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In this lecture

Recording…

Last time: 
- Secure 2-party computation via Yao garbled circuits

This time the GMW protocol:
- Secure 2-party computation via secret sharing
- Extension to secure n-parth computation
- Extension to malicious security



Secure 2-party computation

Alice and Bob compute 𝑓(𝑥, 𝑦) without sharing 
their private inputs with each other

𝑓(𝑥, 𝑦)

𝑥 𝑦



Recall: adversarial models

• Semi-honest/honest-but-curious: Each party follows the 
protocol, but tries to learn additional information from the 
transcript

• Malicious: Parties  can behave arbitrarily, even deviate from 
the protocol in order to learn additional information



Security in the semi-honest model

Alice: 𝑥
random tape: 𝑟!

Bob: 𝑦
random tape: r"

Protocol (𝐴, 𝐵)

Definition:	An	efficient	protocol	⟨𝐴, 𝐵⟩ securely	computes	a	
deterministic	function	𝑓 = (𝑓*, 𝑓+) in	the	semi-honest	model	if	there	
exist	PPT	simulators	𝑆, and	𝑆- such	that	for	every	 𝑥, 𝑦 ∈
0,1 ∗, the	following	hold:
Correctness:	
Pr 𝑜𝑢𝑡, 𝐴 𝑥 , 𝐵 𝑦 1/ , 𝑜𝑢𝑡- 𝐴 𝑥 , 𝐵 𝑦 1/ = 𝑓 𝑥, 𝑦 = 1
Security	against	semi-honest	Alice:
𝑆, 𝑥, 𝑓*(𝑥, 𝑦) ≈0 𝑣𝑖𝑒𝑤,(⟨𝐴 𝑥 , 𝐵(𝑦)⟩)

Security	against	semi-honest	Bob:	
Symmetric		



Goldreich-Micali-Wigderson (GMW) 1987



GMW

• Construct a protocol for the semi-honest 
model
– Based on OT

• “Compile it” to obtain a protocol that is 
secure for the malicious model
– Compilation involves forcing the parties to 

follow the protocol



Recall: Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥1
𝑥*

• Sender holds two bits 𝑥1 and 𝑥*.

• Receiver holds a choice bit 𝑏.

• Receiver should learn 𝑥2, sender should learn nothing. 

Sender



Generalization

• Can define 1-out-of-k oblivious transfer

• We will use 1-out-of-4 OT for 2-party GMW



1-out-of-2 OT

Encrypt choice bit b

Choice bit: 𝑏Input bits: (𝑥!, 𝑥")

𝑐 ⟵ Enc(𝑠𝑘, 𝑏)

𝑐3 = Eval(𝑆𝐸𝐿4!,4"(𝑏), 𝑐)

Homomorphically 
evaluate the 
selection function

𝑐

𝑺𝑬𝑳𝒙𝟎,𝒙𝟏 𝒃 =
(𝒙𝟏⨁ 𝒙𝟎)𝒃 + 𝒙𝟎

Decrypt to get 𝑥2

Bob’s security: computational, from CPA-security of Enc.
Alice’s security: statistical, from circuit-privacy of Eval.



1-out-of-4 OT

Encrypt choice bit b

Choice bit: 𝑏!, 𝑏"Input bits: 
(𝑥!, 𝑥", 𝑥', 𝑥()

𝑐 ⟵ Enc(𝑠𝑘, 𝑏)

𝑐3 = Eval(𝑆𝐸𝐿4!,4"(𝑏), 𝑐)

Homomorphically 
evaluate the 
selection function

𝑐

𝑺𝑬𝑳𝒙𝟎,𝒙𝟏 𝒃 =
(𝒙𝟏 + 𝒙𝟎)𝒃 + 𝒙𝟎 mod 2 Decrypt to get 𝑥2

Ideas how to adapt this protocol to 1-
out of-4?



1-out-of-4 OT

Encrypt choice bit b

Choice bit: 𝑏!, 𝑏"Input bits: 
(𝑥!, 𝑥", 𝑥', 𝑥()

𝑐 ⟵ Enc(𝑠𝑘, 𝑏1, 𝑏*)

𝑐3 = Eval(… )

Homomorphically 
evaluate the 
selection function

𝑐

𝑆𝐸𝐿)*+#$,#& ,& ,)*+#',#( -& (𝑏!) Decrypt to get 𝑥2!2"



2-party semi-honest GMW

• Let 𝑓 be the function that the parties wish to 
compute

• Represent 𝑓 as an arithmetic circuit with 
addition and multiplication gates (over GF[2]).
– 𝑥 + 𝑦 𝑚𝑜𝑑 2 = 𝑥 ⊕ 𝑦
– 𝑥 ∗ 𝑦 𝑚𝑜𝑑 2 = 𝑥 AND 𝑦
– Will only write 𝑥 + 𝑦 and 𝑥 ∗ 𝑦 for simplicity



Random Shares Paradigm
• Compute gate-by-gate, revealing only random shares

each time

• Let a be a private value:
– Alice holds a random value a1

– Bob holds a+a1

– Note that without knowing a1, a+a1 is just a random value 
revealing nothing of a.

