6.875 Lecture **4**

Spring 2020

Lecturer: Shafi Goldwasser

Randomness is the foundation of cryptography:

- Cryptographic keys have to be unpredictable to the adversary
- Cryptographic algorithms use additional randomness (beyond the key)

If the random bits are revealed (or are predictable) the entire structure collapses

Randomness

Sources of Randomness

- 1) Specialized Hardware: e.g., Transistor noise
- 2) User Input: Every time random number used, user is queried

Usually biased, but can "extract" unbiased bits assuming the source has "some structure and enough entropy" [von Neumann, Elias, Blum]

BUT: True randomness is an expensive commodity.

If Only there were Random Number Generators...

That is: **Deterministic** Programs that stretch a truly random seed into a (much) longer sequence of truly random bits.

Can such a G exist?

Pseudo-random Generators

Informally: **Deterministic** Programs that stretch a "truly random" seed into a (much) longer sequence of "seemingly random" bits.

Application for One Time Pads

Enc(m_i) = m_i⊕pad_i where pad_i is the ith block output by G

TODAY

NEW NOTION: Pseudo-random Generators (Two different definitions; Equivalence)

CONSTRUCTION [Blum-Micali'82, Yao82]:

One-way Permutations + Hardcore Bits = Pseudorandom Generator.

APPLICATIONS

Pseudo-random Generators

Informally: **Deterministic** Programs that stretch a "truly random" seed into a (much) longer sequence of "seemingly random" bits.

How to **Define** a Strong Pseudo Random Number Generator?

Def 1 [Indistinguishability]

"No polynomial-time algorithm can distinguis" between the output of a PRG on a random seed vs. 2 11 pr andom string" practical purposes.

Def 2 [Next-bit Unpredict S]

"No polynomial-time of putput" "No polynomial-time a' of a can prout of a PRG of a first i bits" ✓ n can predict the (i+1)th bit of the

Def 3 [Incon Ssibility]

"No polynomial-time algorithm can compress the output of the PRG into a shorter string"

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function G: $\{0,1\}^n \rightarrow \{0,1\}^m$ is a PRG which "passes all poly time statistical tests" if

- (a) m > n and
- (b) for every PPT algorithm D, there is a negligible function negligible such that:

$$|Pr[D(G(U_n)) = 1] - Pr[D(U_m) = 1]| = negl(n)$$

Notation: U_n (resp. U_m) denotes the random distribution on n-bit (resp. m-bit) strings; m is shorthand for m(n).

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function G: $\{0,1\}^n \rightarrow \{0,1\}^m$ is a PRG which "passes all poly time statistical tests" if

- (a) m > n and
- (b) for every PPT algorithm D, there is a negligible function negligible such that:

$$|Pr[D(G(U_n)) = 1] - Pr[D(U_m) = 1]| = negl(n)$$

We call D that takes a sequence and outputs 0 or 1 a statistical test..

PRG Def 1: Indistinguishability

Def: A deterministic function G: {0,1}ⁿ → {0,1}^m is a strong PRG if m > n and for every PPT algorithm D,

there is a negligible function negl such that:

$$Pr[D(G(U_n)) = 1] - Pr[D(U_m) = 1] = negl(n)$$

WORLD 1: The
Pseudorandom World
y ← G(U_n)

PPT Distinguisher gets y but cannot tell which world she is in

WORLD 2: The Truly Random World

$$y \leftarrow U_m$$

Why is this a good definition

Good for all Applications:

As long as we can find truly random seeds, can replace true randomness by the output of PRG(seed) in ANY "computational" setting.

If it behaves differently, can convert "application"=statistical test

But: its hard to work with. How do you show that generator G passes ALL statistical tests?

