
6.875 Lecture 4

Spring 2020

Lecturer: Shafi Goldwasser



Cryptography

Randomness

Randomness is the foundation of cryptography:
• Cryptographic keys have to be unpredictable to the adversary
• Cryptographic algorithms use additional randomness (beyond the key)
• If the random bits are revealed (or are predictable) the  entire structure 

collapses



Sources of Randomness
1) Specialized Hardware: e.g., Transistor noise
2) User Input: Every time random number used, user is 
queried

Usually biased, but can “extract” unbiased bits assuming the 
source has “some structure and enough entropy” [von 
Neumann, Elias, Blum]

BUT: True randomness is an expensive commodity.



If Only there were Random Number Generators…

That is: Deterministic Programs that stretch a truly 
random seed into a (much) longer sequence of truly 
random bits.

b1 b2 b3 ...Gn-bit truly 
random  “seed”

Can such a G exist? 



Pseudo-random Generators

Informally: Deterministic Programs that stretch a “truly 
random” seed into a (much) longer sequence of 
“seemingly random” bits.

b1 b2 b3 ...PRG Gseed

Application for One Time Pads
Enc(mi) = miÅpadi where padi is the ith block output by G



TODAY

NEW NOTION: Pseudo-random Generators 
(Two different definitions; Equivalence)

CONSTRUCTION [Blum-Micali’82, Yao82]: 
One-way Permutations + Hardcore Bits = 
Pseudorandom Generator.

APPLICATIONS



Pseudo-random Generators

Informally: Deterministic Programs that stretch a “truly 
random” seed into a (much) longer sequence of 
“seemingly random” bits.

b1 b2 b3 ...PRG Gseed



How to Define a Strong 
Pseudo Random Number Generator?

Def 1 [Indistinguishability]
“No polynomial-time algorithm can distinguish between the 
output of a PRG on a random seed vs. a truly random string”
= “as good as” a truly random string for all practical purposes. 

Def 2 [Next-bit Unpredictability]
“No polynomial-time algorithm can predict the (i+1)th bit of the 
output of a PRG given the first i bits”

Def 3 [Incompressibility]
“No polynomial-time algorithm can compress the output of the 
PRG into a shorter string”

ALL THREE DEFS EQUIVALENT!



PRG Def 1: Indistinguishability

Notation: Un (resp. Um) denotes the random distribution on n-bit 
(resp. m-bit) strings; m is shorthand for m(n).

Definition [Indistinguishability]: 
A deterministic polynomial-time computable function G: {0,1}n →

{0,1}m is a PRG which “passes all poly time statistical tests” if
(a) m > n and 
(b) for every PPT algorithm D, there is a negligible function negl

such that:

| Pr[ D(G(Un)) = 1 ] – Pr[ D(Um) = 1 ] | = negl(n)



PRG Def 1: Indistinguishability

We call D that takes a sequence and outputs 0 or 1 
a statistical test.. 

Definition [Indistinguishability]: 
A deterministic polynomial-time computable function G: {0,1}n →

{0,1}m is a PRG which “passes all poly time statistical tests” if
(a) m > n and 
(b) for every PPT algorithm D, there is a negligible function negl

such that:

| Pr[ D(G(Un)) = 1 ] – Pr[ D(Um) = 1 ] | = negl(n)



PRG Def 1: Indistinguishability

WORLD 1: The 
Pseudorandom World
y ← G(Un)

WORLD 2: The Truly 
Random World
y ← Um

PPT Distinguisher gets y but 
cannot tell which world she is in

Def: A deterministic function G: {0,1}n → {0,1}m is a strong PRG  
if m > n and for every PPT algorithm D, 
there is a negligible function negl such that:

| Pr[ D(G(Un)) = 1 ] – Pr[ D(Um) = 1 ] | = negl(n)



Why is this a good definition

Good for all Applications:
As long as we can find truly random seeds, 
can replace true randomness by the output of 
PRG(seed) in ANY “computational” setting.

If it behaves differently, 
can convert “application”=statistical test 

But: its hard to work with.  How do you show that 
generator G passes ALL statistical tests? 



PRG Def 2: (Next-bit) Unpredictability
Definition [Next-bit Unpredictability]: 
A deterministic polynomial-time computable function G: {0,1}n →

{0,1}m is a PRG if 
(a) m > n and 
(b) for every PPT algorithm PRED and every i ∈ [1..m], there is a 

negligible function negl such that:
Pr[ y ← G(Un):  PRED(y1y2…yi-1) = yi] = ½ + negl(n)

Notation: yi denotes the i-th bit of y. 
y1…i denotes the first i bits of y.



