6.875 Lecture 5

Spring 2020

Lecturer: Shafi Goldwasser

LAST TIME: Randomness I

NEW NOTION: Pseudo-random Generators (Two different definitions; Equivalence)

CONSTRUCTION [Blum-Micali'82, Yao82]:

One-way Permutations + Hardcore Bits = Pseudorandom Generator.

APPLICATIONS

TODAY: RANDOMNESS II

APPLICATIONS of CS-PRG

Complexity Theory Symmetric Encryption

PSEUDO RANDOM FUNCTIONS[GGM85]

APPLICATIONS OF PSRF

WHERE DO WE FIND ONE-WAY FUNCTIONS?

RECALL: CONSTRUCTION of CS-PRG

- f is one-way permutation
- B is hard-core predicate for F

Recall: Every OWF Has an Associated Hard Core Bit

Theorem [GoldreichLevin]:

Let f be a One-way Function.

Define f'(x,r) = f(x) || r where |r| = |x| = n.

Then $B(x,r) = \sum x_i r_i \mod 2 = \langle x,r \rangle$ is a hard-core predicate for f'.

(Alternatively, $\{B_r(x) = \langle x,r \rangle \mod 2\}_r$ is a collection of hardcore predicates for f_i .)

BPP

- Class of problems L:{0,1}*->{0,1}
- L ∈ BPP implies ∃PPT algorithm M_L

```
x \in L \Rightarrow Pr_{coins \ v}[M(x,y) \ accepts \ x] > 2/3
```

 $x \notin L \Rightarrow Pr_{coins y}[M(x,y) \text{ with coins y, rejects. x}] > 2/3$

Notation: M(x,y) = "M(x) with coins y"

Application: De-randomization

Goal: simulate BPP in sub-exponential time

 Use Pseudo-Random Generator (PRG) to generate required randomness y:

Theorem: if one-way functions exist, then BPP $\subseteq \bigcap_{\epsilon>0} DTIME$ (2^{n\epsilon})

Proof[Yao] Given L in BPP

Convert BPP algorithm M into algorithm M ':

- On n-bit input x, say M uses n^c bits of randomness
- Let m = n^{ϵ} . Then $n^{c}=(m^{1/\epsilon})^{c}=m^{c/\epsilon}$
- Take CS-PRG G: $\{0,1\}^m \longrightarrow \{0,1\}$
- Output majority_s $\{M(x, G(s))\}$

Observation 1:

M' is deterministic

Runtime of M' = $O(2^{n\epsilon})$ *runtime of M =

Theorem: if f one-way function, then BPP $\subseteq \bigcap_{\epsilon>0} \mathsf{DTIME}$ (2n^{\epsilon})

Proof: Suppose not. $\exists L \& \epsilon$ s.t. for inf. many n Case 1: $\exists x$ in L which M'(x) (incorrectly) rejects, This implies that

 when using M(x,y) with pseudo-random y, M(x,y) will accept for <1/2 of the y's,

whereas

- when using M(x,y) with true randomness y, M(x,y) will accept >2/3 of the y's
- \Rightarrow M(x,) can be used as ia distinguisher between $U_m^{c/\epsilon}$ and outputs of G(U_m). See next page.

But G was CS-PRG, contradiction!

Case 2: ∃x not in L but M'(x) accepts, argue similarly....

Theorem: if f one-way function, then BPP $\subseteq \bigcap_{\epsilon>0} \mathsf{DTIME}$ (2n^{\epsilon})

Proof (formalized)

Let n'=m^{c/ε}

use M as a distinguisher between Un, and G(Um) as follows

Hardwire x to M get polynomial time statistical test algorithm D_x (y):= M(x,y):

On input y:

•(case 1) when x∈L,

$$Pr[D_x(U_{n'})=1] \ge 2/3$$
 and $Pr[D_x(G(U_m))=1] < 1/2$

•(case 2) when $x \notin L$, $Pr[D_x(U_{n'}) = 1] \le 1/3$ and $Pr[D_x(U_m) = 1] > 1/2$

Simulating **BPP** in sub-exponential time

Remarks

D_x is a non-uniform algorithm (also called a circuit)

Sequence of algorithms, one for each length n for which there exists x of length n on which M and M' behave differently.

Contradicts the fact that f is a one-way function with respect to non-uniform algorithms

Application 2: Symmetric Encryption for long messages with short keys

Let G be CS-PRG which stretches n to m(n)-bits based on one-way function f.

