Berkeley CS276 & MIT 6.875

Pseudorandom Permutations and Symmetric Key Encryption

Lecturer: Raluca Ada Popa

Sept 15, 2020

Announcements

- Starting to record
- Psets grading policy:
 - We count your best 5 out of 6 psets
 - Total of 10 days late, but at most 5 days late for every pset so that we can post solutions in a timely way
 - 5% participation grade, 95% psets
 - If extenuating circumstances prevent participation (e.g. due to timezone), solve a problem of the 6th pset and tell us which one you want graded when you submit the pset

Overview

Last time: PRFs

Today

- PRPs/ Block ciphers
 - Theoretical constructions
 - Practical constructions: AES
- Symmetric key encryption schemes
 - Definitions
 - Practical constructions from block ciphers

Pseudorandom permutations (PRPs) or block ciphers - intuition

A family of functions $f: \{0,1\}^{|k|} \times \{0,1\}^n \to \{0,1\}^n$ indexed by the "key" k.

Correctness: f_k is a permutation (bijective function)

Efficiency: Can sample k, compute $f_k(x)$ and invert it with k

Pseudorandomness: For a random k, f_k "behaves" like a random permutation from the perspective of a PPT distinguisher

Block cipher: security game

Attacker is given two boxes, one for f_k and one for a random permutation (also called "oracles")

Attacker can give inputs to each oracle, look at the output, repeat as many times as he/she desires

Attacker wins if it guesses which is f_k

PRP

Let $H_n = \{ f : \{0,1\}^n \to \{0,1\}^n \}$ be all permutations from n bits to n bits.

<u>Definition</u>: A sequence of random variables $F = \{F_n\}_n$ with F_n a distribution over H_n is a <u>pseudorandom permutation ensemble</u> iff there

Efficiently computable and invertible

- 1. exists PPT alg $Gen(1^n) \to k$ s.t. $f_k \in F_n$ $\{k \leftarrow Gen(1^n); f_k\}$ is equal to F_n (efficient sampling)
- 2. exists PPT alg E such that $E(k, x) = f_k(x)$ (efficient eval)
- 3. exists PPT alg *I* such that $I(k, x) = f_k^{-1}(x)$ (efficient inversion)
- 4. for all PPT oracle distinguishers D, for all sufficiently large n, $\left|\Pr[Gen(1^n) \to k; D^{\{f_k\}}(1^n) = 1] \Pr[R \leftarrow H_n; D^R(1^n) = 1]\right| = negl(n)$ (pseudorandom)

Exercises

Let $H_n = \{f: \{0,1\}^n \to \{0,1\}^n\}$ be all permutations from n bits to n bits.

[...]

for all PPT oracle distinguishers D, for all sufficiently large n, $\left|\Pr[Gen(1^n) \to k; D^{\{f_k\}}(1^n) = 1] - \Pr[R \leftarrow H_n; D^R(1^n) = 1]\right| = negl(n)$ (pseudorandom)

Q: Let $\{U_n\}_n \subseteq H_n$ where U_n is the uniform distribution over all permutations from n to n bits. Is U_n pseudorandom?

A: yes

Q: Let $\{U_n^*\}_n \subseteq H_n$ where U_n^* is the uniform distribution over all permutations from n to n bits except for the identity distributions. Is it pseudorandom?

A: yes, still statistically close to random

How can we construct PRPs?

The theory way:

Luby-Rackoff'86: PRF ⇒ PRP

The practical way:

Rijmen and Daemen'03: AES proposal to NIST

The theory way - warmup

Let $f: \{0,1\}^n \to \{0,1\}^n$ be any function. Let's build a permutation $g: \{0,1\}^{2n} \to \{0,1\}^{2n}$ from f.

Let g(x,y) = (y, f(x)). Is it a permutation?

No. Let f(x) = c. Then g(1, 10) = g(2, 10)

The theory way

Let $f: \{0,1\}^n \to \{0,1\}^n$ be any function. Let's build a permutation $g: \{0,1\}^{2n} \to \{0,1\}^{2n}$ from f.