PRG Def 2: (Next-bit) Unpredictability
Definition [Next-bit Unpredictability]: 
A deterministic polynomial-time computable function G: {0,1}n →

{0,1}m is a PRG  
(a) m > n and 
(b) or every PPT algorithm PRED and every i ∈ [1..m], there is a 

negligible function negl such that:
Pr[ y ← G(Un):  PRED(y1y2…yi-1) = yi] = ½ + negl(n)

Notation: Call PRED a “next-bit test” and if (b) holds, we say 
that G “passes all next bit tests “



Def 1 and Def 2 are Equivalent
Theorem: A PRG G passes all polynomial time statistical tests if 

and only if it passes all polynomial time next-bit tests

Proof: By counter positive.[ if predictable then distinguishable]
• Suppose there is a next-bit test PRED, a polynomial p and an index i

such that
Pr[ PRED(G(Un)1…i) = G(Un)i+1 ] > 1/2 + 1/p(n)

• We know that Pr[ PRED(Ui) = ui+1 ] ≤ 1/2 since ui+1 is uniformly random 
and independent of u1,u2,…,ui and this its impossible to guess it correctly 
better than 1/2

• Thus, PRED is a (ppt) statistical test which distinguishes between G(Un) 
and Um, and thus G is not indistinguishable. QED



Def 1 and Def 2 are Equivalent
Theorem: A PRG G satisfies all polynomial time statistical tests if 

and only if it   passes all next-bit tests

Proof:  By counter positive
Suppose now that G does not pass some polynomial time statistical test 
DIST. 

Then we will show that A can be converted into a next bit test PRED. 

That is, show the existence of a bit position j s.t. for 
sufficiently large n, PRED can predict the value of j-th output bit of G by 
reading only a prefix of length j-1.



Def 1 and Def 2 are Equivalent
Theorem: A PRG G satisfies the indistinguishability def if and 

only if it is next-bit unpredictable.

Proof: By contradiction. TWO STEPS.

• STEP 1: HYBRID ARGUMENT

• STEP 2: From Distinguishing to Predicting



Distinguishers and Predictors

– Given a distinguisher algorithm DIST with advantage ε, we 
have:

| Pr[ DIST(G(Un)) = 1] – Pr[DIST(Um) = 1] | > ε

– Define m+1 hybrid distributions.



Hybrid Distributions

D0 = Um:

Dm = G(Un):

Di:

Di-1:

... 
... 

... 
... 

random
pseudorandom

Dm-1:

∃i such that DIST 
distinguishes 
between Di-1 and 
Di with advantage  

> ε / m



Hybrid Distributions

Di:

Di-1:

random
pseudorandom

> ε / m

• Define: pi = Pr[y ← Di: DIST(y) = 1]
– Then: p0 = Pr [y ← Um: DIST(y) =1]  and

pm = Pr [y ← G(Un): DIST(y)=1]

• Wlog this. implies pi – pi-1 > ε/m. [exercise: deal with absolute values]

• THEN: Can design a predictor (next-bit test) PRED for i-th
bit of pseudo-random sequences given the (i-1)-bit prefix.



Predictor PRED for ith bit:
On input: y =  y1y2…yi-1
PRED:

– flip a coin: c Î{0,1}
– u =  ui+1ui+2…um¬ Um-i

– Run   DIST(ycu)
– if D outputs 1, output c; 
– if D outputs 0, output ¬c
(intuition: 1 is a vote for psr bit since pi >pi-1 )

Claim:
Pr[PRED(y1…i-1) = yi] > ½ + ε/m.



Distinguishing to Prediction: Analysis
• Recall: pi –pi-1 > ε/m

(i.e prob D outputs 1 higher when i-th bit is from the output of 
the PRG as opposed to random) 

• Let distribution Di’ be Di with i-th bit flipped and  
pi’ = Pr[y ← Di’: DIST(y) = 1]

Claim: pi-1 = (pi + pi’)/2
Proof: Exercise.

Di-1:

Di:

Di’: %𝑦!

𝑦!

𝑢!



Proof of Claim
Pr[y ← Di: PRED(y1…i-1) = yi] =
Prc[yi = c and DIST(ycu) = 1]+
Prc[yj = ¬c and DIST(ycu) = 0]=
Prc[c=yi] Pr[DIST(ycu) = 1|yi = c ] + 
Pr[| ¬c =yi) Pr[DIST(ycu) = 0|yi= ¬c |) =
½(pi+(1-pi’))=1/2 +1/2(pi-pi’) = 
½ + ½(pi-(2pi-1-pi))=
½  + (pi-pi-1)=1/2+ε/m

We used that 
– pi-1 = (pi+ pi’)/2 and thus pi‘ = 2pi-1 – pi
– pi – pi-1 > ε/m

y =  y1y2…yj-1

Di-1

Di

D’i



Lets call a PRG that satisfied passes all 
polynomial time statistical tests a
Cryptographically Strong PRG

(CSPRG)