- **Key Generation** Gen(1ⁿ): randomly chose n-bit seed s in the domain of one-way function f
- Encryption Enc(m): for m(n)-bit message M compute G (s), Send c=G(s) ⊕M (bit wise xor)
- Decryption D(c):
 compute G(s), let M=c⊕G(s)

Claim: Computational Secrecy

Proof: G(s) $\approx_{\text{computationally}} U_{m(n)}$ implies $c=M \oplus G(s) \approx_{\text{computationally}} U_{m(n)}$ ($\forall M \text{ adv can find}$)

Stateful encryption for many messages:

Let G be CS-PSRG which stretches n to m(n)-bits based on one-way function f.

Gen(1^n): randomly chose n-bit seed s in the domain of one-way function f. Initialize state i=0

Enc(m_i):

-compute and send c="ith block of G(s)" ⊕mi

-set i=i+1

 $Dec(c_i)$:

-set m_i= "ith block of G(s)" ⊕c

-Set i=i+1

Need to maintain state. Is that inherent?

Questions:

Can you access directly the i-th block output of G?

Can you do Stateless Encryption of many messages?

Pseudo Random Functions(PSRF)

Collection of indexed functions $f_s:\{0,1\}^n \Longrightarrow \{0,1\}^n$ is pseudo-random if

- Given s, can compute $f_s(x)$ is efficiently computable
- No adversary can distinguish between
 (x, f_s(x)) for x of its choice, and
 (x, U) (truly random function values).

Define: "statistical test" D or functions

Notation: Df means "D has query access to f", i.e can ask for values of f(x) for x of its choice

Pseudo-Random F is indistinguishable from Random

Phase 1

Phase 1

Prob (Df says 1 in Phase 2) ≈ Prob (D says 1 in phase 2)

Pseudo Random Functions: Formal

Let $H_n = \{f: \{0,1\}^n \rightarrow \{0,1\}^n\}$ all functions from n bits to n bits

Definition: $F = \{F_n\}_n$ where $F_n \subseteq H_n$ is a collection of pseudo random functions iff

- 1. There exists PPT algorithm G (1ⁿ) to selects i s.t. $f_i \in F_n$
- 2. There exists PPT algorithm Eval s.t. Eval(x, i) = $f_i(x)$
- For all PPT statistical tests for functions D^f, for all sufficiently large n

```
| \text{prob}(f \in H_n: D^f(1^n) = 1) -
prob(f \in F_n: D^f(1^n) = 1) | = \text{negl}(n)
```

NOTE: Df makes polynomial number of calls to f

Existence of PSRF's

Theorem: If one-way functions exist, then collections of pseudo random functions exist Proof:

Construction starts from CS-PRG G s.t.

 $G:\{0,1\}^n \rightarrow \{0,1\}^{2n}$ on input seed of length n output 2n bits

```
Easy-Lemma: \forall PPT A, \forall Poly P, \forall n suff. large, | Pr[S \subseteq G(U_n) s.t |S| = P(n): A(S) = 1] - Pr[S \subseteq U_{2n} s.t. |S| = P(n): A(S) = 1] | = negl(n)
```

Tree Like Construction

Each leaf corresponds to $x \in \{0,1\}^n$.

Construction of PSRF's

Define

$$f_s(x) = G_x(s)$$
 e.g. $f_i(0000000) = G_0(G_0(G_0(G_0(G_0(G_0(s)))))$
where $G_x(s) = G_{x_n x_{n-1} x_1}(s) = G_{x_n}(G_{x_{n-1}}(...G_{x_1}(s))...)$

Set PSRF family $F = \{F_n\}$ and $F_n = \{f_s\}_{|s|=n}$

Each evaluation of f is n G evaluations

Each leaf corresponds to x∈{0,1}ⁿ. Label of leaf: value of pseudo-random function at x

 $G_0(G_0(S))$

Theorem: If G is cs-prg, then F is psrf

Proof outline: By contradiction. Assume, algorithm D^f exists which "distinguishes" F_n from H_n with probability ϵ after poly many queries to f (f is either from F_n or all from H_n), then can construct algorithm A to "distinguish" outputs of $G(U_n)$ from U_{2n} with probability $\epsilon' = \epsilon/n$

Hybrid argument by levels of the tree

D_i: functions defined by filling *truly* random labels in nodes at level i and then filling lower levels with Pseudo-random values from i+1 down to n

```
Let p_i = \text{prob} (f \in D_i : D^f (1^n) = 1).

Then p_1 = \text{prob} (f \in F_n : D^f (1^n) = 1) and p_n = \text{prob} (f \in H_n : D^f (1^n) = 1)

and |p_n - p_1| > \epsilon \Rightarrow \exists 1 < i < n \text{ s.t. } |p_i - p_{i-1}| \ge \epsilon / n = \epsilon'
```

