MIT 6.875 & Berkeley CS276

GMW - Secure multi-party
computation

Lecture 25

Credit: Some slides adapted from Yehuda Lindell

In this lecture

Recording...

Last time:
- Secure 2-party computation via Yao garbled circuits

This time the GMW protocol:
- Secure 2-party computation via secret sharing

- Extension to secure n-parth computation
- Extension to malicious security

Secure 2-party computation

f(xy)

Alice and Bob compute f(x,y) without sharing
their private inputs with each other

Recall: adversarial models

* Semi-honest/honest-but-curious: Each party follows the

protocol, but tries to learn additional information from the
transcript

* Malicious: Parties can behave arbitrarily, even deviate from
the protocol in order to learn additional information

Security in the semi-honest model

ﬂ Protocol (4, B)
ﬁ

Alice: x Bob: y
random tape: 74 random tape: rg

Definition: An efficient protocol (4, B) securely computes a
deterministic function f = (fy, f») in the semi-honest model if there
exist PPT simulators S4 and Sg such that for every {x, y} €

{0,1}*, the following hold:

Correctness:

Prlouts[(A(x), B(y))(1™M)], outp[({A(x), B(y))(1™)] = f(x,y)] = 1
Security against semi-honest Alice:

Sa(x, f1(x,y)) =c viewa((A(x), B(¥)))
Security against semi-honest Bob:
Symmetric

Goldreich-Micali-Wigderson (GMW) 1987

HOW TO PLAY ANY MENTAL GAME

or

A Completeness Theorem for Protocols with Honest Majority

(Extended Abstract)
Oded Goldreich Silvio Micali Avi Wigderson
Dept. of Computer Sc. Lab. for Computer Sc. Inst. of Math. and CS
Technion MIT Hebrew University
Haifa, Israel Cambridge, MA 02139 Jerusalem, Israel

Abstract

We present a polynomial-time algorithm that,
given as a input the description of a game with
incomplete information and any number of players,
produces a protocol for playing the game that leaks
no partial information, provided the majority of the
players is honest.

Our algorithm automatically solves all the
multi-party . protocol problems addressed in
complexity-based cryptography during the last 10
years. It actually is ¢ completencss theorem for the
class of distributed protocols with honest majority.
Such completeness theorem is optimal in the sense
that, if the majority of the players is not honest,
some protocol problems have no efficient solution(<],

1. Introduction

Before discussing how to "make playable” a
general game with incomplete information (which
we do in section 6) let us address the problem of
making playable a special class of games, the Turing
machine games (Tm-games for short).

W B L

correctly run a given Turing machine M on these
z;’s while keeping the maximum possible prwacy
about them. That is, they want to compute
y=M(z,,...,2z,) without revealing more about the
z;’s than it is already contained in the value y itself.
For instance, if M computes the sum of the z;’s,
every single player should not be able to learn more
than the sum of the inputs of the other parties.
Here M may very well be a probabilistic Turing
machine. In this case, all players want to agree on a
single string y, selected with the right probability
distribution, as M’s output.

The correctness and privacy constraint of a
Tm-game can be easily met with the help of an
extra, trusted party P. Each player ¢ simply gives
his secret input z; to P. P will privately run the
prescribed Turing machine, M, on these inputs and
publically announce M’'s output. Making a Tm-
game playable essentially means that the correctness
and privacy constraints can be satisfied by the n
players themselves, without invoking any extra
party. Proving that Tm-games are playable retains
most of the flavor and difficulties of our general

GMW

* Construct a protocol for the semi-honest
model

— Based on OT
 “Compile it” to obtain a protocol that is
secure for the malicious model

— Compilation involves forcing the parties to
follow the protocol

Recall: Oblivious Transfer (OT)

Choice bit: b

Sender Receiver

« Sender holds two bits xy and x;.

 Receiver holds a choice bit b.

* Receiver should learn x;, sender should learn nothing.

Generalization

e Can define 1-out-of-k oblivious transfer

 We will use 1-out-of-4 OT for 2-party GMW

1-out-of-2 OT

il

Input bits: (xg, x1) Choice bit: b

Encrypt choice bit b

Homomorphically c ¢ < Enc(sk, b)
evaluate the
selection function

SEL,, ., (b) = ¢’ = Eval(SELy, x, (b),c)
(x1 @ x9)b + x9 >

Decrypt to get x,,

Bob’s security: computational, from CPA-security of Enc.

Alice’s security: statistical, from circuit-privacy of Eval.

