm of secure computation

Alice and Bob hold inputs x and y and wish to compute f(x,y)

Goal: no one learns anything about x or y other than f(x,y)

Alice: x Bobg y
Adversarial models:
* Semi-honest/honest-but-curious: Each party follows the protocol,
but tries to learn additional information from the transcript
* Malicious: Parties can behave arbitrarily, even deviate from the
protocol in order to learn additional information



The paradigm of secure computation

Alice and Bob hold inputs x and y and wish to compute f(x,y)

Goal: no one learns anything about x or y other than f(x,y)

Alice: x

How would you define this?

simulation paradigm




il

Notation

Alice: x
random tape: 74

Protocol (4, B)

Bob: y
random tape: 1

(A(x), B(y))(1™) is the distribution of the transcript on

inputs

X andy

out,[(A(x), B(y))(1™)] is the distribution of A’s output
outg[(A(x), B(y))(1™)] is the distribution of B’s output

viewy

{A(x), B(y))(1")]

tape r4 and transcript

viewg

(A(x), B(y))(1™)]

tape rp and transcript

is the distribution of A’s view: random

is the distribution of B’s view: random



Security in the semi-honest model

ﬂ Protocol (4, B)
ﬁ

Alice: x Bob: y

random tape: 74 random tape: rg

Definition: An efficient protocol (4, B) securely computes a
deterministic function f = (fy, f») in the semi-honest model if there
exist PPT simulators S4 and Sg such that for every {x, y} €

{0,1}*, the following hold:

Correctness:

Prlouts[(A(x), B(y))(1™)], outp[({A(x), B(y))(1™)] = f(x,y)| = 1

Note that f is known to the simulators since f is set

Securlty agalnSt Seml-honeSt Ahce: before the exists quantifier on the simulators in the
~ . definition statement. Thi that the definiti
SA (x; fl (x) Y)) ~c VLeWA ((A (x)) B (}’) )) does not guarantee privasccqoefa;.sNo?e thzt Sril\r/];clyc/m

of f can be achieved by setting f to be a universal L

Security againSt Semi'honeSt BOb: circuit of a max size, and providing the function

specific information as another input to this —

SymmetriC universal circuit.




Security in the Semi-Honest Model

Theorem (Yao ‘86):

Assuming the existence of a secure Oblivious Transfer protocol in the semi-honest
model, any efficiently-computable deterministic two-output function can be securely

computed in the semi-honest model. \

(f(xiy) = (f1(X,)’);fz(x;}’)) >

e Groundbreaking result initiating research on secure computation
* Inspired fundamental protocols for the multi-party & malicious models
e Various applications beyond secure computation




Tools to recall

- Oblivious Transfer (OT)
- CPA-secure privacy-key encryption scheme



Recall: Oblivious Transfer (OT)

X0

Choice bit: b

X1

ﬂ4—>

Sender Receiver

« Sender holds two bits xy and x;.

 Receiver holds a choice bit b.

* Receiver should learn x;, sender should learn nothing.



IH

“Special” CPA Encryption

* We will use a CPA-secure private-key encryption scheme (G, E, D) with two
additional properties
* Notation: Range,, (k) & {E,(x) : x € {0,1}"}

Property 1: Elusive range
For every PPT algorithm A there exists a negligible function v(:) such that

k(_lé%‘ln)[A(l") € Range, (k)] < v(n)

Property 2: Efficiently verifiable range
There exists a PPT algorithm M such that M(1™,k,c) = 1 if and only if ¢ € Range,, (k)

Ideas how to construct?

,\




Construction

Property 1: Elusive range
For every PPT algorithm A there exists a negligible function v(-) such that

k(_léan)[A(ln) € Range, (k)] < v(n)

Property 2: Efficiently verifiable range
There exists a PPT algorithm M such that M(1™,k,c) = 1 if and only if ¢ € Range,, (k)

Construction:
* Let F be a PRF where Fi: {0,1}" — {0,1}?™ for k € {0,1}"

Ex(x;7) = (1, F(r) © x0™)

Why does it satisfy the two properties? L



Boolean circuits

Gates are Boolean gates (AND, XOR, OR) taking

as input two bits anc

outputting one bit

* How would you ex

oress the millionaire’s

f(x,y) = x > vy asaBoolean circuit C?