Part 2:
One-way Permutation +
Hardcore Bits = 
Pseudorandom Generator 



Linear Congruential Generators

k0 truly random seed
xi+1 =a xi+ b mod M
(where a,b,M define the generator)

x1 x2 x 3x0
LCG
(a.b.M)

Predictable !!!              Even if a,b,M unknown [Pl]
Even if truncated [FHLK]

Of course, predictability 
insecurity within any crypto
application as the pseudo random

sequence of xi’s can be hidden
( in particular: can’t use prediction
algorithms) But should raise great 
concern



Cryptographically Strong- PSRG 
from one-way permutations

Idea: Let f be one-way permutation.
– Choose random seed s  in {0,1}n

– Compute f(s) f2(s) f3(s) … f m(s)
– Output in reverse order 

• Intuitively, Why good?   
– Unpredictable: From fi(s) can’t compute  fi-1(s)

• Why not so good ? 
– Even though you cannot predict  fi-1(s) some bits of it  

may  be predictable. 



Recall: Hard Core Predicates for OWF

DEFINITION: A hard-core predicate for a one-way function 
F:{0,1}* →  {0,1}* is a Boolean predicate B: {0,1}* →  {0,1} 
such that:

X Easy F(X)

Easy

B(X)
Unpredictable

Hard

" PPT algorithm PRED
(“predictor”), there is a negligible 
function negl(.) such that:     

Prob [ PRED(f(x)) = B(x) ]= ½ + 
negl(n)
(probability over random x in {0,1}n and 
P’s coins )



Constructing PSRG

Theorem: If  there exist  one-way-permutations f with hard 
core bit B, then there exist  
CS PRG    G:{0,1}n->{0,1}m(n)  for any polynomial m.

Proof: Let m be a polynomial function, set  m=m(n)
On input seed s from Un,
G:  (1) compute   f(s)  f(f(s))  …   f(fm-1(s))

(2) compute   B(s)  B(f(s)) … B(fm-1(s))

output                    ym ym-1 …          y1

Note: Cost of computing i-th bit is 
O(i*cost of evaluating f)

= = =



Picture Better than 1000 words

• Remark: Can make fm(x) public 
– But not any other internal state

s f(s) B(s) 

Output
Internal 
Configuration

f(2)(s)
f(3)(s)

Input

B(f(s))

B(f (2)(s))

B(f (m-1)(s))fm(s)



Proof : Show outputs of G pass all 
next-bit tests.

Suppose, for contradiction, ∃bit location j<m(n) and 
predictor P s.t.
Then show a predictor PRED for Hard Core B
PRED(f(x)):

1. compute         f(x)  f(f(x)) …            f (fj-1(x))
2. compute                B(f(x)) …           B(f j-1(x))

yj-1                              y1

3. Output P(y1   …  yj-1 )
= =

Pr[ y ← G(Un):  P(y1y2…yj-1) = yi] > ½ + ε

EUREKA:  the next bit yI. in the sequence
should be B(f(x))
And we assumed that P predicts next bit yi with pron. ½+ ε



Proof : Show outputs of G pass all 
next-bit tests.

Suppose, for contradiction, ∃bit location j<m(n) and 
predictor P s.t.
Then show a predictor PRED for Hard Core B
PRED(f(x)):

1. compute         f(x)  f(f(x)) …            f (fj-1(x))
2. compute                B(f(x)) …           B(f j-1(x))

yj-1                              y1

3. Output     P(y1   …  yj-1 )

Claim:   Pr[PRED(f(x)=B(x)]=Prob[ P(b1  … bj-1 )=bj ]>½ + ε
Essential to Pf:  f is a permutation ⇒y1   …  yj-1 is the same 
distribution as P is expecting and will perform well on.

= =

Pr[ y ← G(Un):  P(y1y2…yj-1) = yi] > ½ + ε



We just went through
A sequence of reductions

• Since B is hard-core for one-way function f 
Pred cannot exist 

⇒ Next bit test P cannot exist
⇒ G passes all next bit tests 
⇒G passes all polynomial time statistical tests
⇒G outputs are computationally 

indistinguishable from random



Recall: Every OWF Has an 
Associated Hard Core Bit

Theorem [GoldreichLevin]:
Let f be a One-way Function.  
Define f’(x,r) = f(x) || r where |r|=|x|=n. 

Then B(x,r) = ∑𝒙𝒊𝒓𝒊 mod 2 = <x,r> is a hard-core 
predicate for f’.

(Alternatively, {Br(x) = <x,r> mod 2}r is a collection 
of hardcore predicates for f i.)



