6.875 Lecture 4
Spring 2020

Lecturer: Shafi Goldwasser

Randomness is the foundation of cryptography:
* Cryptographic keys have to be unpredictable to the adversary
 Cryptographic algorithms use additional randomness (beyond the key)

« Ifthe random bits are revealed (or are predictable) the entire structure
collapses

Cryptography

i = 5 T =
S Nde i F
™~ -

; — o L
&= 4553

T Lo SR :
L B - = =3 E
: z ¥ = S
el e —_
W T = s o3]
s | F . B
" 1 3 k3
S . : el 2 | - [¥
= K - - = = - TS L T g |
- - i A - i ’ 1
! = = s .- E i
3 2 [- -

e

Sources of Randomness

1) Specialized Hardware: e.g., Transistor noise

2) User Input: Every time random number used, user is
queried

Usually biased, but can “extract” unbiased bits assuming the
source has “some structure and enough entropy” [von
Neumann, Elias, Blum]

BUT: True randomness Is an expensive commodity.

If Only there were Random Number Generators...

That is: Deterministic Programs that stretch a truly

random seed into a (much) longer sequence of truly
random bits.

n-bittruly ——> G ——>Db1b2b3 ...
random “seed”

Can such a G exist?

Pseudo-random Generators

Informally: Deterministic Programs that stretch a “truly
random” seed into a (much) longer sequence of
“seemingly random” bits.

seed —> PRG G ———>b1b2b3 ...

Application for One Time Pads
Enc(m;) = m®pad, where pad, is the ith block output by G

TODAY

NEW NOTION: Pseudo-random Generators
(Two different definitions; Equivalence)

CONSTRUCTION [Blum-Micali'82, Yao82)]:

One-way Permutations + Hardcore Bits =
Pseudorandom Generator.

APPLICATIONS

Pseudo-random Generators

Informally: Deterministic Programs that stretch a “truly
random” seed into a (much) longer sequence of
“seemingly random” bits.

seed ——> PRG G ———>b1b2b3 ...

How to Define a Strong
Pseudo Random Number Generator?

Def 1 [Indistinguishability]

“No polynomial-time algorithm can distinguic” between the
output of a PRG on a random seed vs. » &\ .andom string”

= "as good as” a truly random string \f(§ vractical purposes.

\}
B
Def 2 [Next-bit Unpredic* Q% o
“No polynomial-time @’ Q@.n can predict the (i+1) bit of the

output of a PRG o* ng 2 first i bits”
QN

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function G: {0,1}" —
{0,1}Mis a PRG which “passes all poly time statistical tests” if

(@) m>n and

(b) for every PPT algorithm D, there is a negligible function neg|
such that:

| Pr[D(G(U,)) =11~ Pr[D(U,,) =1] | = negl(n)

Notation: U, (resp. U,,) denotes the random distribution on n-bit
(resp. m-bit) strings; m is shorthand for m(n).

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function G: {0,1}" —
{0,1}mis a PRG which “passes all poly time statistical tests” if

(@) m>nand

(b) for every PPT algorithm D, there is a negligible function neg|
such that:

| Pr[D(G(U,)) =11~ Pr[D(U,,) =1] | = negl(n)

We call D that takes a sequence and outputs 0 or 1
a statistical test..

PRG Def 1: Indistinguishability

Def: A deterministic function G: {0,1}" — {0,1}™is a strong PRG
if m > n and for every PPT algorithm D,

there is a negligible function negl such that:
| Pr{ D(G(U,)) =1]-Pr{ D(U,,) =1]| = negl(n)

~WORLD 1: The | WORLD 2: The Truly
Pseudorandom World 5> | Random World
y — G(Uy) 4 | y-u,

PPT Distinguisher gets y but
cannot tell which world she is in

Why is this a good definition

Good for all Applications:

As long as we can find truly random seeds,
can replace true randomness by the output of
PRG(seed) in ANY “computational” setting.

If it behaves differently,
can convert “application’=statistical test

But: its hard to work with. How do you show that
generator G passes ALL statistical tests?

PRG Def 2: (Next-bit) Unpredictability

Definition [Next-bit Unpredictability]:

A deterministic polynomial-time computable function G: {0,1}" —
{0,1}"is a PRG if

(@) m>nand

(b) for every PPT algorithm PRED and every i € [1..m], there is 4
negligible function negl such that:

Prly < G(U,): PRED(y,y,...yi1) =Yil = 72 + negl(n)

Notation: y; denotes the i-th bit of y.
y._; denotes the first i bits of y.

