
Berkeley CS276 & MIT 6.875 

Pseudorandom Permutations and 
Symmetric Key Encryption

Lecturer: Raluca Ada Popa
Sept 15, 2020



Announcements

• Starting to record
• Psets grading policy:

– We count your best 5 out of 6 psets
– Total of 10 days late, but at most 5 days late for every 

pset so that we can post solutions in a timely way
– 5% participation grade, 95% psets

• If extenuating circumstances prevent participation (e.g. due to 
timezone), solve a problem of the 6th pset and tell us which 
one you want graded when you submit the pset



Overview

Last time: PRFs
Today

• PRPs/ Block ciphers
• Theoretical constructions
• Practical constructions: AES

• Symmetric key encryption schemes
• Definitions
• Practical constructions from block ciphers



Pseudorandom permutations (PRPs)
or block ciphers - intuition

A family of functions 𝑓: 0,1 |"| × 0,1 # → 0,1 # indexed by the 
“key” 𝑘.

Correctness:  𝑓$ is a permutation (bijective function)

Efficiency: Can sample 𝑘, compute 𝑓"(𝑥) and invert it with 𝑘

Pseudorandomness: For a random 𝑘, 𝑓" “behaves” like a random 
permutation from the perspective of a PPT distinguisher



Block cipher: security game 
Attacker is given two boxes, one for 𝑓! and one for 
a random permutation (also called “oracles”)

Attacker wins if it guesses which is 𝑓!

input

output

output

input

??? which is 𝒇𝒌???

𝒇𝒌

rand 
perm

Attacker can give inputs to each oracle, look at the 
output, repeat as many times as he/she desires



Let 𝐻# = 𝑓: 0,1 # → 0,1 # be all permutations from 𝑛 bits to 𝑛 bits. 

Definition: A sequence of random variables 𝐹 = 𝐹# & with 𝐹# a 
distribution over 𝐻# is a pseudorandom permutation ensemble iff
there 

1. exists PPT alg 𝐺𝑒𝑛 1# → 𝑘 s.t. 𝑓" ∈ 𝐹# 𝑘 ← 𝐺𝑒𝑛 1# ; 𝑓" is 
equal to 𝐹# (efficient sampling)

2. exists PPT alg 𝐸 such that 𝐸 𝑘, 𝑥 = 𝑓" 𝑥 (efficient eval)
3. exists PPT alg 𝐼 such that 𝐼 𝑘, 𝑥 = 𝑓"'( 𝑥 (efficient inversion)

4. for all PPT oracle distinguishers 𝐷, for all sufficiently large 𝑛,
Pr 𝐺𝑒𝑛 1# → 𝑘;𝐷 )! 1# = 1 − Pr 𝑅 ← 𝐻#; 𝐷* 1# = 1 = 𝑛𝑒𝑔𝑙(𝑛)

(pseudorandom)

PRP

Efficiently computable and invertible



Exercises

Let 𝐻# = 𝑓: 0,1 # → 0,1 # be all permutations from 𝑛 bits to 𝑛 bits. 

[…]
for all PPT oracle distinguishers 𝐷, for all sufficiently large 𝑛,
Pr 𝐺𝑒𝑛 1# → 𝑘;𝐷 )! 1# = 1 − Pr 𝑅 ← 𝐻#; 𝐷* 1# = 1 = 𝑛𝑒𝑔𝑙(𝑛)

(pseudorandom)

Q: Let 𝑈# # ⊆ 𝐻# where 𝑈# is the uniform distribution over all 
permutations from n to n bits. Is 𝑈# pseudorandom?
A: yes
Q: Let 𝑈#∗ # ⊆ 𝐻# where 𝑈∗# is the uniform distribution over all 
permutations from n to n bits except for the identity distributions. Is it 
pseudorandom?
A: yes, still statistically close to random



How can we construct PRPs? 

The theory way: 
Luby-Rackoff’86:   PRF ⇒ PRP

The practical way:
Rijmen and Daemen’03: AES proposal to NIST 



The theory way - warmup

Let 𝑓: 0,1 ! → 0,1 ! be any function. Let’s 
build a permutation 𝑔: 0,1 "! → 0,1 "! from 𝑓.

Let 𝑔 𝑥, 𝑦 = (𝑦, 𝑓(𝑥)). Is it a permutation?

No. Let 𝑓 𝑥 = 𝑐. Then 𝑔 1, 10 = 𝑔(2,10)



The theory way

Let 𝑓: 0,1 ! → 0,1 ! be any function. Let’s 
build a permutation 𝑔: 0,1 "! → 0,1 "! from 𝑓.

Let 𝑔 𝑥, 𝑦 = (𝑦, 𝑓 𝑦 ⊕ 𝑥). 
Is it a permutation?

