
6.875 Lecture 5

Spring 2020

Lecturer: Shafi Goldwasser



LAST TIME: Randomness I

NEW NOTION: Pseudo-random Generators 
(Two different definitions; Equivalence)

CONSTRUCTION [Blum-Micali’82, Yao82]: 
One-way Permutations + Hardcore Bits = 
Pseudorandom Generator.

APPLICATIONS



TODAY: RANDOMNESS II
APPLICATIONS of CS-PRG

Complexity Theory
Symmetric Encryption

PSEUDO RANDOM FUNCTIONS[GGM85]

APPLICATIONS OF PSRF

WHERE DO WE FIND ONE-WAY FUNCTIONS?



RECALL: CONSTRUCTION of CS-PRG

• f is one-way permutation
• B is hard-core predicate for F

s f(s) B(s) 

Output
Internal 
Configuration

f(2)(s)
f(3)(s)

Input

B(f(s))

B(f (2)(s))

B(f (m-1)(s))fm(s)



Recall: Every OWF Has an 
Associated Hard Core Bit

Theorem [GoldreichLevin]:
Let f be a One-way Function.  
Define f’(x,r) = f(x) || r where |r|=|x|=n. 

Then B(x,r) = ∑𝒙𝒊𝒓𝒊 mod 2 = <x,r> is a hard-core 
predicate for f’.

(Alternatively, {Br(x) = <x,r> mod 2}r is a collection 
of hardcore predicates for f i.)



BPP
• Class of problems  L:{0,1}*->{0,1}

• L Î BPP implies ∃PPT algorithm ML

x Î L Þ Prcoins y[M(x,y) accepts x] > 2/3

x Ï L Þ Prcoins y[M(x,y) with coins y, rejects. x] > 2/3

Notation: M(x,y) = “M(x) with coins y”



7

Application: De-randomization

• Goal: simulate BPP in sub-exponential time

• Use Pseudo-Random Generator (PRG) to 
generate required randomness y:

seed output string yG

Run  M(x,y)



Theorem: if one-way functions exist, then 
BPP ⊆ ∩e>0DTIME (2ne)

Proof[Yao] Given L in BPP 
Convert BPP algorithm M into algorithm M‘:

– On n-bit input x, say M uses nc bits of 
randomness

– Let m = ne . Then nc=(m1/e)c =mc/e

– Take CS-PRG  G:{0,1}m          {0,1}
– Output majoritys {M(x, G(s))}

Observation 1: 
M’ is deterministic
Runtime of M’ = O(2ne)*runtime of M = 



Proof: Suppose not. ∃L  & e s.t. for inf. many n 
Case 1: ∃x in L which  M’(x) (incorrectly) rejects, 
This implies that 
• when using M(x,y) with pseudo-random y, M(x,y) will accept 

for <1/2 of the y’s, 
whereas
• when using M(x,y) with true randomness y, M(x,y)  will 

accept >2/3 of the y’s
⇒ M(x, ) can be used as ia distinguisher between Umc/e and 
outputs of G(Um). See next page.
But G was CS-PRG, contradiction!

Case 2: ∃x not in  L but  M’(x) accepts, argue similarly….

Theorem: if f one-way function, then 
BPP ⊆ ∩e>0DTIME (2ne)



Theorem: if f one-way function, then 
BPP ⊆ ∩e>0DTIME (2ne)

Proof (formalized)
Let n’=mc/e

use M as a distinguisher between Un’ and G(Um) as follows

Hardwire x to M get polynomial time statistical test algorithm Dx 
(y):= M(x,y):

On input  y:
•(case 1) when x∈L,  
Pr[Dx(Un’)=1] ≥ 2/3 and Pr[Dx(G(Um)) = 1] <1/2 

•(case 2) when x∉L,
Pr[Dx(Un’) = 1] ≤ 1/3 and Pr[Dx(Um) = 1] >1/2



Simulating BPP in sub-exponential time

Remarks

Dx is a non-uniform algorithm (also called a circuit)

Sequence of algorithms, one for each length n for 
which there exists x of length n  on which M and M’ 
behave differently. 