Hybrid

Proof of Security

Now use the distinguisher D & i s.t. $|p_i - p_{i-1}| \ge \varepsilon/n = \varepsilon'$ to distinguish $S \subseteq$ outputs of generator from $S \subseteq U_{2n}$ Algorithm (S) for S set of 2n size strings: start with empty tree 1. Run Distinguisher Df(1n) Phase-1 On query $x=x_1,...,x_n$ to f: Pick pair (s_0,s_1) randomly from S ignore levels 1...i-1; fill pair of nodes $x_1,...,x_{i-1}$ 0 and $x_1,...,x_{i-1}$ 1 at level i with pair (s_0,s_1) [unless already filled] set b= x_i and answer $G_{x_n x_{n-1} \dots x_{i+1}}(s_b) = G_{x_n}(G_{x_{n-1}}(\dots G_{x_{i+1}}(s_b))\dots)$ 2. Run Df(1n) Phase-2. if it outputs 1, Output "S random"

Claim: $|\text{prob}|(S\subseteq G(U_n):A(S)=1) - \text{prob}:S\subseteq U_{2n}:A(S)=1)|>\epsilon/n$

if it outputs 0, output "S pseudo-random"

Easy-Lemma: $\forall PPT A, \forall Poly P, n sufficiently large,$ $| Pr [A(S) = 1, S \subseteq G(U_k) s.t |S| = P(n] | Pr [A(S) = 1 | S \subseteq U_{2k} s.t. |S| = P(n] | = neg(n)$

Claim 1[|prob (A(S): $S\subseteq G(U_n)$) =1) - prob (A(S): $S\subseteq U_{2n}$)) =1)|> ϵ '] contradicts Easy-Lemma

Pf:

- if S⊆ G(U_k) then during the execution of A(S), we are answering the queries of D, in accordance with a function f drawn from D_{i-1} and the probability that D in phase 2 will output 1 is p_{i-1}
 However if S⊆ U_{2n} then during the execution of A(S)
- However if $S \subseteq U_{2n}$ then during the execution of A(S) we are answering the queries of D, in accordance with a function f from D_i and the probability that D in phase 2 will output 1 is p_i

Since $|p_i-p_{i-1}| > \epsilon$, the response of D will distinguish between $S \subseteq G(U_n)$ and $S \subseteq U_{2n}$ contradicting the easy lemma. QED

Cost of PSRF

- Expensive n invocations of G
- Sequential
- Deterioration of ε in the reduction: what does that mean?

But does the job!

Corollary

One-way functions (OWF) exist if and only if Pseudo-random functions (PRF) exist.

Proof:

⇒Sequence of. reductions.

F OWF Implies there exists hard core B implies there exists CS PRG implies there exists PRFs

Each reduction costs: starting with security parameter n, end with n'=n^C

← exercise

Prediction Test for Functions? (analogue to Next-Bit Test)

Prediction Test P for functions:

- •Requests $Y_i = f(X_i)$ for X_i , i = 1..q
- •Request Y for $X \notin \{X_1, X_2, ..., X_q\}$
- Decide whether given Y is

$$Y = F_S(X)$$
 or $Y \in \mathbb{R}^{\{0,1\}^n}$

 Prediction Test is a Statistical Tests for functions.

Is It Universal?

Prove it: Exercise

Applications of Pseudorandom Functions

Learning Theory: lower bounds
 Can't learn any class containing (i.e evaluation time is within this class) pseudo-random function

can replace randomness in. crypto applications

- Caveat: what happens when the seed is made public?
 - -Can't trust the pseudo randomness any longer

Stateless Encryption Secure Against Chosen Cipher-text Attack

Generation: Shared secret seed – S

- Encryption: On n-bit message m -
 - choose n-bit r at random
 - Output ciphertext (m \bigoplus f_S(r), r)

- Decryption: On ciphertext (c,r)
 - Output $m=c \oplus f_s(r)$

Passwords, Calling card id's

Global secret seed – S

To generate a password for user M –
 Let PW_M=f_S(M)

Identify Friend of Foe

Global secret seed of the reds is – S

Challenge m, answer f_S(M)

 Security: Even though can obtain polynomial number of (M, f_S(M)), can't predict an additional one