PRG Def 2: (Next-bit) Unpredictability

Definition [Next-bit Unpredictability]:

A deterministic polynomial-time computable function G: $\{0,1\}^n \rightarrow \{0,1\}^m$ is a PRG if

- (a) m > n and
- (b) for every PPT algorithm PRED and every i ∈ [1..m], there is a negligible function negl such that:

```
Pr[y \leftarrow G(U_n): PRED(y_1y_2...y_{i-1}) = y_i] = \frac{1}{2} + negl(n)
```

Notation: y_i denotes the i-th bit of y. $y_{1...i}$ denotes the first i bits of y.

PRG Def 2: (Next-bit) Unpredictability

Definition [Next-bit Unpredictability]:

A deterministic polynomial-time computable function G: $\{0,1\}^n \rightarrow \{0,1\}^m$ is a PRG

- (a) m > n and
- (b) or every PPT algorithm PRED and every i ∈ [1..m], there is a negligible function negl such that:

$$Pr[y \leftarrow G(U_n): PRED(y_1y_2...y_{i-1}) = y_i] = \frac{1}{2} + negl(n)$$

Notation: Call PRED a "next-bit test" and if (b) holds, we say that G "passes all next bit tests "

Def 1 and Def 2 are Equivalent

Theorem: A PRG G passes all polynomial time statistical tests if and only if it passes all polynomial time next-bit tests

Proof: By counter positive.[if predictable then distinguishable]

 Suppose there is a next-bit test PRED, a polynomial p and an index i such that

$$Pr[PRED(G(U_n)_{1...i}) = G(U_n)_{i+1}] > 1/2 + 1/p(n)$$

- We know that $\Pr[\mathsf{PRED}(\mathsf{U_i}) = \mathsf{u_{i+1}}] \leq 1/2$ since $\mathsf{u_{i+1}}$ is uniformly random and independent of $\mathsf{u_1}, \mathsf{u_2}, \ldots, \mathsf{u_i}$ and this its impossible to guess it correctly better than 1/2
- Thus, PRED is a (ppt) statistical test which distinguishes between G(U_n) and U_m, and thus G is not indistinguishable. QED

Def 1 and Def 2 are Equivalent

Theorem: A PRG G satisfies all polynomial time statistical tests if and only if it passes all next-bit tests

Proof: By counter positive

Suppose now that G does not pass some polynomial time statistical test DIST.

Then we will show that A can be converted into a next bit test PRED.

That is, show the existence of a bit position j s.t. for sufficiently large n, PRED can predict the value of j-th output bit of G by reading only a prefix of length j-1.

Def 1 and Def 2 are Equivalent

Theorem: A PRG G satisfies the indistinguishability def if and only if it is next-bit unpredictable.

Proof: By contradiction. TWO STEPS.

- STEP 1: HYBRID ARGUMENT
- **STEP 2:** From Distinguishing to Predicting

Distinguishers and Predictors

Given a distinguisher algorithm DIST with advantage ε, we have:

$$| Pr[DIST(G(U_n)) = 1] - Pr[DIST(U_m) = 1] | > \varepsilon$$

Define m+1 <u>hybrid</u> distributions.

Hybrid Distributions

∃i such that DIST distinguishes between D_{i-1} and D_i with advantage

 D_{m-1} :

$$D_m = G(U_n)$$
:

Hybrid Distributions

$$\begin{array}{c} D_{i\text{-}1} \colon \\ \\ D_{i} \colon \end{array} \hspace{3cm} > \epsilon \, / \, m$$

- Define: p_i = Pr[y ← D_i: DIST(y) = 1]
 - Then: $p_0 = Pr [y \leftarrow U_m: DIST(y) = 1]$ and $p_m = Pr [y \leftarrow G(U_n): DIST(y) = 1]$
- Wlog this. implies $p_i p_{i-1} > \epsilon/m$. [exercise: deal with absolute values]
- THEN: Can design a predictor (next-bit test) PRED for i-th bit of pseudo-random sequences given the (i-1)-bit prefix.