The Millionaires’ Function as a Circuit

fey) =1
ifandonlyifx > vy

X y
Ol1.0/0 - -~ 01111111
Unit Vector u, = 1 in the xt" Vector v, = 1 from the (y + 1)*"
location and O elsewhere location onwards
U
FO6Y) = (1, vy) = ) w,[i] Avyi]
i=1

An AND for each u;, v;, then OR between all results in a tree-
like fashion



Magnitude
comparator
for 2-bit
numbers

Or use comparison circuit

fx,y) =1

ifandonlyifx > vy

X2 yi Y2

y
- x < y
L xX=Y
s [ 1
D N x>y
— }
= —,—7



Garbling Boolean Circuits
* Input: Boolean circuit C: {0,1}"* — {0,1}
e Output: Garbled circuit G(C) and input labels {(L?,L}), ..., (L%, L})}

C(xli"xn) C(xl'l"xn)

/_\ Randomized /_\

C garbling procedure G (C)

|
x oooooo x xl ...... xn
1 n L1 L

n
Goal: Given G(C) and L7, ..., L™ For example, for

x = 010, labels are

* Itis possible to compute C(x; - x,,) 0 +1 10
19,13, 19

* |tis not possible to learn any additional information
other than size of circuit or input



Using garbled circuits for secure 2-party computation

Input will be x,y

N

Common input: C: {0,1}*" - {0,1}

ﬂ Garbled circuit G(C)

S
Input: x € {0,1}" Input labels L7, ..., L, forx>

Compute G(C) and
labels {(L?»L%)}ie[m] OT for each i € [n] in parallel:

Input: y € {0,1}"

* Alice’s input: (L(,)m-, L}Hi) Compute C(x,y)
* Bob’sinput: y; using G(C) and
X Xn 1Y Yn
L LY Ly gy e Ly

Clx,y)




The garbling procedure

e Assign two random labels (L%, L1)) to each wire w
e L% « G(1™) corresponds to value 0 on wire w
e Ll « G(1™) corresponds to value 1 on wire w



Garbled circuit

out
Lout
Ly
Ly
OR
o o
LI
BERRERERE
L1 Lo

L1 £



The garbling procedure

e Assign two random labels (L%, L1)) to each wire w
e L% « G(1™) corresponds to value 0 on wire w
« LY « G(1™) corresponds to value 1 on wire w

* For each gate g construct a doubly-encrypted
translation table with randomly permuted rows

0 0 g(0,0)
0 1 g(0,1)
1 0 g(1,0)

1 1 g(1,1)




The garbling procedure

e Assign two random labels (L%, L1)) to each wire w
e L% « G(1™) corresponds to value 0 on wire w
« LL « G(1™) corresponds to value 1 on wire w

* For each gate g construct a doubly-encrypted
translation table with randomly permuted rows

2 L0 19400
Ly | L L5
1L | L i
Lo L 4L




The garbling procedure

L%ut
Lout
Ly,
Ly
OR
‘L% |L9,
| A £
BERERRREER
L0 Ly

L} L,



The garbling procedure

e Assign two random labels (L%, L1)) to each wire w
e L% « G(1™) corresponds to value 0 on wire w
« LY « G(1™) corresponds to value 1 on wire w

* For each gate g construct a doubly-encrypted
translation table with randomly permuted rows

Why can’t | leave

the output labels
this way?

Because they leak
(e.g. type of gate)

2 L0 19400
Ly | L L5
1L | L i
Lo L 4L

v




The garbling procedure

e Assign two random labels (L%, L1)) to each wire w
e L% « G(1™) corresponds to value 0 on wire w
e Ll « G(1™) corresponds to value 1 on wire w

* For each gate g construct a doubly-encrypted
translation table with randomly permuted rows

1o | 1 Epo (ELg (L9 0)))
wo Ejo (Ep (L5




The garbling procedure

e Assign two random labels (L%, L1)) to each wire w
e L% « G(1™) corresponds to value 0 on wire w
« LL « G(1™) corresponds to value 1 on wire w