– We say that the parties hold random shares of a.

• The computation will be such that all intermediate 
values are random shares (and so they reveal nothing).



Circuit Computation

• Stage 1: each party randomly shares its input 
with the other party

• Stage 2: compute gates of circuit as follows
– Given random shares to the input wires, compute 

random shares of the output wires

• Stage 3: combine shares of the output wires in 
order to obtain actual output



Stage 1: randomly share input

input 𝑏input 𝑎

choose random 𝑎!
𝑎" = 𝑎 + 𝑎! 𝑎"

Choose random 𝑏"
𝑏! = 𝑏 + 𝑏"

𝑏!



Stage 3: combine output from shares

input 𝑏input 𝑎

𝑜!
𝑜"

At the end of Stage 2, they will 
each have shares of the output 

𝑜!

𝑜"
+
= 𝑜

+
= 𝑜



Stage 2

Compute each gate at a time: given random 
shares of the input wires, compute random 
shares of the output wires
– Addition
– Multiplication



Addition

input 𝑏input 𝑎
𝑎!, 𝑏! 𝑎", 𝑏"

Parties should end up having shares of 𝑎 + 𝑏

Ideas?



Addition

input 𝑏input 𝑎
𝑎!, 𝑏! 𝑎", 𝑏"

Parties should end up having shares of 𝑎 + 𝑏

𝑎! + 𝑏! = 𝑜! 𝑎" + 𝑏" = 𝑜"

These are shares of 𝑎 + 𝑏 because  𝑜! + 𝑜" = 𝑎! + 𝑏! + 𝑎" + 𝑏" = 𝑎 + 𝑏

simple local addition



Invert 𝑎

input 𝑏input 𝑎
𝑎!, 𝑏! 𝑎", 𝑏"

Parties should end up having shares of 1 + 𝑎

Ideas?



Invert 𝑎

input 𝑏input 𝑎
𝑎!, 𝑏! 𝑎", 𝑏"

Parties should end up having shares of 1 + 𝑎

𝑜! = 1 + 𝑎! 𝑜" = 𝑎"

invert at one party



Multiplication

input 𝑏input 𝑎
𝑎!, 𝑏! 𝑎", 𝑏"

Parties should end up having shares of 𝑎 ∗ 𝑏 = (𝑎* + 𝑎+)(𝑏* + 𝑏+)

Ideas?
Hint: OT



Multiplication

input 𝑏input 𝑎
𝑎!, 𝑏! 𝑎", 𝑏"

Parties should end up having shares of 𝑎 ∗ 𝑏 = (𝑎* + 𝑎+)(𝑏* + 𝑏+)

Alice does not know Bob’s 
shares, but there are only 
4 possibilities: 00,01,10,11



Multiplication (cont’d)

• Alice prepares a table as follows:
– Row 1 corresponds to Bob’s input 00
– Row 2 corresponds to Bob’s input 01
– Row 3 corresponds to Bob’s s input 10
– Row 4 corresponds to Bob’s input 11

• Let r be a random bit chosen by Alice:
– Row 1 contains the value a×b+r when a2=0,b2=0
– Row 2 contains the value a×b+r when a2=0,b2=1
– Row 3 contains the value a×b+r when a2=1,b2=0
– Row 4 contains the value a×b+r when a2=1,b2=1



Concrete Example

• Assume: a1=0, b1=1
• Assume: r=1

Row Bob’s shares Output value

1 a2=0,b2=0 (0+0).(1+0)+1=1

2 a2=0,b2=1 (0+0).(1+1)+1=1

3 a2=1,b2=0 (0+1).(1+0)+1=0

4 a2=1,b2=1 (0+1).(1+1)+1=1



Multiplication

input 𝑏input 𝑎
𝑎!, 𝑏! 𝑎", 𝑏"

Parties should end up having shares of 𝑎 ∗ 𝑏 = (𝑎* + 𝑎+)(𝑏* + 𝑏+)

• The parties run a 1-out-of-4 oblivious transfer protocol
• Alice plays the sender. 
• Bob selects the row corresponding to 𝑎+, 𝑏+ so it obtains 
𝑎𝑏 + 𝑟

• Alice has 𝑟, so they have a secret sharing of 𝑎 ∗ 𝑏 as 
desired

1-out-of-4 OT



Computing a multi-gate circuit

• The shares outputting a gate are used to 
compute another gate

• Computation proceeds in this manner until 
the end

• Combine the shares of the parties only at the 
end



Semi-honest security

• XOR (+ mod 2) and AND (* mod 2) are universal
• Reduction to the oblivious transfer protocol
• Assuming security of the OT protocol, parties 

only see random values until the end. 
Therefore, simulation is straightforward.

