
Lecture 7
Spring 2020

Shafi Goldwasser



Today:
Search for one-way functions

1. Discrete Log Problems in Cyclic Groups

2. Elliptic Logs over Elliptic Curves



Recall: One Way Function

Definition: f: {0,1}*   Þ {0,1}*  is a one-way function  if

1. Easy to Evaluate: ∃ PPT A s.t. A(x)=f(x)

2. Hard to Invert:
" PPT algorithm Inverter, " sufficiently large n
Pr [x Î{0,1}n :Inverter(f(x))=x’ s.t. f(x)=f(x’)]=negl(n)

x f(x)
easy

hard on 
average



Weak One-Way Function

Definition: f: {0,1}*  Þ {0,1}* is a weak one-way 
function 

1. Easy to Evaluate: $ PPT algorithm A s.t. A(x)=f(x)

2. Weakly Hard to Invert: $ non-negligible e
"PPT Invertor, "sufficiently large n 
Pr[xÎ{0,1}n: Invertor(f(x))≠x’ s.t. f(x)=f(x’)) >e(n)

Note: we say “f has hard-core e”
No ppt algorithm can succeed to invert for more than all 
but e(n) fraction.



Weak OWF iff Strong OWF

Amplification Theorem: 
Weak one-way functions exist if and only if 
one-way functions exist

outline: 
Say f  is weak OWF with hard core e 
Then F(x1…xN)=f(x1)|f(x2)…|f(xN) for N=2n/e(n)

is a one-way function |xi|=n

There is a HUGE blowup in parameters going from n to n’=Nn
In practice, say if f is hard to invert on 1% on length 1000 inputs 
Then F is hard to invert everywhere on 100,000,000 length inputs 



We can do better with
concrete one way functions

Taking advantage of their algebraic structure



In Search of Concrete Examples
of (weak) One-way functions

Review: Basic Group Theory



Basic Group Theory
Group (G, ⋅) set with binary operation s.t.
• Closure: ∀a,b∈G, a⋅b∈G
• Identity: ∃ 1∈G s.t ∀a, 1⋅a=a⋅1=a
• Inverse: ∀a ∈G, ∃ a-1∈G, a-1 ⋅a=1
• Associativity

Order(G) = number of elements= |G|  
Lemma: ∀a∈G, a|G| =1

Ex: (ZN,+) additive modulo N

Let G be a  
finite group



Cyclic Groups
G is cyclic group if ∃ g ∈G s.t. G={g, g2, g3,…, g|G|}  
Say that g is the generator of group G
Fact: Fix g generator for cyclic group G.

∀a∈G, ∃ unique 1≤i≤|G| s.t a = gi

Say that i = discrete log of a w.r.t generator g

Computational Problems  
Associated with Cyclic Groups



Number Theory

Elliptic Curves



Preliminaries: +, *, gcd

operation  
a+b

Complexity  
O(n)

ab
gcd(a,b)  
ab

O(n2)
O(n2)

O(n3)

Easy ops asymptotically

In practice, when work  
with large integers, say  
n=160-4000 bits, use  
special `bignums’  
software

Let a,b >0 be n-bit integers.  
Basic Terminology:
b|a (b divides a) if ∃ integer d >0 s.t. a=bd
gcd(a,b) = greatest integer d such that both d|a and d|b

e.g. gcd(9,21)=3
a and b are relatively prime if gcd(a,b)=1.
a is prime: has no divisors other than 1 or p



Modular Arithmetic
Let a, b, N> 0 be n-bit integers,
a mod N = remainder of a after dividing by N
e.g. 10 mod 3 =1, 7 mod 5=2 
a=b mod N if (a mod N) = (b mod N)

b is the inverse of a mod N, denoted by a-1

if a⋅b=1 mod N, e.g. 3-1 mod 7 = 5, (b exists if  
gcd(a,N)=1)

operation
a mod N

complexity
O(n2)

a+b mod N  
ab mod N
a-1 mod N
ab mod N

O(n2)
O(n2)
O(n2)

O(n3)
[Euclid’s algorithm]  
[Repeated Doubling]



Algorithm to compute a-1 mod N

Let a-1 mod N= x s.t xa=1 mod N  
Fact: x exists iff gcd (a,N) = 1

Euclid’s algorithm: Given a,b integers.  
Computes gcd(a,b) and x,y s.t. ax + by= gcd(a,b)  
Main observation: if d|a and d|b then d|a-b

Poll: Can you use Euclid’s algorithm  to 
compute a-1 mod N ???



Algorithm to compute a-1 mod N

Let a-1 mod N= x s.t xa=1 mod N  
Fact: x exists iff gcd (a,N) = 1

Euclid’s algorithm: Given a,N.  