* For each gate g construct a doubly-encrypted
translation table with randomly permuted rows

o o (o (27)
verifiable range E, (E . (La,(o'o)))

Giyenmg can E,o (EL%, (ng(o 1)))
identify the row

oot (0, ) anc 2AICE)

g(a,p)
compute L7,



The garbling procedure

e Assign two random labels (L%, L1)) to each wire w
e L% « G(1™) corresponds to value 0 on wire w
« LY « G(1™) corresponds to value 1 on wire w

* For each gate g construct a doubly-encrypted
translation table with randomly permuted rows

* Construct an output translation table

1 Lout

7/1

Can handle any number of
output wires by constructing a
table for each one




The garbling procedure

Assign two random labels (L%, L) to each wire w
e L% « G(1™) corresponds to value 0 on wire w
« LY « G(1™) corresponds to value 1 on wire w

For each gate g construct a doubly-encrypted
translation table with randomly permuted rows

Construct an output translation table

Output all tables

0o | L9, E (Ep (L5™Y

(ks (1))
1| I, Ejo (ELg (L;‘,’V(O’O)»--'

(e )i

(ks (1)




The garbling procedure

0
Lout




Yao’s protocol

Common input: C: {0,1}?™ - {0,1}

Garbled circuit G(C)

>

Input labels L7?, ..., L™ for x
= >

nput: x € {0,1}" Input: y € {0,1}"
C te G(C) and
ompu eo (1 )an OT for each i € [n] in parallel:
labels {(Li;Li)}' ice’s i 0 :
lE[Zn] . A||Ce S |npUt: (Ln+i; Ln+i)

Compute C(x,y)
using G(C) and

X1 Xn 1Y1 Yn
I SC P LS £4c

e Bob’sinput: y;

Clx,y)




Recall:Security in the semi-honest model

Protocol (4, B)
ﬁ

Alice: x Bob: y
random tape: 1y, random tape: ry,

Definition: An efficient protocol (4, B) securely computes a
deterministic function f = (fy, f») in the semi-honest model if there
exist PPT simulators S4 and Sg such that for every {x, y} €

{0,1}*, the following hold:

Correctness:

Prlouts[(A(x), B(y))(1™M)], outp[({A(x), B(y))(1™)] = f(x,y)] = 1
Security against semi-honest Alice:

Sa(x, f1(x,y)) =c viewa((A(x), B(¥)))
Security against semi-honest Bob: symmetric



Alice’s simulator

Garbled circuit G(C)

Input labels | Lfl" for x
- >
Input: x € {0,1}"

Compute G(C) and ) ‘ .
labels {(LO Ll)} OT for each i € [n] in parallel:
IE[2n

ir™i * Alice’s input: (Ln+l' n+l)
* Bob’s input: y;

C(x,y)




Bob’s simulator

Garbled circuit G(C)

Input labels ... Lfl” for x

OT for each i € [n] in parallel:
* Alice’s input: (L2, ;, L}, ;)
* Bob’sinput: y;

C(x,y)

Input: y € {0,1}"

Compute C(x,y)
using G(C) and

X1 Xn 1Y1 Yn
T




Bob’s simulator: step 1

Replace Bob’s view in the OTs with the assumed OT simulator ST

Indistinguishable from
Bob’s original view by the
security of the OT
(standard hybrid argument
over the n OTs)

From this point on, 55

"
needs to know Lnlﬂ. but

1-y;
does not use Ln+i

Garbled circuit G(C)

Input labels L7, ..., L,’,Cl" for x

OT for each i € [n] in parallel:
* Alice’s input: (L%, ;, L}, ;)

Bob’s input: y;

C(x,y)

Input: y € {0,1}"

Compute C(x,y)
using G(C) and

X Xn 1Y
L

Yn
nt+1 = Loy




Bob’s simulator: step 2

Replace G(C) with an indistinguishable G (C) that evaluates to C(x, y) on all

input labels

Intuition: Bob should not
notice that G (C)
computes a constant
function since he knows

only one of (Lnﬂ, nH)
by the security of the OT

Garbled circuit G(C)

Input labels L7, ..., Lfl" for x

OT for each i € [n] in parallel:
* Alice’s input: (Lnﬂ, n+l)

