
Berkeley CS276 & MIT 6.875

Pseudorandom Permutations and
Symmetric Key Encryption

Lecturer: Raluca Ada Popa
Sept 15, 2020

Announcements

• Starting to record
• Psets grading policy:

– We count your best 5 out of 6 psets
– Total of 10 days late, but at most 5 days late for every

pset so that we can post solutions in a timely way
– 5% participation grade, 95% psets

• If extenuating circumstances prevent participation (e.g. due to
timezone), solve a problem of the 6th pset and tell us which
one you want graded when you submit the pset

Overview

Last time: PRFs
Today

• PRPs/ Block ciphers
• Theoretical constructions
• Practical constructions: AES

• Symmetric key encryption schemes
• Definitions
• Practical constructions from block ciphers

Pseudorandom permutations (PRPs)
or block ciphers - intuition

A family of functions 𝑓: 0,1 |"| × 0,1 # → 0,1 # indexed by the
“key” 𝑘.

Correctness: 𝑓$ is a permutation (bijective function)

Efficiency: Can sample 𝑘, compute 𝑓"(𝑥) and invert it with 𝑘

Pseudorandomness: For a random 𝑘, 𝑓" “behaves” like a random
permutation from the perspective of a PPT distinguisher

Block cipher: security game
Attacker is given two boxes, one for 𝑓! and one for
a random permutation (also called “oracles”)

Attacker wins if it guesses which is 𝑓!

input

output

output

input

??? which is 𝒇𝒌???

𝒇𝒌

rand
perm

Attacker can give inputs to each oracle, look at the
output, repeat as many times as he/she desires

Let 𝐻# = 𝑓: 0,1 # → 0,1 # be all permutations from 𝑛 bits to 𝑛 bits.

Definition: A sequence of random variables 𝐹 = 𝐹# & with 𝐹# a
distribution over 𝐻# is a pseudorandom permutation ensemble iff
there

1. exists PPT alg 𝐺𝑒𝑛 1# → 𝑘 s.t. 𝑓" ∈ 𝐹# 𝑘 ← 𝐺𝑒𝑛 1# ; 𝑓" is
equal to 𝐹# (efficient sampling)

2. exists PPT alg 𝐸 such that 𝐸 𝑘, 𝑥 = 𝑓" 𝑥 (efficient eval)
3. exists PPT alg 𝐼 such that 𝐼 𝑘, 𝑥 = 𝑓"'(𝑥 (efficient inversion)

4. for all PPT oracle distinguishers 𝐷, for all sufficiently large 𝑛,
Pr 𝐺𝑒𝑛 1# → 𝑘;𝐷)! 1# = 1 − Pr 𝑅 ← 𝐻#; 𝐷* 1# = 1 = 𝑛𝑒𝑔𝑙(𝑛)

(pseudorandom)

PRP

Efficiently computable and invertible

Exercises

Let 𝐻# = 𝑓: 0,1 # → 0,1 # be all permutations from 𝑛 bits to 𝑛 bits.

[…]
for all PPT oracle distinguishers 𝐷, for all sufficiently large 𝑛,
Pr 𝐺𝑒𝑛 1# → 𝑘;𝐷)! 1# = 1 − Pr 𝑅 ← 𝐻#; 𝐷* 1# = 1 = 𝑛𝑒𝑔𝑙(𝑛)

(pseudorandom)

Q: Let 𝑈# # ⊆ 𝐻# where 𝑈# is the uniform distribution over all
permutations from n to n bits. Is 𝑈# pseudorandom?
A: yes
Q: Let 𝑈#∗ # ⊆ 𝐻# where 𝑈∗# is the uniform distribution over all
permutations from n to n bits except for the identity distributions. Is it
pseudorandom?
A: yes, still statistically close to random

How can we construct PRPs?

The theory way:
Luby-Rackoff’86: PRF ⇒ PRP

The practical way:
Rijmen and Daemen’03: AES proposal to NIST

The theory way - warmup

Let 𝑓: 0,1 ! → 0,1 ! be any function. Let’s
build a permutation 𝑔: 0,1 "! → 0,1 "! from 𝑓.

Let 𝑔 𝑥, 𝑦 = (𝑦, 𝑓(𝑥)). Is it a permutation?

No. Let 𝑓 𝑥 = 𝑐. Then 𝑔 1, 10 = 𝑔(2,10)

The theory way

Let 𝑓: 0,1 ! → 0,1 ! be any function. Let’s
build a permutation 𝑔: 0,1 "! → 0,1 "! from 𝑓.

Let 𝑔 𝑥, 𝑦 = (𝑦, 𝑓 𝑦 ⊕ 𝑥).
Is it a permutation?