Contradicts the fact that f is a one-way function with 
respect to non-uniform algorithms



Application 2:  Symmetric Encryption 
for long messages with short keys

Let G be CS-PRG which stretches n to m(n)-bits
based on one-way function f.
• Key Generation Gen(1n): randomly chose n-bit 

seed s in the domain of one-way function f 
• Encryption Enc(m): for  m(n)-bit message M

compute G (s) , Send c=G(s) ⨁M  (bit wise xor)
• Decryption D(c): 

compute G(s), let M=c⨁G(s)
Claim: Computational Secrecy
Proof: G(s)    ≈computationally Um(n)   implies

c=M⨁G(s) ≈computationally Um(n) (∀M adv can find)



Stateful encryption for many messages:

Let G be CS-PSRG which stretches n to m(n)-bits
based on one-way function f.
Gen(1n): randomly chose n-bit seed s in the 
domain of one-way function f . Initialize state i=0
Enc(mi): 
–compute and send c=“ith block of G(s)” ⨁mi

–set i=i+1
Dec(ci): 
–set mi= “ith block of G(s)” ⨁c 
–Set i=i+1
Need to maintain state. Is that inherent?



Questions: 

Can you access directly the i-th block 
output of G?

Can you do Stateless Encryption of 
many messages?



Pseudo Random Functions(PSRF)

Collection of indexed functions fs:{0,1}n         {0,1}n

is pseudo-random if
– Given s, can compute fs (x) is efficiently computable
– No adversary can distinguish  between

(x, fs (x))  for x of its choice, and 
(x,  U)   (truly random function  values).



f

D 

x f(x)

Phase 1 Phase 2

D 1 or 0

Define: “statistical test” D or functions

Notation: Df means “D has query access to f”, 
i.e can ask for values of f(x) for x of its choice



f in Hn

D 

x f(x)

Phase 1 Phase 1

f in Fn

D

x f(x)

Prob (Df says 1 in Phase 2 ) ≈    Prob (D says 1 in phase 2)

Pseudo-Random F is 
indistinguishable from Random



Pseudo  Random Functions: Formal
Let Hn = {f: {0,1}n -> {0,1}n} all functions from n bits to n bits

Definition: F= {Fn }n where Fn ⊆ Hn is a
collection of pseudo random functions iff
1. 𝑇ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 PPT algorithm G (1n) to selects i s.t. fi ∈ Fn

2. There	exists			PPT algorithm Eval s.t. Eval(x, i) =fi(x)
3. For	all	PPT statistical tests for functions Df, for all 

sufficiently large n
| prob(f ∈ Hn: Df(1n) =1) -
prob(f ∈ Fn :Df(1n) =1) | =  negl(n)

NOTE: Df makes polynomial number of calls to f



Existence of PSRF’s
Theorem: If one-way functions exist, then 
collections of pseudo random functions exist
Proof:
Construction starts from CS-PRG G s.t.

G:{0,1}n ->{0,1}2n on input seed of length n 
output 2n bits

Easy-Lemma:∀PPT  A, ∀Poly P, ∀n suff. large, 
| Pr [S⊆ G(Un) s.t |S|=P(n): A(S) = 1] − 
Pr [S⊆ U2n s.t. |S|=P(n): A(S) = 1] | = negl(n)



Tree Like Construction

G0(S) G1(S)

S

G0(G0(S))

G1(G0(G0(s)))

Each leaf corresponds to x∈{0,1}n. 

G0(s)  = Run  CS-PRG G:{0,1}n ->{0,1}2n

on seed s and output the first n output bits 

G1(s)  = Run a CS-PSRG G:{0,1}n ->{0,1}2n 

on seed s and output the 2nd n output bits
G00(s)  = G0(G0(s)) 
G01(s)  = G1(G0(s)) …
Gx(s) = Gxnxn-1 x1

(s) =Gxn
(Gxn-1

(…Gx1
(s)…))



Construction of PSRF’s
Define
fs (x) = Gx(s)   e.g. fi(0000000)= G0(G0 G0(G0(G0(G0 (s))
where Gx(s)   = Gxnxn-1 x1

(s) = Gxn
(Gxn-1

(… Gx1
(s)) …)

Set PSRF family F= {Fn}  and Fn={fs}|s|=n

Each evaluation of f is n G evaluations G0(S) G1(S)

S

G0(G0(S))

Each leaf corresponds to x∈{0,1}n. 
Label of leaf: value of pseudo-random 
function at x



Theorem: If G is cs-prg, then F is psrf

Proof outline: By contradiction. Assume, algorithm Df exists 
which “distinguishes” Fn from Hn with probability e after poly many
queries to f  (f is either from Fn or all from Hn), then can construct 
algorithm A to “distinguish” outputs of G(Un ) from U2n with 

probability  e’= e/n
Hybrid argument by levels of the tree

Di : functions defined by filling truly random labels in nodes at 
level i and then filling lower levels with Pseudo-random values 
from i+1 down to n
Let pi = prob (f∈Di : Df (1n) =1 ). 
Then p1 = prob (f∈Fn: Df (1n) =1 ) and

pn = prob (f∈Hn: Df(1n) =1  )  
and |pn-p1|>e ⇒∃ 1<i<n s.t. ½pi - pi -1½³ e/n= e’



Hybrid

S0 S1

S

G0(S0)

G1(G0(S0))

n-i

i

Di

pi = prob (g∈Di: Dg (1n) =1 |). 