Predictor PRED for ith bit:

```
On input: y = y_1y_2...y_{i-1}
PRED:
   - flip a coin: \mathbf{c} \in \{0,1\}
   -u = u_{i+1}u_{i+2}...u_m \leftarrow U_{m-i}
   - Run DIST(ycu)
   if D outputs 1, output c;

 if D outputs 0, output ¬c

    (intuition: 1 is a vote for psr bit since p_i > p_{i-1})
Claim:
```

 $Pr[PRED(y_{1..._{i-1}}) = y_i] > \frac{1}{2} + \epsilon/m.$

Distinguishing to Prediction: Analysis

• Recall: $p_i - p_{i-1} > \epsilon/m$

(i.e prob D outputs 1 higher when i-th bit is from the output of the PRG as opposed to random)

Let distribution D_i' be D_i with i-th bit flipped and p_i' = Pr[y ← D_i': DIST(y) = 1]

Claim: $p_{i-1} = (p_i + p_i')/2$

Proof: Exercise.

Proof of Claim

 $y = y_1 y_2 \dots y_{j-1}$

 D_{i-1}

 D_{i}

 D'_{i}

$$\begin{split} & \text{Pr}[y \leftarrow D_i\text{: PRED}(y_1..._{i-1}) = y_i] = \\ & \text{Pr}_c[y_i = c \text{ and DIST}(ycu) = 1] + \\ & \text{Pr}_c[y_j = \neg c \text{ and DIST}(ycu) = 0] = \\ & \text{Pr}_c[c = y_i] \text{ Pr}[\text{DIST}(ycu) = 1 | y_i = c] + \\ & \text{Pr}[| \neg c = y_i) \text{ Pr}[\text{DIST}(ycu) = 0 | y_i = \neg c |) = \\ & \text{1/2}(p_i + (1 - p_i')) = 1/2 + 1/2(p_i - p_i') = \\ & \text{1/2} + \text{1/2}(p_i - (2p_{i-1} - p_i)) = \\ \end{split}$$

We used that

 $\frac{1}{2} + (p_i - p_{i-1}) = \frac{1}{2} + \epsilon/m$

$$-p_{i-1} = (p_i + p_i')/2$$
 and thus $p_i' = 2p_{i-1} - p_i$
 $-p_i - p_{i-1} > \epsilon/m$

Lets call a PRG that satisfied passes all polynomial time statistical tests a Cryptographically Strong PRG

(CSPRG)

Part 2:
One-way Permutation +
Hardcore Bits =
Pseudorandom Generator

Linear Congruential Generators

k₀ truly random seed

$$x_{i+1} = a x_i + b \mod M$$

(where a,b,M define the generator)

Predictable !!!

Even if a,b,M unknown [PI] Even if truncated [FHLK]

Of course, predictability

insecurity within any crypto application as the pseudo random sequence of x_i's can be hidden (in particular: can't use prediction algorithms) But should raise great concern

Cryptographically Strong- PSRG from one-way **permutations**

Idea: Let f be one-way permutation.

- Choose random seed s in {0,1}ⁿ
- Compute $f(s) f^2(s) f^3(s) \dots f^m(s)$
- Output in reverse order

- Intuitively, Why good?
 - Unpredictable: From fⁱ(s) can't compute fⁱ⁻¹(s)
- Why not so good ?
 - Even though you cannot predict fⁱ⁻¹(s) some bits of it may be predictable.

Recall: Hard Core Predicates for OWF

DEFINITION: A hard-core predicate for a one-way function

 $F:\{0,1\}^* \rightarrow \{0,1\}^*$ is a Boolean predicate B: $\{0,1\}^* \rightarrow \{0,1\}$ such that:

✓ PPT algorithm **PRED**("predictor"), there is a negligible function negl(.) such that:

Prob [PRED(f(x)) = B(x)]= $\frac{1}{2}$ + negl(n) (probability over random x in $\{0,1\}^n$ and P's coins)