PRG Def 2: (Next-bit) Unpredictability

Definition [Next-bit Unpredictability]:
A deterministic polynomial-time computable function G: {0,1}" —
{0,1}is a PRG
(@) m>n and
(b) or every PPT algorithm PRED and every i € [1..m], there is a
negligible function negl such that:

Prly < G(U,): PRED(y,y,...yi1) =Yil = 72 + negl(n)

Notation: Call PRED a “next-bit test” and if (b) holds, we say
that G “passes all next bit tests *

Def 1 and Def 2 are Equivalent

Theorem: A PRG G passes all polynomial time statistical tests if
and only if it passes all polynomial time next-bit tests

>

Proof: By counter positive.[if predictable then distinguishable]
« Suppose there is a next-bit test PRED, a polynomial p and an index |
such that
Pr{ PRED(G(U,);. ;) = G(Up)i1 1> 112+ 1/p(n)

« We know that Pr{ PRED(U)) = u,4] < 1/2 since u.,4 is uniformly random
and independent of u4,u,,...,u; and this its impossible to guess it correctly
better than 1/2

« Thus, PRED is a (ppt) statistical test which distinguishes between G(U,)
and U, and thus G is not indistinguishable. QED

Def 1 and Def 2 are Equivalent

Theorem: A PRG G satisfies all polynomial time statistical tests i
and only if it passes all next-bit tests

—

Proof: By counter positive
Suppose now that G does not pass some polynomial time statistical test

DIST.
Then we will show that A can be converted into a next bit test PRED.
That is, show the existence of a bit position j s.t. for

sufficiently large n, PRED can predict the value of j-th output bit of G by
reading only a prefix of length j-1.

Def 1 and Def 2 are Equivalent

Theorem: A PRG G satisfies the indistinguishability def if and
only if it is next-bit unpredictable.

-

Proof: By contradiction. TWO STEPS.
« STEP 1: HYBRID ARGUMENT

« STEP 2: From Distinguishing to Predicting

Distinguishers and Predictors

— Given a distinguisher algorithm DIST with advantage €, we
have:

| Pr[DIST(G(U,)) = 1] - PrDIST(U,)=1]| >«

— Define m+1 hybrid distributions.

_ S _ I random
Hyb”d Distributions I pseudorandom

Do=U, I 3isuchthat DIST
distinguishes
between D, , and
D; with advantage

>e¢e/m

D; I [[[[

I random

Hybl’ld Distributions I pseudorandom
Dy e P

>¢e/m
D; e L

* Define: p,=Prly « D;: DIST(y) = 1]
— Then: py=Pr[y « U.: DIST(y) =1] and
P, = Prly « G(U,): DIST(y)=1]
 Wilog this. implies p, — p.1 > €/m. [exercise: deal with absolute values]

» THEN: Can design a predictor (next-bit test) PRED for i-th
bit of pseudo-random sequences given the (i-1)-bit prefix.

Predictor PRED for it" bit:

Oninput: y = y,Y,...Vi 4
PRED:
— flip a coin: ¢ €{0,1}
— U= Ul .Uy < Um-i
— Run DIST(ycu)
— if D outputs 1, output c;
— if D outputs 0, output —c
(intuition: 1 is a vote for psr bit since p; >p; 4)

Claim:
PrlPRED(y,....4) =y] > 72 + ¢/m.

Distinguishing to Prediction: Analysis

* Recall: p,—p,, > €/m

(i.e prob D outputs 1 higher when i-th bit is from the output of
the PRG as opposed to random)

+ Let distribution D, be D, with i-th bit flipped and
p. =Prly « D/ DIST(y) = 1]

D.4:

Claim: piq = (p; + p;')/2

PP ud [[T [T
Proof: Exercise. D: *
' REREENYEEEEEN

Proof of Claim FEEE

Prly < D PRED(y;...i4) = yi] =

Pr.[y; = c and DIST(ycu) = 1]+

Pr.[y; = —c and DIST(ycu) = O]=
Prc[c=y] Pr[DIST(ycu) =1]y;=c] +

Pr{| —¢ =y;) Pr[DIST(ycu) = Oly;= —c |) =
Va(pit(1-pi’))=1/2 +1/2(pi-p;’) =

72+ (P-(2pi.4-pi))= D
DI [[[] br
72+ (Prpig)=1/2+€/m D |

—piy = (p+ Py’)/2 and thus p;* = 2p;1 - p;
—Pi— Pig > €/m

Lets call a PRG that satisfied passes all
polynomial time statistical tests a
Cryptographically Strong PRG