Let
$$g(x,y) = (y, f(y) \oplus x)$$
.

Is it a permutation?

Yes. $g^{-1}(y,\alpha) = (\alpha \oplus f(y), y)$

Feistel permutations

Feistel permutation: a permutation from any $f: \{0,1\}^n \rightarrow \{0,1\}^n$

Luby-Rackoff '86

Informal theorem: Let $\{F_n\}_n$ be a pseudorandom function family. Let

$$p_{\{k_1,k_2,k_3,k_4\}}(x) = g_{k_4}(g_{k_3}(g_{k_2}(g_{k_1}(x))))$$

with g_k being the Feistel permutation from f_k .

Then $\{P_{2n}\}_{2n}$ is a pseudorandom permutation family.

Proof (optional): see assigned reading

Luby-Rackoff '86 intuition

How can the attacker distinguish?

$$g_{k_1}(x,y) = (y, f_{k_1}(y) \oplus x)$$
 Sees y in the output.

$$g_{k_2}(g_{k_1}(x,y)) = (f_{k_1}(y) \oplus x, f_{k_2}(f_{k_1}(y) \oplus x) \oplus x)$$

Two inputs of same *y* can distinguish lefts.

How can we construct PRPs?

The theory way:

Luby-Rackoff'86: PRF ⇒ PRP

The practical way:

Rijmen and Daemen'03: AES proposal to NIST

Advanced Encryption Standard (AES)

- Block cipher developed in 1998 by Joan Daemen and Vincent Rijmen
- Submitted as a proposal to NIST (US National Institute for Standard and Technology) during the AES selection process
- It won, so it was recommended by NIST
- It was adopted by the US government and then worldwide
- Block length n is 128bits, key length k is 256bits

Cryptanalysis

Not provably secure but an educated assumption that it is

- It stood the test of time and of much cryptanalysis (field studying attacks on crypto schemes)
 - [Bogdanov et al.'11]: 2^{126.2} operations to recover an AES-128 key.
 - Snowden documents attempts by the NSA to break it
- So far, no efficient algorithm comes close to breaking it.

AES ALGORITHM

14 cycles of repetition

to understand why AES is this way, just get a inner workings

Algorithm Steps - Sub bytes

- each byte in the state matrix is replaced with a SubByte using an 8-bit substitution box
- $b_{ij} = S(a_{ij})$

Shift Rows

- Cyclically shifts the bytes in each row by a certain offset
- The number of places each byte is shifted differs for each row

AES ALGORITHM

- The key gets converted into round keys via a different procedure
- 14 cycles of repetition for 256-bit keys.

You don't need to understand why AES is this way, just get a sense of its inner workings

Widely used

- Government Standard
 - AES is standardized as Federal Information Processing Standard 197 (FIPS 197) by NIST
 - To protect classified information
- Industry
 - SSL / TLS
 - SSH
 - WinZip
 - BitLocker
 - Mozilla Thunderbird
 - Skype

Used as part of symmetric-key encryption or other crypto tools

Symmetric-key encryption scheme

Alice can send a message m to Bob encrypted using sk and Bob can decrypt it using sk, but Eve cannot learn what the message is other than its <u>length</u>

Symmetric-key encryption scheme

An encryption scheme (Gen, Enc, Dec) is a triple of PPT algs, where

- Key generation $Gen(1^n)$ outputs a secret key sk (n is security parameter)
- Encryption $Enc(sk, m) \rightarrow c$ a ciphertext
- Decryption $Dec(sk, c) \rightarrow m$