Constructing PSRG

```
Theorem: If there exist one-way-permutations f with hard
  core bit B, then there exist
  CS PRG G:\{0,1\}^n->\{0,1\}^{m(n)} for any polynomial m.
Proof: Let m be a polynomial function, set m=m(n)
  On input seed s from U_n,
  G: (1) compute f(s) f(f(s)) ... f(f^{m-1}(s))
       (2) compute B(s) B(f(s)) \dots B(f^{m-1}(s))
   output
                      y_m y_{m-1} ... y_1
```

Note: Cost of computing i-th bit is O(i*cost of evaluating f)

Picture Better than 1000 words

- Remark: Can make f^m(x) public
 - But not any other internal state

Proof: Show outputs of G pass all next-bit tests.

Suppose, for contradiction, \exists bit location j < m(n) and predictor P s.t. $Pr[y \leftarrow G(U_n): P(y_1y_2...y_{j-1}) = y_i] > \frac{1}{2} + \epsilon$ Then show a predictor PRED for Hard Core B

```
PRED(f(x)):

1. compute f(x) f(f(x)) ... f(f^{j-1}(x))

2. compute B(f(x)) ... B(f^{j-1}(x))
y'_{j-1} y'_{j}

3. Output P(y_1 \ldots y_{j-1})
```

```
EUREKA: the next bit y_L in the sequence should be B(f(x))
And we assumed that P predicts next bit y_i with pron. \frac{1}{2} + \epsilon
```

Proof: Show outputs of G pass all next-bit tests.

Suppose, for contradiction, \exists bit location j < m(n) and predictor P s.t. $Pr[y \leftarrow G(U_n): P(y_1y_2...y_{j-1}) = y_i] > \frac{1}{2} + \epsilon$ Then show a predictor PRED for Hard Core B

```
PRED(f(x)):

1. compute f(x) f(f(x)) ... f(f^{j-1}(x))

2. compute B(f(x)) ... B(f^{j-1}(x))

y_{j-1}^{l} y_{j}^{l}

3. Output P(y_1 \ldots y_{j-1})
```

Claim: $Pr[PRED(f(x)=B(x)]=Prob[P(b_1 ... b_{j-1})=b_j]>\frac{1}{2}+\epsilon$ Essential to Pf: f is a permutation $\Rightarrow y_1 ... y_{j-1}$ is the same distribution as P is expecting and will perform well on.

We just went through A sequence of reductions

- Since B is hard-core for one-way function f Pred cannot exist
- ⇒ Next bit test P cannot exist
- ⇒ G passes all next bit tests
- ⇒G passes all polynomial time statistical tests
- ⇒G outputs are computationally indistinguishable from random

Recall: Every OWF Has an Associated Hard Core Bit

Theorem [GoldreichLevin]:

Let f be a One-way Function.

Define f'(x,r) = f(x) || r where |r| = |x| = n.

Then $B(x,r) = \sum x_i r_i \mod 2 = \langle x,r \rangle$ is a hard-core predicate for f'.

(Alternatively, $\{B_r(x) = \langle x,r \rangle \mod 2\}_r$ is a collection of hardcore predicates for f_i .)

Example: Any one-way permutation based on Goldreich-Levin Hard Core Bit

Use the same r and even can make r public

One Way **Functions vs.**One Way **Permutations**

```
Theorem: If \exists one-way-functions, then \exists CS-PSRG G:\{0,1\}^n->\{0,1\}^{P(n)} for any polynomial P.
```

Proof: Much Harder

See web site [HILL]

More Generally: CS PRG with a Single bit extension can be converted to many bit extension (same proof idea)

 Question: what are the hybrids you would define to prove that this works?

