6.875 Lecture 5
Spring 2020

Lecturer: Shafi Goldwasser



LAST TIME: Randomness |

NEW NOTION: Pseudo-random Generators
(Two different definitions; Equivalence)

CONSTRUCTION [Blum-Micali'82, Yao82)]:

One-way Permutations + Hardcore Bits =
Pseudorandom Generator.

APPLICATIONS



TODAY: RANDOMNESS I

APPLICATIONS of CS-PRG

Complexity Theory
Symmetric Encryption

PSEUDO RANDOM FUNCTIONS[GGM85]
APPLICATIONS OF PSRF

WHERE DO WE FIND ONE-WAY FUNCTIONS?



RECALL: CONSTRUCTION of CS-PRG

Internal
Input Configuration Output
S (IR0 B(s)
T(3) B(f(s))
96 B(f @(s))
fm(s) B(f ™m1)(s))

* fis one-way permutation
* B is hard-core predicate for F



Recall: Every OWF Has an
Associated Hard Core Bit

Theorem [GoldreichLevin]:
Let f be a One-way Function.
Define f'(x,r) = f(x) || r where |r|=[x|=n.

Then B(x,r) = ), x;1; mod 2 = <x,r> is a hard-core
predicate for f'.

(Alternatively, {B,(x) = <x,r> mod 2}, is a collection
of hardcore predicates for f;.)



BPP

» Class of problems L:{0,1}*->{0,1}

L € BPP implies 3PPT algorithm M,

X € L = Preins ([M(X,y) accepts x] > 2/3
X ¢ L = Prgns y[M(X,y) with coins y, rejects. x] > 2/3

Notation: M(x,y) = “M(x) with coins y”



Application: De-randomization

* Goal: simulate BPP in sub-exponential time

* Use Pseudo-Random Generator (PRG) to
generate required randomness .

seed—— G [ outputstringy
Run M(x.,y) 7




Theorem: if one-way functions exist, then
BPP c N _.,DTIME (2¢)

Proof[Yao] Given L in BPP

Convert BPP algorithm M into algorithm M *:

— On n-bit input x, say M uses n°¢ bits of
randomness

— Let m = n¢. Then n°=(m?'#)¢ =m¢
— Take CS-PRG G:{0,1}™ —{0,1}
— Output majoritys {M(x, G(s))}

Observation 1:
M’ Is deterministic
Runtime of M" = O(2r¢)*runtime of M =



Theorem: if f one-way function, then
BPP c n_,DTIME (2r¢)

Proof: Suppose not. 3L & ¢ s.t. for inf. many n
Case 1: Ix in L which M’(x) (incorrectly) rejects,
This implies that

« when using M(x,y) with pseudo-random y, M(x,y) will accept
for <1/2 of the y’s,

whereas

* when using M(x,y) with true randomness y, M(x,y) will
accept >2/3 of the y’s

= M(X, ) can be used as ia distinguisher between U= and

outputs of G(U,,). See next page.

But G was CS-PRG, contradiction!

Case 2: Ix notin L but M’ (x) accepts, argue similarly....




Theorem: if f one-way function, then
BPP c n_,DTIME (2r¢)

Proof (formalized)
Let n'=m¢
.S€ M as a distinguisher between U, and G(U,,) as follows

Hardwire x to M get polynomial time statistical test algorithm D,
(y):= M(xy):

On input v:
*(case 1) when x€L,
Pr{D,(Uy)=1]2 2/3 and Pr[D(G(Uy)) = 1] <1/2

*(case 2) when xé&L,
Pr[D,(U,) = 1] = 1/3 and Pr[D,(U,,) = 1] >1/2



Simulating BPP in sub-exponential time

Remarks
D, is a non-uniform algorithm (also called a circuit)

Sequence of algorithms, one for each length n for
which there exists x of length n on which M and M’
behave differently.

Contradicts the fact that f is a one-way function with
respect to non-uniform algorithms



Application 2: Symmetric Encryption
for long messages with short keys
Let G be CS-PRG which stretches n to m(n)-bits

based on one-way function f.