1-out-of-4 OT

il

Input bits: Choice bit: by, b,
(xO»x1»x2;x3)
Encrypt choice bit b
Homomorphically c ¢ < Enc(sk, b)
evaluate the
selection function
SEon,xl(b) — c' = Eval(SELxO,xl (b), C)
(x1 + xo)b ~+ X0 mod 2 >

Ideas how to adapt this protocol to 1-
out of-4?
N —

Decrypt to get x,,

1-out-of-4 OT

il

Input bits:
(xO' X1, X2, X3)

Choice bit: by, b,

Encrypt choice bit b

Homomorphically c ¢ < Enc(sk, by, b;)

evaluate the
selection function

SELSEL, .. (b1),SELy, x,(by) (Po)

Decrypt to get x;, ;.

>

2-party semi-honest GMW

* Let f be the function that the parties wish to
compute

* Represent [as an arithmetic circuit with
addition and multiplication gates (over GF[2]).
—x+ymod2=xDy
—x *ymod2=xANDYy
— Will only write x + vy and x * y for simplicity

Random Shares Paradigm

Compute gate-by-gate, revealing only random shares
each time

Let a be a private value:
— Alice holds a random value a,

— Bob holds a+a;

— Note that without knowing a,, a+a, is just a random value
revealing nothing of a.

— We say that the parties hold random shares of a.

The computation will be such that all intermediate
values are random shares (and so they reveal nothing).

Circuit Computation

e Stage 1: each party randomly shares its input
with the other party
e Stage 2: compute gates of circuit as follows

— Given random shares to the input wires, compute
random shares of the output wires

* Stage 3: combine shares of the output wires in
order to obtain actual output

Stage 1: randomly share input

il

input a

choose random a4

by

a2=a+a1

b1=b+b2

Choose random b,

Stage 3: combine output from shares

At the end of Stage 2, they will

ﬂ each have shares of the output

input a
04 01 02
|
=0
)
|

Stage 2

Compute each gate at a time: given random
shares of the input wires, compute random
shares of the output wires

— Addition

— Multiplication

Addition

Parties should end up having sharesof a + b

il

input a

a, by

|deas? b
%

Addition

Parties should end up having sharesof a + b

N\
&
input a input b
as, by a,, b,
a, + by = 04 simple local addition a + b, = o

These are shares of a + b because 0 + 0, =a; +by+a,+b,=a+>b

Invert a

Parties should end up having sharesof 1 + a

il

input a

ay, by

Ideas? b
%

Invert a

Parties should end up having sharesof 1 + a

il

input a

ay, by

01=1+a1

invert at one party

Multiplication

Parties should end up having sharesof a * b = (a; + a,)(by + b,)

il

input a

a, by

ldeas?
Hint: OT
%

Multiplication

Parties should end up having sharesof a * b = (aq + a,) (b1 + b,)

il

P\

&%
input a input b
ay, by a,, b,

Alice does not know Bob’s
shares, but there are only
4 possibilities: 00,01,10,11

Multiplication (cont’d)

* Alice prepares a table as follows:
— Row 1 corresponds to Bob’s input 00
— Row 2 corresponds to Bob’s input 01
— Row 3 corresponds to Bob’s s input 10
— Row 4 corresponds to Bob’s input 11

* Letrbearandom bit chosen by Alice:
— Row 1 contains the value a-b+r when a,=0,b,=0
— Row 2 contains the value a-b+r when a,=0,b,=1
— Row 3 contains the value a-b+r when a,=1,b,=0
— Row 4 contains the value a-b+r when a,=1,b,=1

Concrete Example

* Assume: a;=0, b;=1 Row | Bob’s shares Output value
* Assume:r=1

1 a2=0,b2=0 (O+O)(1+O)+1=1

2 a,=0,b,=1 | (0+0)(1+1)+1=1

3 a,=1,b,=0 | (0+1)(1+0)+1=0

4 a,=1,b,=1 (0+1)(1+1)+1=1

Multiplication

Parties should end up having sharesof a * b = (aq + a,) (b1 + b,)

il

input a input b

a,, by a,, b,

1-out-of-4 OT

* The parties run a 1-out-of-4 oblivious transfer protocol
e Alice plays the sender.

* Bob selects the row corresponding to a,, b, so it obtains
ab +r

* Alice has 7, so they have a secret sharing of a * b as
desired

Computing a multi-gate circuit

 The shares outputting a gate are used to
compute another gate

 Computation proceeds in this manner until
the end

* Combine the shares of the parties only at the
end

Semi-honest security

Theorem: assuming OT, any efficient
functionality f can be securely computed in the
semi-honest model

e XOR (+ mod 2) and AND (* mod 2) are universal
* Reduction to the oblivious transfer protocol

* Assuming security of the OT protocol, parties
only see random values until the end.
Therefore, simulation is straightforward.