Computes gcd(a,N)=1 and find x,y s.t. ax + Ny=1

Output x



Group ZN* ={1<=x<N s.t. (x,N) =1}

Theorem: ZN* is group under multiplication mod n
Proof: ∀a,b in Zn*, ab mod N in ZN* (closed)  

1 in ZN* is the identity,
∀a in ZN* , ∃ b s.t. ab=1 mod N

Euler
Totient  
Function.Order of ZN* = number of elements in ZN

* = φ(N)

Theorem: φ (p) = p-1 for p prime,
φ (N)= (p-1)(q-1) for N=pq, gcd(p,q)=1
φ (N)= Πipiαi-1(pi-1) for N=Πpiαi  

Theorem: ∀a in ZN* , a φ(N) =1 mod N



Examples

Z2* = {1}
Z3* ={1,2}
Z4* ={1,3}
Z5* ={1,2,3,4}
Z6* ={1,5}
Z7*= {1,2,3,4,5,6}

Observation: For prime p, Zp* = {1,2,...,p-1}



Lets first focus on the
the case of p prime



Group Zp* for p prime

Theorem: If p is prime, then Zp* is a  
cyclic group of order p-1

Ex: p=7, g=5 , Z7* = {1,2,3,4,5,6} = {5,4,6,2,3,1}
= {5i mod 7, i>0}

Let g be a generator of Zp*, let a=gb mod p  
Call b the discrete log of a with respect to g

Useful Fact: if z = x+y mod (p-1) then gz = g x+y mod p



Discrete Log Problem (DLP)
DLP: Given prime p, generator g of Zp*, a in Zp*,  

find b such that gb= a mod p
Notation: DLPp,g(a) = b
Ex: p=7,g=5, the discrete log of 4 is 2 as 4=52 mod 7.

Best Algorithm Known to Solve DLP
Runs in time eO((log p)1/3 (log log p)2/3 )∼ e O(n)1/3 for n-bit primesp

Are there p,g for which DLP is known to be easy?
Not when p is prime

Furthermore Amplification: fix p, g: 
can prove that if DLP is hard “at all”, then  its hard for all x.



Claim: Fix p prime, g generator.
If ∃ PPT algorithm B s.t. Prob [x in Zp*: B(p, g, gx) = x] > ε
Then ∃ probabilistic algorithm B ’  s.t. ∀ x, B’(p, g, gx) = x  
(B’ runs in expected time polynomial in ε-1 and log p)

Proof idea: 
B’ (p,g,y)
1. Randomize: choose random 0< r<p-1;

t=B(p,g, ygr mod p)
2.  B succeeds⟹gt=ygr mod p ⟹ x =(t - r) mod (p-1)  

else repeat (go to step 1)
In expected 1/ε trials B will succeed.

Hardness somewhere ⇒
Hardness  everywhere

Corollary: If B’ doesn’t exist, neither does B. Namely,
if DLPp,g is hard "at all" then DLPp,g (x) is hard for random x.

In expected 1/ε trials 
B will succeed



General : Random Self Reducibility
y=f(x)

Break into random instances

f(r1) f(r2) f(r3)

r1 r2 r3

Combine
x

Corollary: If hard to invert for some f(x), hard to invert for random f(r)

Solve random instances



Discrete Log ASSUMPTION (DLA)
∀PPT algorithm A, suff. large n, 
Prob (n-bit prime p, g generator for Zp*, 1≤b≤p-1: 

A(p,g,gb)= b) =negligible(n)

[Discuss: fixed prime, vs. random prime]

One Way Permutation CANDIDATE:

Modular Exponentiation 
Let p prime, g be a generator for Zp*.
Define    EXP(p,g,b) = (p,g, gb mod p)  

EXP-1(p,g,gb mod p) =(p,g,b s.t. 1≤b≤p-1)

x ga mod p
easy

hard



Discrete Log Problem(DLP)

ü Example of One-Way Permutation

Example of OWF collection

Extra Structure:  Specialized
Applications



Collections of One-Way Functions
Definition: F= {fi:Di->Ri}i∈I where I is a set of indices,  

and Di , Ri are finite sets.

• Sample a function: ∃ PPT algo. G(1n) that selects fi in F for i  
in I ∩{0,1}n

• Sample in Domain: ∃ PPT algorithm S(i) that selects random  
x in Di.

• Easy to Evaluate: ∃ PPT algorithm A s.t. A(i,x) = fi(x)

• Hard to Invert: ∀ PPT Invert, ∀sufficiently large n,  
Pr(i=G(1n), x=S(i): Invert(i,fi(x))=x’ s.t fi(x)=fi(x’)) < negligible(n)



OWF Collection Candidate:  
Modular Exponentiation

x ga mod p

Let p prime, g be a generator for Zp*.  
Define EXPp,g:{1,...p-1} Zp*,

EXPp,g(a) = gb mod p  
EXP -1(gb mod p) =b

p,g

EXP= {EXPp,g } p prime,ggenerator

easy

har
d



Theorem: Under DLA, EXP is a  
collection of one-way functions.