(CSPRG)

Part 2:

One-way Permutation +
Hardcore Bits =
Pseudorandom Generator

Linear Congruential Generators

ko truly random seed
LCG
Xir1 =a Xi+ b mod M X (a.b.M X1 X2 X3
(where a,b,M define the generator)
Predictable !!! Even if a,b,M unknown [PI]

Even if truncated [FHLK

Insecurity within any crypto
Of course, predictability application as the pseudo random
equence of X, s can be hidden
(in particular: can’ t use prediction

algorithms) But should raise great
concern

Cryptographically Strong- PSRG
from one-way permutations

ldea: Let f be one-way permutation.

— Choose random seed s in {0,1}"
— Compute f(s) f4(s) f3(s) ... f M(s)
— Output in reverse order

* Intuitively, Why good?
— Unpredictable: From fi(s) can’t compute f-1(s)
* Why not so good ?

— Even though you cannot predict f-1(s) some bits of it
may be predictable.

Recall: Hard Core Predicates for OWF

DEFINITION: A hard-core predicate for a one-way function
F{0,1}* — {0,1}" is a Boolean predicate B: {0,1}* — {0,1}

such that:

Vv PPT algorithm PRED
(“predictor”), there is a negligible
function negl(.) such that:

Prob [PRED(f(x)) = B(x) |= %2 +
negl(n)

(probability over random x in {0,1}" and
P’s coins)

X

Hard

PN

25y F(X)

—

Easy
Unpredictable

B(X)

Constructing PSRG

Theorem: If there exist one-way-permutations f with hard
core bit B, then there exist

CS PRG G:{0,1}->{0,1}m(for any polynomial m.
Proof: Let m be a polynomial function, set m=m(n)
On input seed s from U,,,
G: (1) compute f(s) f(f(s)) ... f(f™(s))
(2) compute B(s) B(f(s)) ... B(f™1(s))
I I I

output Y Ym1 --- 2

Note: Cost of computing i-th bit is
O(i*cost of evaluating f)

Picture Better than 1000 words

| Internal
nput Configuration Output
S T 1(5) B(s)
T(3) B(f(s))
T8)(s) B(f)(s))
fm(s) B(f (m1)(s))
* Remark: Can make f™(x) public

- But not any other internal state

Proof : Show outputs of G pass all
next-bit tests.

Suppose, for contradiction, 3bit location j<m(n) and
predictor P s.t. Pr[y « G(U,): P(ysyz...yj4) = Vil > 72+ €

Then show a predictor PRED for Hard Core B

PRED(f(x)):
1.compute f(x) f(f(x)) ... f (F1(x))
2. compute B(f(X)) ... B(f 1(x))

yj|-1 Y1
3. Output P(yy ... Yyj4)

EUREKA: the next bit y, in the sequence
should be B(f(x))

And we assumed that P predicts next bit y; with pron. 2+ €

Proof : Show outputs of G pass all
next-bit tests.

Suppose, for contradiction, 3bit location j<m(n) and
predictor P s.t. Pr[y < G(U,): P(yy,...yj4) =yl > 72+ €

Then show a predictor PRED for Hard Core B

PRED(f(x)):
1.compute f(x) f(f(x)) ... f (F1(x))
2. compute B(f(X)) ... B(f(x))

});_1 Y1
3.Output P(y; ... Yiq)

Claim: Pr[PRED(f(x)=B(x)]=Prob[P(b; ... b4)=b;]>72 + €
Essential to Pf: fis a permutation =y, ... y;4is the same
distribution as P is expecting and will perform well on.

We just went through
A sequence of reductions

« Since B is hard-core for one-way function f
Pred cannot exist

= Next bit test P cannot exist
= G passes all next bit tests
= G passes all polynomial time statistical tests

= G outputs are computationally
indistinguishable from random

Recall: Every OWF Has an
Associated Hard Core Bit

Theorem [GoldreichLevin]:
Let f be a One-way Function.
Define f'(x,r) = f(x) || r where |r|=[x|=n.

Then B(x,r) =), x;1; mod 2 = <x,r> is a hard-core
predicate for f'.

(Alternatively, {B,(x) = <x,r> mod 2}, is a collection
of hardcore predicates for f;.)