Example: Any one-way permutation based on 
Goldreich-Levin Hard Core Bit

• Use the same r and even can make r public 

x f(x) B(x,r) =<x,r>

OutputInternal 
Configuratio
nr

f(2)(x)
f(3)(x)

Input

B(f(x),r)=<f(x),r>

B(f (2)(x),r)=<f(2)(x),r>

B(f (t-1)(x),r)=<f(t-1)(x),r>f(t)(x)



One Way Functions vs. 
One Way Permutations

Theorem: If    ∃one-way-functions , 
then ∃CS-PSRG    
G:{0,1}n->{0,1}P(n) for any polynomial P.

Proof:   Much Harder 
See web site [HILL]



More Generally: CS PRG with a Single bit extension can 
be converted to many bit extension (same proof idea)

• Question: what are the hybrids you would 
define to prove that this works?

x x1 =g(x)|n g(x)|n+1

Output
Internal 
ConfigurationInput Building Block:

Single Bit Expanding

CS-PSRG

g:{0,1}n ! {0,1}n+1
x2 =g(x1)|n g(x1)|n+1

x3 =g(x2)|n g(x2)|n+1

xm =g(xm-1)|n g(xm)|n+1

… …



39

Application: De-randomization

• Goal: simulate BPP in sub-exponential time
• Recall: L Î BPP implies ∃algorithm M

x Î L Þ Prcoins y[M(x,y) accepts] > 2/3
x Ï L Þ Prcoins y[M(x,y) rejects] > 2/3

• Use Pseudo-Random Generator (PRG) to 
generate randomness y:

seed output string yG

Run  M(x,y)



Theorem: if one way functions exist, then 
BPP ⊆ ∩e>0DTIME (2ne)

Given L in BPP 
Convert BPP algorithm M for L into M‘:

– On n-bit input x, say M uses n’ =nc bits of 
randomness

– Let m= ne

– Take CS-PRG  G:{0,1}m          {0,1}n’

– Output majority{M(x,G(s)): s of length m}

Observation 1: 
Runtime of M’ is O(2ne)



Convert BPP algorithm M into M‘:
– On n-bit input x, say M uses n’ bits of randomness
– Let m= ne
– Take CS-PRG  G:{0,1}m          {0,1}n’

– Output the majority{M(x,G(s)): s of length m}

Proof: 
Suppose not. ∃L  & e s.t. for inf. many n 
Case 1: ∃x in L but  M’(x) rejects which means that
M(x,y) behaves differently  
when using true randomness y  (>2/3 of M(x,y) accept) vs.
when using pseudo-random  y= G(s) (<1/2 of M(x,y) accept) 
⇒ M(x, ) is a distinguisher between true randomness and G(s)
Case 2: ∃x not in  L which  is accepted by M’(x), then argue 
similarly….

Theorem: if f one-way function, then 
BPP ⊆ ∩e>0DTIME (2ne)



Theorem: if f one-way function, then 
BPP ⊆ ∩e>0DTIME (2ne)

Proof (continued)

Use M as a distinguisher between Un’ and G(Um).

Hardwire x to M get distinguisher Dx  (y)= M(x,y) that

On input  y can distinguish  if y=G(Um)  or y=  Un’
•x∈L ⇒ Pr[Dx(Un’)=1] ≥ 2/3, but Pr[Dx(G(Um)) = 1] <1/2 
Namely: if Dx (y) =1, conclude y random else pseudo-random

•x∉L   ⇒ Pr[Dx(Un’) = 1] ≤ 1/3, but Pr[Dx(Um) = 1] >1/2
Namely, If Dx (y)= 1, conclude y pseudo=random else random



Simulating BPP in sub-exponential time

Proof (remarks)

Dx is a non-uniform algorithm (also called a circuit)

Sequence of algorithms, one for each length n for which 
there exists x of length n  on which M and M’ behave 
differently. 

Contradicts the fact that f is a one-way function with 
respect to non-uniform algorithms



Application: Symmetric Encryption 
for long messages with short keys

Let G be CS-PRG which stretches n to l(n)-bits
based on one-way function f.
Key Generation Gen(1n): randomly chose n-bit 
seed s in the domain of one-way function f 
Encryption Enc(m): for  l(n)-bit message m
–compute G (s) , Send c=G(s) ⨁m 
Decryption D(c): 
–compute G(s), let m=c⨁G(s)
Claim: Computational Secrecy
Proof: G(s)    ≈c uniform implies 

c=m⨁G(s) ≈c uniform (for any m you can find)



Stateful encryption for many messages:

Let G be CS-PSRG which stretches n to l(n)-bits
based on one-way function f.
Gen(1n): randomly chose n-bit seed s in the 
domain of one-way function f . Initialize state i=0
Enc(mi): 
–compute and send c=“ith block of G(s)” ⨁mi

–set i=i+1
Dec(ci): 
–set mi= “ith block of G(s)” ⨁c 
–Set i=i+1
Need to maintain state. Is that inherent?



Questions: 

Can you access directly the i-th block 
output of G?

Can you do Stateless Encryption of 
many messages?