Application: De-randomization

- Goal: simulate BPP in sub-exponential time
- Recall: L ∈ BPP implies ∃algorithm M

```
x \in L \Rightarrow Pr_{coins y}[M(x,y) \text{ accepts}] > 2/3

x \notin L \Rightarrow Pr_{coins y}[M(x,y) \text{ rejects}] > 2/3
```

 Use Pseudo-Random Generator (PRG) to generate randomness y:

Theorem: if one way functions exist, then BPP $\subseteq \bigcap_{\epsilon>0} DTIME$ (2^{n\epsilon})

Given L in BPP

Convert BPP algorithm M for L into M ':

- On n-bit input x, say M uses n' =n^c bits of randomness
- Let $m = n^{\epsilon}$
- Take CS-PRG G: $\{0,1\}^m \longrightarrow \{0,1\}^{n'}$
- Output majority{M(x,G(s)): s of length m}

Observation 1:

Runtime of M' is $O(2^{n\epsilon})$

Theorem: if f one-way function, then BPP $\subseteq \bigcap_{\epsilon>0} \mathsf{DTIME}$ (2n^{\epsilon})

Convert BPP algorithm M into M ':

- On n-bit input x, say M uses n' bits of randomness
- Let $m = n^{\epsilon}$
- Take CS-PRG G: $\{0,1\}^m \longrightarrow \{0,1\}^{n'}$
- Output the majority{M(x,G(s)): s of length m}

Proof:

Suppose not. $\exists L \& \epsilon$ s.t. for inf. many n Case 1: $\exists x$ in L but M'(x) rejects which means that M(x,y) behaves differently when using true randomness y (>2/3 of M(x,y) accept) vs. when using pseudo-random y= G(s) (<1/2 of M(x,y) accept) \Rightarrow M(x,) is a distinguisher between true randomness and G(s) Case 2: $\exists x$ not in L which is accepted by M'(x), then argue similarly....

Theorem: if f one-way function, then BPP $\subseteq \bigcap_{\epsilon>0} \mathsf{DTIME}$ (2n^{\epsilon})

Proof (continued)

Use M as a distinguisher between $U_{n'}$ and $G(U_m)$.

Hardwire x to M get distinguisher D_x (y)= M(x,y) that

On input y can distinguish if y=G(U_m) or y= U_n. •x∈L \Rightarrow Pr[D_x(U_n)=1] \geq 2/3, but Pr[D_x(G(U_m)) = 1] <1/2 Namely: if D_x (y) =1, conclude y random else pseudo-random

•x \notin L \Rightarrow Pr[D_x(U_{n'}) = 1] \leq 1/3, but Pr[D_x(U_m) = 1] >1/2 Namely, If D_x (y)= 1, conclude y pseudo=random else random

Simulating **BPP** in sub-exponential time

Proof (remarks)

 D_x is a non-uniform algorithm (also called a circuit)

Sequence of algorithms, one for each length n for which there exists x of length n on which M and M' behave differently.

Contradicts the fact that f is a one-way function with respect to non-uniform algorithms

Application: Symmetric Encryption for long messages with short keys

Let G be CS-PRG which stretches n to I(n)-bits based on one-way function f.

Key Generation Gen(1^n): randomly chose n-bit seed s in the domain of one-way function f

Encryption Enc(m): for I(n)-bit message m

-compute G(s), Send $c=G(s) \oplus m$

Decryption D(c):

-compute G(s), let $m=c \oplus G(s)$

Claim: Computational Secrecy

Proof: G(s) ≈_c uniform implies

 $c=m \oplus G(s) \approx_c uniform (for any m you can find)$

Stateful encryption for many messages:

Let G be CS-PSRG which stretches n to I(n)-bits based on one-way function f.

Gen(1ⁿ): randomly chose n-bit seed s in the domain of one-way function f. Initialize state i=0

Enc(m_i):

-compute and send c="ith block of G(s)" ⊕m_i

-set i=i+1

$Dec(c_i)$:

-set m_i= "ith block of G(s)" ⊕c

-Set i=i+1

Need to maintain state. Is that inherent?

Questions:

Can you access directly the i-th block output of G?

Can you do Stateless Encryption of many messages?