EXP= {EXPp,g } p prime,ggenerator

Sample a function
• Need to generate a random prime p
• Need to generate a generator g

Easy to Evaluate: compute EXP p,g(x) in O(n3)  

Hard to Invert: By DLA



Generating Large Primes
Let π(x) = number of primes < x

Prime Number Theorem:  
lim π(x)/(x/ln x) = 1

Thus, about 1/(ln x) numbers near x is prime.
By choosing at random numbers < x and testing for  
Primality, we will find a prime in O(ln x) = O(|x|) steps

Theorem [AKS 02]: Testing Primality is Easy.  
For n-bit numbers,
• Current running time O(n6).
• Probabilistic algorithm: O(n4) time /O(1/2n) error.



Finding a Generator for Zp*

There are many generators for Zp*     O(1/logn)
• find a generator in O(log n) trials

How to check a given g is a generator?
Check that gp-1=1 mod p, 

g(p-1)/qi≠ 1 mod p ∀divisors qi|(p-1)

But do we know the factorization of(p-1)?
No.
Idea: Choose prime with p-1 in factored form -



Theorem: Under DLA, EXP is a  
collection of one-way functions.
Sample a function
Given security parameter n,
generate n-bit prime p and generator g for Zp* as follows:  
Repeat

1. Generate a random number m in factored form m= Πqiαi

2. let p-1=m. Test p for primality.
Until p is prime  
Repeat

1. Choose random g in Zp*
2. Test if g is a generator for Zp* using factorization (p-1)=Πqiαi 

Namely: if g(p-1)/q ≠ 1 mod p ∀ q|(p-1), g is generator

Until g generator



Special Interesting case:  
Strong Primes

• Restrict your prime to be a strong-prime p 
=2q+1 where q is a prime.

• In this case,
– half the elements of Zp* are generators
– Can easily find and test a generator

• Most often used in practice



Discrete Log Problem(DLP)

ü Example of One-Way Permutation

ü Example of OWF collection

Extra Structure:  Specialized
Applications



Hard Problems to DLP
Computational Diffie-Hellman Problem (CDH):  
given p,g, ga mod p and gb modp,
compute gab mod p

Diffie Hellman Decisional Problem (DDH):  
given ga mod p, gb mod p, and gc mod p  
distinguish c=ab mod (p-1) from 

random 0<c<p-1

• Both problems are hard.
• Best solution known: first compute Discrete Log, 

same running time as Discrete Log.



Application 1:
Diffie Hellman Key Exchange

Let p be a prime,  
g generator.
Party A chooses 1<x<p at random, set y= gx,  

and sends y to B over public channel
Party B chooses 1<z<p at random, set w= gz ,  

and sends w to A over public channel
Joint Secret Key of A and B = gxz =

wx = [A can compute]
yz [B can compute]



Security of Diffie-Hellman

• First key Exchange over public channels proposed

• Security
– If CDH is hard adversary can’t compute gxy 

mod p
- If DDH is hard adversary can’t distinguish gxy

mod p from random

The hardness of DDH…later in class



Coin Flip over the Phone

A and B want to flip a coin over the telephone, but 
they don’t trust each other

Idea 1: Alice flips a coin, tells Bob…BAD ideaL
Idea 2: Let p prime, g generator function

A flips a coin c; 
If c=0, A chooses even 0<x <p
If c=1, A chooses odd 0<x<p
Sends gx mod p to B

B guesses if x is even or odd
A sends x to B. If guess is correct, then B wins, else A wins
Is this a good idea?  
What is the bit security of x x from gx mod  p ?



The Quadratic Residues 

z Î Zp*  is a quadratic residue mod p  (square)                                                     
if  z=x2 mod p for some xÎ Zp* ; 
and quadratic non-residue otherwise

Ex:     p=7,   x mod p   1 2 3 4 5 6      squares ={1,2,4}
x2 mod p 1 4 2 2 4 1        non-squares={3,5,6}

Let QRp = quadratic residues mod p

Claim: QRp is subgroup of Zp* of order  (p-1)/2
Claim: Let g be a generator for Zp* 

y=gi mod p, 0<i<p is a quadratic residue mod p 
iff i is even



Decide if z is a quadratic residue mod p 

Legendre Symbol of zÎ Zp*  denoted     = 1 if z is a quadratic 
residue mod p &

-1 otherwise.
Claim[Easy to compute Legendre symbol]     

:= z(p-1)/2 mod p   

Proof:  If z =x2 mod p, then z(p-1)/2 =x2(p-1)/2 =x(p-1) =1 mod p.         
z quadratic non-residue ⇒z(p-1)/2 =g(2i+1)(p-1)/2 =xi(p-1)+(p-1)/2 =g(p-1)/2. 
Finally, g generator ⇒g(p-1)/2 =(g(p-1))1/2 =(1)1/2  mod p =-1 since 
it’s one of the two (see below) roots of 1 and can’t be 1.