Yes. 𝑔"# 𝑦, 𝛼 = (𝛼 ⊕ 𝑓(𝑦), 𝑦)

Feistel
permutations

Feistel permutation: a permutation from
any 𝑓: 0,1 ! → 0,1 !Feistal Permutation

f

L1 R1

L2 R2

Let f:{0,1}n → {0,1}n

Luby-Rackoff ‘86

Informal theorem: Let 𝐹" " be a pseudorandom
function family. Let

𝑝 !!,!",!#,!$ 𝑥 = 𝑔!$(𝑔!#(𝑔!" 𝑔!! 𝑥))

with 𝑔! being the Feistel permutation from 𝑓! .
Then 𝑃$" $" is a pseudorandom permutation family.

Proof (optional): see assigned reading

Luby-Rackoff ’86 intuition

input(x,y)

output

output

??? which is 𝒑𝒌???

𝒑𝒌

rand
perm

𝑔"" 𝑥, 𝑦 = (𝑦, 𝑓"" 𝑦 ⊕ 𝑥)

How can the attacker distinguish?

𝑔"#(𝑔"" 𝑥, 𝑦) = (𝑓"" 𝑦 ⊕ 𝑥, 𝑓"# 𝑓"" 𝑦 ⊕ 𝑥 ⊕ 𝑥)

Sees 𝑦 in the output.

Two inputs of
same 𝑦 can
distinguish lefts.

input(x,y)

How can we construct PRPs?

The theory way:
Luby-Rackoff’86: PRF ⇒ PRP

The practical way:
Rijmen and Daemen’03: AES proposal to NIST

Advanced Encryption Standard (AES)

- Block cipher developed in 1998 by Joan Daemen and
Vincent Rijmen

- Submitted as a proposal to NIST (US National Institute
for Standard and Technology) during the AES selection
process

- It won, so it was recommended by NIST
- It was adopted by the US government and then

worldwide
- Block length n is 128bits, key length k is 256bits

Cryptanalysis

Not provably secure but an educated assumption
that it is
- It stood the test of time and of much cryptanalysis
(field studying attacks on crypto schemes)

- [Bogdanov et al.’11]: 2126.2 operations to
recover an AES-128 key.

- Snowden documents attempts by the NSA to
break it

- So far, no efficient algorithm comes close to
breaking it.

AES ALGORITHM

• 14 cycles of repetition
for 256-bit keys.

You don’t need
to understand
why AES is this
way, just get a
sense of its
inner workings

Algorithm Steps - Sub bytes
• each byte in the state matrix is replaced with a SubByte using an

8-bit substitution box
• bij = S(aij)

Shift Rows
• Cyclically shifts the bytes in each row by a

certain offset
• The number of places each byte is shifted differs for

each row

AES ALGORITHM
• The key gets converted

into round keys via a
different procedure

• 14 cycles of repetition
for 256-bit keys.

You don’t need
to understand
why AES is this
way, just get a
sense of its
inner workings

Widely used
• Government Standard

– AES is standardized as Federal Information Processing
Standard 197 (FIPS 197) by NIST

– To protect classified information
• Industry

– SSL / TLS
– SSH
– WinZip
– BitLocker
– Mozilla Thunderbird
– Skype

Used as part of symmetric-key
encryption or other crypto tools

Symmetric-key encryption scheme

Alice Bob

Eve
passive eavesdropper

𝑠𝑘 𝑠𝑘

𝐸𝑛𝑐,"(𝑚)

Alice can send a message 𝑚 to Bob encrypted using 𝑠𝑘 and
Bob can decrypt it using 𝑠𝑘, but Eve cannot learn what the
message is other than its length

Symmetric-key encryption scheme

An encryption scheme (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) is a triple of PPT
algs, where
• Key generation 𝐺𝑒𝑛(1!) outputs a secret key 𝑠𝑘 (𝑛 is

security parameter)
• Encryption 𝐸𝑛𝑐 𝑠𝑘,𝑚 → 𝑐 a ciphertext
• Decryption 𝐷𝑒𝑐 𝑠𝑘, 𝑐 → 𝑚

Correctness: For all 𝑛, 𝑚, 𝑠𝑘 ← 𝐺𝑒𝑛 1! ,
𝐷𝑒𝑐 𝑠𝑘, 𝐸𝑛𝑐 𝑠𝑘,𝑚 = 𝑚

Security intuition

Alice Bob

Eve

𝑠𝑘 𝑠𝑘

𝐸𝑛𝑐,"(𝑚)

Eve should learn nothing about the message
other than its length,

even if she sees other encryptions
of messages she chose

𝑨
IND-CPA =
indistinguishability
under chosen plaintext
attack

IND-CPA game
Challenger 𝑠𝑘

𝑚𝑠𝑔%

𝐶%
Encsk

𝑚0, 𝑚1draws
random bit b 𝐸𝑛𝑐𝑠𝑘(𝑚𝑏)

𝑚𝑠𝑔&Encsk 𝐶&
Here is my
guess: b’

(must be
same length)

𝑨

Wins if b’=b

Attacker must not win much more than random guessing

IND-CPA

Definition. An encryption scheme 𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐
is IND-CPA secure if for every PPT adversary 𝐴,