Yes.  𝑔"# 𝑦, 𝛼 = (𝛼 ⊕ 𝑓(𝑦), 𝑦)

Feistel 
permutations



Feistel permutation: a permutation from 
any 𝑓: 0,1 ! → 0,1 !Feistal Permutation 

f 

L1 R1 

L2 R2 

Let f:{0,1}n → {0,1}n   
 



Luby-Rackoff ‘86

Informal theorem: Let 𝐹" " be a pseudorandom 
function family. Let 

𝑝 !!,!",!#,!$ 𝑥 = 𝑔!$(𝑔!#(𝑔!" 𝑔!! 𝑥 )) 

with 𝑔! being the Feistel permutation from 𝑓! .
Then 𝑃$" $" is a pseudorandom permutation family. 

Proof (optional): see assigned reading



Luby-Rackoff ’86 intuition

input(x,y)

output

output

??? which is 𝒑𝒌???

𝒑𝒌

rand 
perm

𝑔"" 𝑥, 𝑦 = (𝑦, 𝑓"" 𝑦 ⊕ 𝑥)

How can the attacker distinguish? 

𝑔"#(𝑔"" 𝑥, 𝑦 ) = (𝑓"" 𝑦 ⊕ 𝑥, 𝑓"# 𝑓"" 𝑦 ⊕ 𝑥 ⊕ 𝑥)

Sees 𝑦 in the output.

Two inputs of
same 𝑦 can 
distinguish lefts.

input(x,y)



How can we construct PRPs? 

The theory way: 
Luby-Rackoff’86:   PRF ⇒ PRP

The practical way:
Rijmen and Daemen’03: AES proposal to NIST 



Advanced Encryption Standard (AES)

- Block cipher developed in 1998 by Joan Daemen and 
Vincent Rijmen

- Submitted as a proposal to NIST (US National Institute 
for Standard and Technology) during the AES selection 
process 

- It won, so it was recommended by NIST
- It was adopted by the US government and then

worldwide
- Block length n is 128bits, key length k is 256bits



Cryptanalysis

Not provably secure but an educated assumption 
that it is
- It stood the test of time and of much cryptanalysis 
(field studying attacks on crypto schemes)

- [Bogdanov et al.’11]: 2126.2 operations to 
recover an AES-128 key.

- Snowden documents attempts by the NSA to 
break it

- So far, no efficient algorithm comes close to 
breaking it.



AES ALGORITHM 

• 14 cycles of repetition 
for 256-bit keys.

You don’t need 
to understand 
why AES is this 
way, just get a 
sense of its 
inner workings



Algorithm Steps - Sub bytes
• each byte in the state matrix is replaced with a SubByte using an 

8-bit substitution box
• bij = S(aij)



Shift Rows
• Cyclically shifts the bytes in each row by a 

certain offset
• The number of places each byte is shifted differs for 

each row



AES ALGORITHM 
• The key gets converted 

into round keys via a 
different procedure

• 14 cycles of repetition 
for 256-bit keys.

You don’t need 
to understand 
why AES is this 
way, just get a 
sense of its 
inner workings



Widely used 
• Government Standard

– AES is standardized as Federal Information Processing 
Standard 197 (FIPS 197) by NIST

– To protect classified information 
• Industry

– SSL / TLS
– SSH
– WinZip
– BitLocker
– Mozilla Thunderbird
– Skype

Used as part of symmetric-key 
encryption or other crypto tools



Symmetric-key encryption scheme

Alice Bob

Eve
passive eavesdropper

𝑠𝑘 𝑠𝑘

𝐸𝑛𝑐,"(𝑚)

Alice can send a message 𝑚 to Bob encrypted using 𝑠𝑘 and 
Bob can decrypt it using 𝑠𝑘, but Eve cannot learn what the 
message is other than its length



Symmetric-key encryption scheme

An encryption scheme (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) is a triple of PPT 
algs, where
• Key generation 𝐺𝑒𝑛(1!) outputs a secret key 𝑠𝑘 (𝑛 is 

security parameter)
• Encryption 𝐸𝑛𝑐 𝑠𝑘,𝑚 → 𝑐 a ciphertext
• Decryption 𝐷𝑒𝑐 𝑠𝑘, 𝑐 → 𝑚

Correctness: For all 𝑛, 𝑚, 𝑠𝑘 ← 𝐺𝑒𝑛 1! ,
𝐷𝑒𝑐 𝑠𝑘, 𝐸𝑛𝑐 𝑠𝑘,𝑚 = 𝑚



Security intuition

Alice Bob

Eve

𝑠𝑘 𝑠𝑘

𝐸𝑛𝑐,"(𝑚)

Eve should learn nothing about the message 
other than its length,

even if she sees other encryptions
of messages she chose

𝑨
IND-CPA = 
indistinguishability 
under chosen plaintext 
attack



IND-CPA game
Challenger 𝑠𝑘

𝑚𝑠𝑔%

𝐶%
Encsk

𝑚0, 𝑚1draws 
random bit b 𝐸𝑛𝑐𝑠𝑘(𝑚𝑏)

𝑚𝑠𝑔&Encsk 𝐶&
Here is my 
guess: b’

(must be 
same length)