Correctness: For all $n, m, sk \leftarrow Gen(1^n)$, Dec(sk, Enc(sk, m)) = m

Security intuition

A

Eve should learn nothing about the message other than its length,

even if she sees other encryptions of messages she chose

IND-CPA =
indistinguishability
under chosen plaintext
attack

IND-CPA game

Attacker must not win much more than random guessing

IND-CPA

Definition. An encryption scheme (*Gen*, *Enc*, *Dec*) is IND-CPA secure if for every PPT adversary *A*,

$$\Pr\begin{bmatrix} sk \leftarrow Gen(1^n); A^{\{Enc(sk,*)\}}(1^n) = (m_0, m_1), \\ with \ |m_0| = |m_1| \\ b \leftarrow \{0,1\}; A^{Enc(sk,*)}\big(Enc(sk, m_b)\big) = b': \\ b' = b \end{bmatrix} < \frac{1}{2} + negl(n)$$

Let's construct an IND-CPA symmetric key encryption scheme using a block cipher (e.g. AES) the way people do in practice

Attempt: use a block cipher directly

Let $Enc(sk, m) = f_{sk}(m)$, for f a block cipher.

What problem(s) do we run into?

Problem 1: message might have a different size than the block size of the block cipher

Q: Is $Enc(sk, m) = f_{sk}(m)$ IND-CPA?

Problem 2: No, because it is deterministic Here is an attacker that wins the IND-CPA game:

- A asks for encryption of "bread", receives C_{br}
- Then, \underline{A} provides (m_0 = bread, m_1 = honey)
- A receives C
- If C=C_{br}, Adv says bit was 0 (for "bread"), else A says says bit was 1 (for "honey")
- Chance of winning is 1

IND-CPA randomized encryption

Original image

Eack block encrypted with a block cipher

Later (identical) message again encrypted

Goals

- IND-CPA security even when reusing the same key to encrypt many messages (unlike OTP)
- 2. Can encrypt messages of any length

use a block cipher in certain modes of operation

Modes of operation

Split the plaintext message in blocks based on the block size of the block cipher

Invoke the block cipher for each block

Need randomness: nonce or initialization vector IV

ECB: Encryption

break message m into $P_1|P_2|\dots|P_m$ each of n bits = block size of block cipher

Electronic Codebook (ECB) mode encryption

$$Enc(sk, P_1|P_2|..|P_m) = (C_1, C_2, ..., C_m)$$

ECB: Decryption

Electronic Codebook (ECB) mode decryption

$$Dec(sk, (C_1, C_2, ..., C_n)) = (P_1, P_2, ..., P_m)$$

What is the problem with ECB?

Q: Does this achieve IND-CPA?

A: No, attacker can tell if P_i=P_j

Original image

Encrypted with ECB

Later (identical) message again encrypted with ECB

Counter mode (CTR)

CTR: Encryption

Enc(sk, m):

- Split the message m in blocks of size n: $P_1, P_2, P_3, ...$
- Choose a random nonce
- Compute:

Important that nonce does not repeat across different encryptions (choose it at random from large space)

Counter (CTR) mode encryption

$$Enc(sk, m) = (nonce, C_1, C_2, ...,)$$

CTR: Decryption

 $Dec(sk, ciphertext = [nonce, C_1, C_2, C_3, ...].)$:

- Take nonce out of the ciphertext
- Split the ciphertext in blocks of size $n: C_1, C_2, C_3, ...$
- Now compute this:

• Output the plaintext m as the concatenation of $P_1, P_2, P_3, ...$

Note, CTR decryption uses block cipher's encryption, not decryption

Original image

Encrypted with CBC

PRP ⇒ IND-CPA enc

Claim. If *F* is a pseudorandom permutation ensemble, using *F* in CTR mode results in an IND-CPA symmetric-key encryption scheme.

Informal proof. By contradiction. Assume *A* breaks IND-CPA and construct *B* that breaks PRP property. *B* runs *A* using the PRP oracles.

Summary

PRPs and how to construct them

- The theory way:

Luby-Rackoff'86: PRF ⇒ PRP

- The practical way:

Rijmen and Daemen'03: AES proposal to NIST

Symmetric-key encryption and IND-CPA

Construct using block cipher in cipher chaining modes