* Key Generation Gen(1"): randomly chose n-bit
seed s in the domain of one-way function f

* Encryption Enc(m): for m(n)-bit message M
compute G (s), Send c=G(s) &M (bit wise xor)

* Decryption D(c):
compute G(s), let M=cPG(s)

Claim: Computational Secrecy

Proof: G(S) zcomputationally Um(n) implies
C=M€BG(S) = . ompbutationally Um(n\ (VM adv can ﬁnd)



Stateful encryption for many messages:

Let G be CS-PSRG which stretches n to m(n)-bits

based on one-way function f.

Gen(1M): randomly chose n-bit seed s in the
domain of one-way function f . Initialize state =0

Enc(m,):

—compute and send c="ith block of G(s)” &m,
—set i=i+1

Dec(c)):

—set m;= “ith block of G(s)” @©c

—Set i=i+1

Need to maintain state. Is that inherent?



Questions:

Can you access directly the i-th block
output of G7?

Can you do Stateless Encryption of
many messages”?



Pseudo Random Functions(PSRF)

Collection of indexed functions f.:{0,1}" ={0,1}"

IS pseudo-random if
— Given s, can compute f, (x) is efficiently computable
— No adversary can distinguish between
(x, fs (X)) for x of its choice, and
(x, U) (truly random function values).



Define: “statistical test” D or functions

Phase 1 Phase 2

D D —> 1o0r0

Notation: Dfmeans “D has query access to f~,
I.e can ask for values of f(x) for x of its choice



Pseudo-Random F is
indistinguishable from Random

Phase 1 Phase 1
X I f(x) X f(X)
D D

Prob (D'says 1in Phase2) = Prob (D says 1 in phase 2)



Pseudo Random Functions: Formal

Let H, = {f. {0,1}" -> {0,1}"} all functions from n bits to n bits

Definition: F={F,}, where F, € H,is a

collection of pseudo random functions iff

1. There exists PPT algorithm G (1") to selects i s.t. f, € F,
2. There exists PPT algorithm Eval s.t. Eval(x, i) =f,(x)

3. For all PPT statistical tests for functions Df, for all
sufficiently large n

| prob(f € H,: D'(1") =1) -
prob(f € F,, :D(1") =1) | = negl(n)

NOTE: Df makes polynomial number of calls to f




Existence of PSRF’ s

Theorem: If one-way functions exist, then

collections of pseudo random functions exist
Proof:

Construction starts from CS-PRG G s.t.

G:{0,1}n ->{0,1}2" on input seed of length n
output 2n bits

Easy-Lemma:vPPT A, vPoly P, vn suff. large,
| Pr[Sc G(U,) s.t |S|=P(n): A(S) = 1] -
Pr[Sc U,, s.t. [S|=P(n): A(S) = 1] | = negl(n)




Tree Like Construction

S

Gy(s) = Run CS-PRG G:{0,1} ->{0,1}*"
on seed s and output the first n output bits

Go(S)O 64(SR  G4(s) = Run a CS-PSRG G:{0,1}" ->{0,1}2n

on seed s and output the 2nd n output bits
Goo(s) = Go(Go(s))
Go(Go(S))

G01(3) = G4(Gy(s)) ...

/ \ G(S) = Gy x . x,(S) =Gy (G . (-..Gx(8)...))
000

51(60(50(5)))

Each leaf corresponds to xe{0,1}".



Construction of PSRF’ s

Define

fs (x) = Gy(s) e.g.£(0000000)= Go(Gy Go(Go(Go(Go (8))
where G,(s) = GXan-1 X1(s) = Gxn(GXn-1 (... GX1(S)) ...)

Set PSRF family F={F.} and F ={f}-,

Each evaluation of fis n G evaluations d5o(S)

Go(6o(S)) \3

Each leaf corresponds to xe{0,1}". / \o 000
Label of leaf: value of pseudo-random
function at x

61(S)

o)



Theorem: It G is cs-prg, then F is psrf

Proof outline: By contradiction. Assume, algorithm Df exists
which “distinguishes” F, from H, with probability ¢ after poly many
queries to f (f is either from F, or all from H_), then can construct

algorithm A to “distinguish” outputs of G(U, ) from U, with
probability ¢'=¢/n

Hybrid argument by levels of the tree

D. : functions defined by filling truly random labels in nodes at

level i and then filling lower levels with Pseudo-random values
from i+1 down to n

Let p;=prob (feD;: Df (1") =1).
Then p; = prob (feF,: Df (1") =1 ) and
pn= prob (feH,: D(1") =1 )
and |p,-p;|>e =3 1<i<n s.t. | Pi - Pi -1 >g/n=¢



000
61(60(So))

J

p; = prob (geD;: DI (1) =1 |).