Example: Any one-way permutation based on
Goldreich-Levin Hard Core Bit

Input Internal

Configuratio

r X gl

f(x)

f2)(x)

fO)(x)

Output

B(x,r) =<x,r>
B(f(x),r)=<f(x),r>

B(f @/(x),r)=<f(2(x),r>

fH(x)

B(f (-1(x),r)=<ft-1)(x),r>

« Use the same r and even can make r public

One Way Functions vs.
One Way Permutations

Theorem: If 3Jone-way-functions ,

then 3CS-PSRG
G:{0,1}->{0,1}*(for any polynomial P.

Proof: Much Harder
See web site [HILL]

More Generally: CS PRG with a Single bit extension can
be converted to many bit extension (same proof idea)

Internal

Input Configuration Output Buildin g Block:
X o X1 29Xl 90 n Single Bit Expanding
X2 =g(X1)|n g(x1)ln1 | CS-PSRG
. n n+1
X3 =g(x2)|n g(x2) |1 g:{0.1}" - {0.1}
Xm :g(xm-l)ln 9(Xm)|n+1

* Question: what are the hybrids you would
define to prove that this works?

Application: De-randomization

* Goal: simulate BPP in sub-exponential time
* Recall: L € BPP implies 3algorithm M

X € L = Preins ([M(X,y) accepts] > 2/3
X ¢ L = Prns IM(X,y) rejects] > 2/3

* Use Pseudo-Random Generator (PRG) to
generate randomness :

seed—— G [outputstringy

Run M(x.,y) 39

Theorem: if one way functions exist, then
BPP c N _.,DTIME (2¢)

Given L in BPP

Convert BPP algorithm M for L into M *:
— On n-bit input x, say M uses n’ =n°¢ bits of
randomness

— Let m=n®
— Take CS-PRG G:{0,1}m—>{0,1}"
— Qutput majority{M(x,G(s)): s of length m}

Observation 1:
Runtime of M’ is O(2r¢)

Theorem: if f one-way function, then
BPP c n_,DTIME (2r%)

Convert BPP algorithm M into M *:
— On n-bit input x, say M uses n’ bits of randomness
— Let m=ns
— Take CS-PRG G:{0,1}™ > {0,1}"
— Output the majority{M(x,G(s)): s of length m}

Proof:

Suppose not. 3L & ¢ s.t. for inf. many n

Case 1: 3x in L but M’ (x) rejects which means that
M(x,y) behaves differently

when using true randomness y (>2/3 of M(x,y) accept) vs.

when using pseudo-random y= G(s) (<1/2 of M(x,y) accept)
= M(Xx,) is a distinguisher between true randomness and G(s)

Case 2: Ix not in L which is accepted by M’ (x), then argue
similarly....

Theorem: if f one-way function, then
BPP c n_,DTIME (2r¢)

Proof (continued)

Use M as a distinguisher between U, and G(U,,).
Hardwire x to M get distinguisher D, (y)= M(x,y) that

On input y can distinguish if y=G(U,,) ory= U,
xeL = Pr[D,(U,)=1] =2 2/3, but Pr[D,(G(U,,)) = 1] <1/2
Namely: if D, (y) =1, conclude y random else pseudo-random

x¢L = Pr[D,(U,;) =1]<1/3, but Pr[D,(U,,) =1]>1/2
Namely, If D, (y)= 1, conclude y pseudo=random else random

Simulating BPP in sub-exponential time

Proof (remarks)

D, is a non-uniform algorithm (also called a circuit)

Sequence of algorithms, one for each length n for which
there exists x of length n on which M and M’ behave
differently.

Contradicts the fact that f is a one-way function with
respect to non-uniform algorithms

Application: Symmetric Encryption

for long messages with short keys
Let G be CS-PRG which stretches n to [(n)-bits

based on one-way function f.

Key Generation Gen(1"): randomly chose n-bit
seed s in the domain of one-way function f

Encryption Enc(m): for [(n)-bit message m
—compute G (s), Send c=G(s) &m
Decryption D(c):
—compute G(s), let m=cPG(s)
Claim: Computational Secrecy
Proof: G(s) =, uniform implies
c=mdG(s) =. uniform (for any m you can find)

Stateful encryption for many messages:

Let G be CS-PSRG which stretches n to I(n)-bits

based on one-way function f.

Gen(1M): randomly chose n-bit seed s in the
domain of one-way function f . Initialize state =0

Enc(m,):

—compute and send c="ith block of G(s)” &m,
—set i=i+1

Dec(c)):

—set m;= “ith block of G(s)” @©c

—Set i=i+1

Need to maintain state. Is that inherent?

Questions:

Can you access directly the i-th block
output of G7?

Can you do Stateless Encryption of
many messages”?