Theorem: assuming OT, any efficient 
functionality 𝑓 can be securely computed in the 
semi-honest model



Properties of GMW

• Interactive protocol
• How many rounds of communication?
– O(depth) for depth of circuit because parallel 

gates can be computed in parallel



Can be generalized to multi-party computation 

n parties
- Each user’s private input is 

secret shared in n shares
- Any gate operates on two wires, 

so let us consider private values 
𝑎 and 𝑏 of which everyone has 
a share (𝑎", … , 𝑎.) and 
(𝑏", … , 𝑏.)

- Generalizes to 𝑛-party easier 
than garbled circuits

How would you compute 𝑎 + 𝑏?



Can be generalized to multi-party computation 

n parties

Addition is the same: add local shares 𝑎/⊕𝑏/



Can be generalized to multi-party computation 

n parties

Multiplication: want 𝑎 ∗ 𝑏 = 𝑎" +⋯+ 𝑎. ∗ (𝑏" +⋯+ 𝑏.)
(all bits and mod 2)

Ideas?



Can be generalized to multi-party computation 

n parties

Multiplication: want 𝑎 ∗ 𝑏 = 𝑎" +⋯+ 𝑎. ∗ 𝑏" +⋯+ 𝑏.
= ∑/ 𝑎/𝑏/ + ∑/01 𝑎/𝑏1

How to compute each term?



Can be generalized to multi-party computation 

n parties

Multiplication: want 𝑎 ∗ 𝑏 = 𝑎" +⋯+ 𝑎. ∗ 𝑏" +⋯+ 𝑏.
= ∑/ 𝑎/𝑏/ + ∑/01 𝑎/𝑏1

To compute shares of 𝑎/𝑏/: party 𝑖 multiplies its shares
To compute shares of 𝑎/𝑏1: parties 𝑗 and 𝑖 use 2-party GMW with secrets 𝑎/ and 𝑏1
Each party 𝑖 adds up all these shares to obtain 𝑎 ∗ 𝑏 /



Intuition for malicious security



What can a malicious party do?

Corrupt the shares (which corrupts the final result, e.g. easy to flip the result)
Corrupt multiple parties hoping to reconstruct private inputs
Choose bad randomness
Cheat during OT



Maliciously-secure MPC

• Malicious security is significantly more
complex both definitionally and construction-
wise than semi-honest security

• We will now study malicious security only 
informally

• Let’s start with a security definition…



The real/ideal model paradigm

• An attacker corrupted some parties
• Ideal model: parties send inputs to a trusted party, who 

computes the function and sends the outputs
• Real model: parties run a real protocol with no trusted help

Informally: a protocol is secure if an attacker receives no more 
information about the private inputs in the real protocol than in 
the ideal model

• Since essentially no attacks can be carried out in the ideal 
model, security is implied



The Security Definition

• A protocol P securely computes a function f if:
– For every real-model adversary A, there exists an 

ideal-model simulator S, such that for every set of 
inputs

– the result of a real execution of P with A is 
computationally indistinguishable from the result 
of an ideal execution with S (where the trusted 
party computes f).

• The result of an execution is defined by the output vector of 
the honest parties and adversary



Meaning of the Definition

• Interpretation 1: 
– Security in the ideal model is absolute. Since no attacks 

are possible in the ideal model, we obtain that the same 
is also true of the real model.

• Interpretation 2: 
– Anything that an adversary could have learned/done in 

the real model, it could have also learned/done in the 
ideal model. 



Properties of the Definition
Privacy:

– The ideal-model adversary cannot learn more about the honest 
party’s input than what is revealed by the function output.

– Thus, the same is true of the real-model adversary.
– Otherwise, the REAL and IDEAL could be easily distinguished.

Correctness:
– In the ideal model, the function is always computed correctly.
– Thus, the same is true in the real-model.
– Otherwise, the REAL and IDEAL could be easily distinguished



The GMW Paradigm

• Construct a protocol for the semi-honest 
model

• “Compile it” to obtain a protocol that is secure 
for the malicious model
– Compilation involves forcing the parties to follow 

the protocol

• It may be more efficient to work differently



1. Force the adversary to use a fixed input
2. Force the adversary to use a uniform random tape

3. Force the adversary to follow the protocol exactly
(consistently with their fixed input and random tape)

Three steps for malicious security

- Each party commits to its input and provides commitments to all parties
- Parties run a (maliciously-secure) coin tossing protocol at the end of which each party
has a random tape and the other parties have commitments to this party’s tape

- Run the protocol as with semi-honest GMW but each party adds a ZK proof 
that it performed the right computation against the secret inputs and 
randomness in the commitments 



Summary

• GMW provides a secure multi-party protocol 
via OT and secret sharing

• Malicious security is achieved by compiling a  
semi-honest protocol using commitments, 
coin tossing and ZK proofs

• This was last lecture for Berkeley, next is 
optional for Berkeley