Proof of Security

Now use the distinguisher D & i s.t. | Di — Pi-1 > ¢g/n=¢
to distinguish S € outputs of generator from S € U,
Algorithm (S) for S set of 2n size strings:
start with empty tree
1. Run Distinguisher D(1") Phase-1

On query x=Xx4,...,X, to f:

Pick pair (sy,s1) randomly from S

ignore levels 1...i-1;

fill pair of nodes Xxy,...,x,.40 and X4,...,xi41 at level i

with pair (sy,S4) [unless already filled]

set b=x; and answer GXan- X (Sp) = Gxn(GXn- 1 (... Gxi+ 1(sb)) ...)
2. Run Df(1") Phase-2. if it outputs 1, Output “S random”

if it outputs O, output “S pseudo-random”

Claim: Iorob (SC G(l) . }A(S) =1 ) — orob :SC )~ A(S)=1 )>¢e/n




Easy-Lemma:

VPPT A, VPoly P, n sufficiently large,

| PrA(S) =1, Sc G(U,) s.t [S|=P(n] -
Pr[A(S) =1 | ScU, s.t. |S|=P(n] | = neg(n)

Claim 1[|prob (A(S): Sc€ G(U,)) =1 ) - prob (A(S):Sc U,,)) =1 )[>¢’]
contradicts Easy-Lemma

Pf:

« if S€ G(U,) then during the execution of A(S), we are
answering the queries of D, in accordance with a function f drawn
from D, , and the probability that D in phase 2 will output 1 is p;_
 However if SC U, then during the execution of A(S)

we are answering the queries of D, in accordance with a function f
from D, and the probability that D in phase 2 will output 1 is p;

Since|pi-pi.1| > €', the response of D will distinguish between
Sc G(U,) and Sc U, contradicting the easy lemma. QED



Cost of PSRF

« Expensive - n invocations of G

« Sequential

 Deterioration of ¢ in the reduction: what
does that mean?”?

But does the job!



Corollary

One-way functions (OWF) exist

if and only if

Pseudo-random functions (PRF) exist.
Proof:

=Sequence of. reductions.
F OWEF Implies there exists hard core B
implies there exists CS PRG

Implies there exists PRFs

Each reduction costs: starting with security parameter n,
end with n’=n®

& exercise



Prediction Test for Functions?
(analogue to Next-Bit Test)

Prediction Test P for functions:
‘Requests Y, =f(X) for X, i=1..9
‘Request Y for X¢g {X,X;,..., X4}
*Decide whether given Y is
Y=Fg(X) or Yegr{0,1}"
*Prediction Test is a
Statistical Tests for functions.
Is It Universal?
Prove it : Exercise



Applications of Pseudorandom Functions

* Learning Theory: lower bounds

Can’t learn any class containing (i.e evaluation time is
within this class) pseudo-random function

* can replace randomness in. crypto applications

« Caveat: what happens when the seed is
made public?
—Can't trust the pseudo randomness any longer



Stateless Encryption Secure Against
Chosen Cipher-text Attack

 Generation: Shared secret seed — S

* Encryption: On n-bit message m — -

— choose n-bit r at random
— Qutput ciphertext (mé& f5(r), r)

* Decryption: On ciphertext (c,r)
— Output m=chf,(r)



Passwords, Calling card id’s

 Global secret seed — S

* To generate a password for user M —
Let PW,,=fs(M)



ldentify Friend of Foe

 Global secret seed ofthereds is — S

« Challenge m, answer f5(M)

» Security: Even though can obtain
polynomial number of (M, fs(M)), can’t
predict an additional one