Now use the distinguisher D &  i s.t. ½pi – pi-1 ½³ e/n= e’
to distinguish S ⊆ outputs of generator from S ⊆ U2n

Algorithm (S) for S set of 2n size strings: 
start with empty tree
1. Run Distinguisher Df(1n) Phase-1

On query x=x1,...,xn to f: 
Pick pair (s0,s1) randomly from S 
ignore levels 1…i-1;
fill pair of nodes   x1,...,xi-10 and  x1,...,xi-11 at level i
with pair (s0,s1)   [unless already filled]
set b=xi and answer Gxnxn-1

..xi+1 
(sb) = Gxn

(Gxn-1
(… Gxi+1

(sb)) …) 
2. Run Df(1n) Phase-2. if it outputs 1, Output “S random” 

if it outputs 0, output “S  pseudo-random”
Claim: |prob (S⊆ G(Un):A(S) =1 ) – prob :S⊆ U2n: A(S)=1 )|>e/n

Proof of Security



Claim 1[|prob (A(S): S⊆ G(Un)) =1 ) - prob (A(S):S⊆ U2n)) =1 )|>e’]
contradicts Easy-Lemma 
Pf:
• if  S⊆ G(Uk) then during the execution of A(S), we are 
answering the queries of D , in accordance with a function f drawn
from Di-1  and the probability that D in phase 2 will output 1 is pi-1

• However if S⊆ U2n then during the execution of A(S)
we are answering the queries of D , in accordance with a function f
from Di  and the probability that D in phase 2 will output 1 is pi

Since|pi-pi-1| > e’, the response of D will distinguish between
S⊆ G(Un)  and S⊆ U2n contradicting the easy lemma. QED

Easy-Lemma:
∀PPT  A, ∀Poly P, n sufficiently large, 
| Pr [A(S) = 1,  S⊆ G(Uk) s.t |S|=P(n] − 
Pr [A(S) = 1 | S⊆U2k s.t. |S|=P(n] | = neg(n)



Cost of PSRF
• Expensive - n invocations of G
• Sequential
• Deterioration of e in the reduction:  what 

does that mean?

But does the job! 



Corollary
One-way functions (OWF) exist 
if and only if        
Pseudo-random functions (PRF) exist.

Proof: 
⇒Sequence of. reductions.
F OWF Implies there exists hard core B

implies there exists CS PRG
implies there exists PRFs

Each reduction costs: starting with security parameter n, 
end with n’=nC

⟸ exercise



Prediction Test for Functions?
(analogue to Next-Bit Test)

Prediction Test P for functions:
•Requests Yi =f(Xi) for Xi, i=1..q
•Request Y for XÏ{X1,X2 ,…, Xq}
•Decide whether given Y is

Y= FS (X) or    YÎR{0,1}n

•Prediction Test is a
Statistical Tests for functions. 
Is It Universal?

Prove it : Exercise 



Applications of Pseudorandom Functions
• Learning Theory: lower bounds

Can’t learn any class containing (i.e evaluation time is 
within this class) pseudo-random function

• can replace randomness in. crypto applications

• Caveat: what happens when the seed is 
made public?
–Can’t trust the pseudo randomness any longer



Stateless Encryption Secure Against 
Chosen Cipher-text Attack

• Generation: Shared secret seed – S

• Encryption: On  n-bit message m – -
– choose n-bit r at random
– Output ciphertext (m⊕ fS(r), r)

• Decryption: On  ciphertext (c,r)
– Output m=c⊕fs(r)



Passwords, Calling card id’s

• Global secret seed – S

• To generate a password for user M –
Let  PWM=fS(M)



Identify Friend of Foe

• Global secret seed of the reds is – S

• Challenge m, answer fS(M)

• Security: Even though can obtain 
polynomial number of (M, fS(M)), can’t 
predict an additional one