Pr

𝑠𝑘 ← 𝐺𝑒𝑛 1% ; 𝐴 &%' (),∗ 1% = 𝑚,, 𝑚- ,
𝑤𝑖𝑡ℎ 𝑚, = |𝑚-|

𝑏 ← 0,1 ; 𝐴&%' ./,∗ 𝐸𝑛𝑐 𝑠𝑘,𝑚0 = 𝑏1 ∶
𝑏1 = 𝑏

<
1
2 + 𝑛𝑒𝑔𝑙(𝑛)

Let’s construct an IND-CPA symmetric
key encryption scheme

using a block cipher (e.g. AES)
the way people do in practice

Attempt: use a block cipher directly

Let 𝐸𝑛𝑐 𝑠𝑘,𝑚 = 𝑓$%(𝑚), for 𝑓 a block
cipher.

What problem(s) do we run into?

Problem 1: message might have a different
size than the block size of the block cipher

Q: Is 𝐸𝑛𝑐 𝑠𝑘,𝑚 = 𝑓23(𝑚) IND-CPA?

Problem 2: No, because it is deterministic
Here is an attacker that wins the IND-CPA
game:

– 𝐴 asks for encryption of “bread”, receives Cbr

– Then, 𝐴 provides (𝑚0 = bread, 𝑚1 = honey)
– 𝐴 receives C
– If C=Cbr, Adv says bit was 0 (for “bread”), else 𝐴

says says bit was 1 (for “honey”)
– Chance of winning is 1

IND-CPA randomized encryption

Original image

Eack block encrypted with a block cipher

Later (identical) message again encrypted

Goals

1. IND-CPA security even when reusing the
same key to encrypt many messages (unlike
OTP)

2. Can encrypt messages of any length

use a block cipher in
certain modes of operation

Modes of operation

Split the plaintext message in blocks based on
the block size of the block cipher

Invoke the block cipher for each block

Need randomness: nonce or initialization
vector IV

P1 P2 P3

C1 C2 C3

ECB: Encryption

break message 𝑚 into 𝑃1|𝑃2| … |𝑃𝑚 each of 𝑛 bits = block size of block
cipher

𝐸𝑛𝑐(𝑠𝑘, 𝑃1|𝑃2|. . |𝑃𝑚) = (𝐶1, 𝐶2, … , 𝐶𝑚)

𝑓34

P1 P2 P3

C1 C2 C3

ECB: Decryption

What is the problem with ECB?

𝐷𝑒𝑐(𝑠𝑘, (𝐶1, 𝐶2, . . , 𝐶𝑛)) = (𝑃1, 𝑃2, . . , 𝑃𝑚)

𝑓3456

Q: Does this achieve IND-CPA?

A: No, attacker can tell if Pi=Pj

Original image

Encrypted with ECB

Later (identical) message again encrypted with ECB

Counter mode (CTR)

CTR: Encryption
𝐸𝑛𝑐(𝑠𝑘,𝑚):
• Split the message 𝑚 in blocks of size 𝑛: 𝑃1, 𝑃2, 𝑃3, . .
• Choose a random nonce
• Compute:

• The final ciphertext is (nonce, C1, C2, C3)
C1 C2 C3

P1 P2 P3

Important that nonce does not repeat across
different encryptions (choose it at random
from large space)

One-time
pad
inspiration

𝐸𝑛𝑐 𝑠𝑘,𝑚 = (𝑛𝑜𝑛𝑐𝑒, 𝐶(, 𝐶-, … ,)

𝐷𝑒𝑐(𝑠𝑘, ciphertext= [𝑛𝑜𝑛𝑐𝑒,𝐶1, 𝐶2, 𝐶3, …].):
• Take nonce out of the ciphertext
• Split the ciphertext in blocks of size 𝑛: 𝐶1, 𝐶2, 𝐶3, . .
• Now compute this:

• Output the plaintext 𝑚 as the concatenation of 𝑃1, 𝑃2, 𝑃3, ...

CTR: Decryption

Note, CTR decryption uses block cipher’s encryption, not decryption

C1 C2 C3

P1 P2 P3

Original image

Encrypted with CBC

PRP ⇒ IND-CPA enc

Claim. If 𝐹 is a pseudorandom permutation ensemble, using 𝐹 in
CTR mode results in an IND-CPA symmetric-key encryption
scheme.

Informal proof. By contradiction. Assume 𝐴 breaks IND-CPA
and construct 𝐵 that breaks PRP property. 𝐵 runs 𝐴 using the
PRP oracles.

Summary

PRPs and how to construct them
- The theory way:

Luby-Rackoff’86: PRF ⇒ PRP
- The practical way:

Rijmen and Daemen’03: AES proposal to NIST
Symmetric-key encryption and IND-CPA
- Construct using block cipher in cipher chaining
modes