𝑨

Wins if b’=b

Attacker must not win much more than random guessing



IND-CPA

Definition. An encryption scheme 𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐
is IND-CPA secure if for every PPT adversary 𝐴, 

Pr

𝑠𝑘 ← 𝐺𝑒𝑛 1% ; 𝐴 &%' (),∗ 1% = 𝑚,, 𝑚- ,
𝑤𝑖𝑡ℎ 𝑚, = |𝑚-|

𝑏 ← 0,1 ; 𝐴&%' ./,∗ 𝐸𝑛𝑐 𝑠𝑘,𝑚0 = 𝑏1 ∶
𝑏1 = 𝑏

<
1
2 + 𝑛𝑒𝑔𝑙(𝑛)



Let’s construct an IND-CPA symmetric 
key encryption scheme 

using a block cipher (e.g. AES)
the way people do in practice



Attempt: use a block cipher directly

Let 𝐸𝑛𝑐 𝑠𝑘,𝑚 = 𝑓$%(𝑚), for 𝑓 a block 
cipher.

What problem(s) do we run into?

Problem 1: message might have a different 
size than the block size of the block cipher



Q: Is 𝐸𝑛𝑐 𝑠𝑘,𝑚 = 𝑓23(𝑚) IND-CPA?

Problem 2: No, because it is deterministic
Here is an attacker that wins the IND-CPA 
game:

– 𝐴 asks for encryption of “bread”, receives Cbr

– Then, 𝐴 provides (𝑚0 = bread, 𝑚1 = honey) 
– 𝐴 receives C
– If C=Cbr, Adv says bit was 0 (for “bread”), else 𝐴

says says bit was 1 (for “honey”)
– Chance of winning is 1



IND-CPA            randomized encryption



Original image



Eack block encrypted with a block cipher



Later (identical) message again encrypted 



Goals

1. IND-CPA security even when reusing the 
same key to encrypt many messages (unlike 
OTP)

2. Can encrypt messages of any length

use a block cipher in 
certain modes of operation



Modes of operation

Split the plaintext message in blocks based on 
the block size of the block cipher

Invoke the block cipher for each block

Need randomness: nonce or initialization 
vector IV



P1 P2 P3

C1 C2 C3

ECB: Encryption 

break message 𝑚 into 𝑃1|𝑃2| … |𝑃𝑚 each of 𝑛 bits = block size of block 
cipher

𝐸𝑛𝑐(𝑠𝑘, 𝑃1|𝑃2|. . |𝑃𝑚) = (𝐶1, 𝐶2, … , 𝐶𝑚)

𝑓34



P1 P2 P3

C1 C2 C3

ECB: Decryption

What is the problem with ECB?

𝐷𝑒𝑐(𝑠𝑘, (𝐶1, 𝐶2, . . , 𝐶𝑛)) = (𝑃1, 𝑃2, . . , 𝑃𝑚)

𝑓3456



Q: Does this achieve IND-CPA?

A: No, attacker can tell if Pi=Pj



Original image



Encrypted with ECB



Later (identical) message again encrypted with ECB



Counter mode (CTR)



CTR: Encryption
𝐸𝑛𝑐(𝑠𝑘,𝑚):
• Split the message 𝑚 in blocks of size 𝑛: 𝑃1, 𝑃2, 𝑃3, . .
• Choose a random nonce
• Compute:

• The final ciphertext is (nonce, C1, C2, C3)
C1 C2 C3

P1 P2 P3

Important that nonce does not repeat across 
different encryptions (choose it at random 
from large space)

One-time 
pad 
inspiration

𝐸𝑛𝑐 𝑠𝑘,𝑚 = (𝑛𝑜𝑛𝑐𝑒, 𝐶(, 𝐶-, … , )



𝐷𝑒𝑐(𝑠𝑘, ciphertext= [𝑛𝑜𝑛𝑐𝑒,𝐶1, 𝐶2, 𝐶3, … ].):  
• Take nonce out of the ciphertext
• Split the ciphertext in blocks of size 𝑛: 𝐶1, 𝐶2, 𝐶3, . .
• Now compute this:

• Output the plaintext 𝑚 as the concatenation of 𝑃1, 𝑃2, 𝑃3, ...

CTR: Decryption

Note, CTR decryption uses block cipher’s encryption, not decryption

C1 C2 C3

P1 P2 P3



Original image



Encrypted with CBC



PRP ⇒ IND-CPA enc

Claim. If 𝐹 is a pseudorandom permutation ensemble, using 𝐹 in 
CTR mode results in an IND-CPA symmetric-key encryption 
scheme.

Informal proof.  By contradiction. Assume 𝐴 breaks IND-CPA 
and construct 𝐵 that breaks PRP property. 𝐵 runs 𝐴 using the 
PRP oracles.  



Summary

PRPs and how to construct them 
- The theory way: 

Luby-Rackoff’86:   PRF ⇒ PRP
- The practical way:

Rijmen and Daemen’03: AES proposal to NIST
Symmetric-key encryption and IND-CPA
- Construct using block cipher in cipher chaining
modes