Properties of GMW

* |nteractive protocol

* How many rounds of communication?

— O(depth) for depth of circuit because parallel
gates can be computed in parallel

Can be generalized to multi-party computation

n parties

- Each user’s private input is
secret shared in n shares

- Any gate operates on two wires,
so let us consider private values
a and b of which everyone has
a share (a4, ..., a,) and
(by, ..., by)

- Generalizes to n-party easier
than garbled circuits

How would you compute a + b? \

Can be generalized to multi-party computation

AN
9 Vl,‘\.» ,"vf{l;
Mi . w 4
TR
.\

n parties

N

Addition is the same: add local shares a; @ b;

Can be generalized to multi-party computation

n parties

Multiplication: wanta * b = (a; + -+ ay) * (b; + -+ by)
(all bits and mod 2)

Can be generalized to multi-party computation

n parties

Multiplication: wanta *b = (ay + -+ ay) * (b; + -+ by,)
= 2iaib; + Xz jaib;

How to compute each term? \

Can be generalized to multi-party computation

n parties

Multiplication: wanta *b = (a; + -+ a,) * (by + -+ + by,)
= 2 a;b; + Xz a;b;
To compute shares of a;b;: party i multiplies its shares
To compute shares of a;b;: parties j and i use 2-party GMW with secrets a; and b;

Each party i adds up all these shares to obtain (a * b);

Intuition for malicious security

What can a malicious party do?

Corrupt the shares (which corrupts the final result, e.g. easy to flip the result)
Corrupt multiple parties hoping to reconstruct private inputs

Choose bad randomness

Cheat during OT

Maliciously-secure MPC

* Malicious security is significantly more
complex both definitionally and construction-

wise than semi-honest security

* We will now study malicious security only
informally

e Let’s start with a security definition...

The real/ideal model paradigm

* An attacker corrupted some parties

* |deal model: parties send inputs to a trusted party, who
computes the function and sends the outputs

* Real model: parties run a real protocol with no trusted help
Informally: a protocol is secure if an attacker receives no more

information about the private inputs in the real protocol than in
the ideal model

* Since essentially no attacks can be carried out in the ideal
model, security is implied

The Security Definition

* A protocol Il securely computes a function f if:

— For every real-model adversary A, there exists an
ideal-model simulator S, such that for every set of
inputs

— the result of a real execution of Il with A is
computationally indistinguishable from the result
of an ideal execution with S (where the trusted
party computes f).

* The result of an execution is defined by the output vector of
the honest parties and adversary

Meaning of the Definition

* Interpretation 1:

— Security in the ideal model is absolute. Since no attacks
are possible in the ideal model, we obtain that the same
is also true of the real model.

* Interpretation 2:

— Anything that an adversary could have learned/done in
the real model, it could have also learned/done in the
ideal model.

Properties of the Definition

Privacy:
— The ideal-model adversary cannot learn more about the honest
party’s input than what is revealed by the function output.
— Thus, the same is true of the real-model adversary.

— Otherwise, the REAL and IDEAL could be easily distinguished.

Correctness:
— In the ideal model, the function is always computed correctly.

— Thus, the same is true in the real-model.
— Otherwise, the REAL and IDEAL could be easily distinguished

The GMW Paradigm

e Construct a protocol for the semi-honest
mode

 “Compile it” to obtain a protocol that is secure
for the malicious model

— Compilation involves forcing the parties to follow
the protocol

* |t may be more efficient to work differently

Three steps for malicious security

1. Force the adversary to use a fixed input

L 2. Force the adversary to use a uniform random tape

- Each party commits to its input and provides commitments to all parties
- Parties run a (maliciously-secure) coin tossing protocol at the end of which each party
has a random tape and the other parties have commitments to this party’s tape

3. Force the adversary to follow the protocol exactly
(consistently with their fixed input and random tape)

L - Run the protocol as with semi-honest GMW but each party adds a ZK proof
that it performed the right computation against the secret inputs and
randomness in the commitments

Summary

* GMW provides a secure multi-party protocol
via OT and secret sharing

* Malicious security is achieved by compiling a
semi-honest protocol using commitments,
coin tossing and ZK proofs

* This was last lecture for Berkeley, next is
optional for Berkeley