Bob’s input: y;

C(x,y)

Input: y € {0,1}"

Compute C(x,y)
using G(C) and

Xn 1V1 Yn
N E




Bob’s simulator: step 1

Replace Bob’s view in the OTs with the assumed OT simulator ST

Can now replace
L, .., Lyt with L, ... L

This view can be
generated given y and

C(x,y), and without
knowing x

0
n

Garbled circuit G(C)

Input labels L7, ..., Lfl" for x

OT for each i € [n] in parallel:
* Alice’s input: (L%, ;, L}, ;)

n+i’ “n+i

* Bob’s input: y;

C(x,y)

Input: y € {0,1}"

Compute C(x,y)
using G(C) and

X Xn 1Y
L

Yn
nt+1 = Loy




The fake G (C)

e Assign two random labels (LY, L)) to each wire w

* For each gate g construct a randomly permuted translation
table doubly-encrypting the zero label

Real table Fake table
Epx (EL% (Lﬁ,“'”)) E;s, (Eu (L3))
Ejo (ELg (Lﬁ,("'o))) Eso (Eg (19)
Ejo (EL% (Lﬁ,“"”)) Epo (g (1))
Ej: (ELg (Lﬁ,“'o))) E;s, (Eg (13))




Leverage CPA security of (G, E, D)

Real and fake tables are indistinguishable because only one label
is known from each pair (L%, L%L) and (L?,, L},)

(Subtle hybrid argument due to dependencies between tables corresponding to
different gates)

Real table Fake table
EL}i (EL,l, (L)

(B (15°) )
Epo (EL% (Lﬂ,(""’))) By (Erg (15))
Eo (EL% (L;’;,(O'”)) Ey (B L3))
ELx (ELg (Lﬁ,“"’))) By (Esg (1))




The fake G (C)

Assign two random labels (L), L},) to each wire w

For each gate g construct a randomly permuted translation
table doubly-encrypting the zero label

Construct an output translation table where LY, is translated
toC(x,y)

C(x,y)
0 Lout
1-C(x,y)
1 Lout




The fake G (C)

Assign two random labels (L), L},) to each wire w

For each gate g construct a randomly permuted translation
table doubly-encrypting the zero label

Construct an output translation table where LY, is translated
toC(x,y)

Output all tables

0 | Lo B (B (19))
1 |6y Eso (Eg (L3))
By (B (L&L))




Bob’s simulator

Garbled circuit G (C)

0
Input labels L9, ..., LY for x

Input: y € {0,1}"

Compute C(x,y)
using G (C) and

0 0 1)1 Yn
19, .., 18, 2% ., ..., 12"

Foreachi € [n]

invoke S5 (y;, Lﬁ,i)

C(x,y)




Yao’s protocol

Common input: C: {0,1}?™ - {0,1}

Garbled circuit G(C)

>

Input labels L7?, ..., L™ for x
= >

Input: x € {0,1}" Input: y € {0,1}"
C te G(C d
ompt eo (1 )an OT for each i € [n] in parallel:
labels {(L?, L})}. o, 0o 1
t€[2n] * Alice’s input: (Ln+i, Ln+i)
* Bob’sinput: y; Compute C(x, y)
ot using G(C) and
X Xn 1y Yn
Cxy) I SoET racll F L 4
Theorem:
Yao’s protocol securely computes any C: {0,1}*™ — {0,1} in the semi-honest model




Efficiency

e Garbling and evaluation tend to be very
efficient because it can be implemented via
AES, which is in hardware

* Creating a circuit from a program often results
in a big circuit



Questions

Q: Say Alice and Bob want to compare their European
and US funds. Can they reuse the garbled circuit?

A: No! Yao garbled circuits are one-time. Insecure with
multiple input encodings.

Your three instructors had a paper (STOC’11) on how to reuse garbled
circuits. Great proof of concept but a very inefficient scheme with
nesting of heavy schemes like FHE or ABE.

Q: What are two inputs that reveal all values of f(x, y)?

A: 00000... and 11111.. because Bob receives all possible
labels.



Summary

We learned about secure two-party computation
- definition for semi-honest adversaries, and
- a construction via Yao garbled circuits and OT