Fact 2 : y=x2 mod p has 0 or 2 solutions when p is  prime.
Proof: ∃solution x ⇒∃at least 2 solutions x & –x=p-x mod p. 
Suppose ∃another z ≠ x,-x mod p, z2=x2 mod p &  z2-x2= (z-x)(z+x)=0 
mod p. Then, p|(z-x)(z+x). As p is prime, it must divide 
either (z-x) or (z+x) ⇒z=x mod p or z=-x mod p. Contradiction



Bit Security of gx mod p

Which information about x leaks from gx mod p, 0<x<p?

A: can compute LSB(x)  from gx mod p, by 
computing the Legendre  symbol of gx mod p, 

Which information, if any, about x is well hidden by gx mod p?

There must be some bit of x which is hard to compute, 
but which one?

Is there any bit of x which is hard to predict better than 50-50? 



Theorem[MostSignificantBit is Hard Core Bit]:

Let msbp,g(x) = 0 if x<(p-1)/2 and 1 otherwise. 
if $ PPT PRED, c>0 s.t.

Prob[PRED(gx mod p)=msbp,g(x)] >½+1/nc

then $ PPT  that solves the discrete log problem mod p. 

0

(P-1)/2

x≤(p-1)/2     
msbp,g(x)=0

x>(p-1)/2
Msbp,g(x)=1

zp-z



Proof Warm up:  y=gx mod p,  0<x<p
,
Suppose PRED(p,g,y)=MSBp,g (x) for all y

LSB(p,g,y) =1 if x is odd, 0 if x is even 

IDEA: Will use LSB and the “oracle” 
PRED for MSB to reconstruct x= bn…b1 bit by bit.  

Discrete-Logarithm(p.g,y):  
0. Initialize z:=y mod p( =gx mod p), n=|p|,i=1
1. Compute bi:=LSB(p, g, z)
2.  If bi=0, then z=SQRTp(z), else z=SQRTp(zg-1)
3.   If PRED(p,g,z)=1 then set z=p-z. 
4.  If i< n, let i=i+1,goto 1,

else output bn…b1

There are 2 square roots of g2i

For gi and –gi/2=gi/2(-1)=gig(p-1)/2 = gi+(p-1)/2 mod p
gi is principal square root when i <(p-1)/2, otherwise 

0

(P-1)/2

x≤(p-1)/2     
msbp,g(x)=0

x>(p-1)/2
Msbp,g(x)=1

zp-z



Proof Warm up 2: y=gx mod p 

Suppose ∀y: Pr [Pred(p,g,y)=MSBp,g (x)]>1-1/2n

Then, ∀y: Prob[DiscreteLogarithm (p,g,y) succeeds]= 
Prob [Pred always succeeds]= (1-1/2n)n > 1/2

Algorithm Discrete-Logarithm’(p,g,y)
Choose random 0<r<p ,
If Discrete-Logarithm(p, g, ygr mod p)  succeeds,
then x= Discrete-Logarithm(p, g, ygr mod p) – r =x+r-r

Expected number of iterations =2



Summary: Hard vs. Easy
Zp

*   =  {x < p and  gcd(x,p) =1} for n-bit prime p
Let a,b in Zp*
operation Complexity
a  mod p O(n2)
a+b mod p O(n)
ab mod p O(n2)
a-1 mod p O(n2)

ab mod p O(n3)
Square or non-Square O(n3)
Solving Quadratic Equations mod p O(n3)
Lsb(x) from gx mod p
DL,DDH, DHP    HARD?
MSB

easy



What about other cyclic
groups?

Elliptic Curve Cryptosystems



Elliptic Curves

Elliptic Curve Discrete Log Problem (EDLP):
Given two points  Q and P  on the curve  E,  
find integer m s.t. Q = mP

Best Algorithm: exponential time O(2n) for general curve.

OWF candidate:   f (m, P) =  mP [Koblitz, Miller]

Under Addition of two points (see next slide)  as group operation  
Ea,b is a commutative group.

Let a,b ÎFp be s.t. gcd(4a3+27b2,p)=1

An elliptic curve denoted as Ea,b over finite field Zp
is the set of points (x,y) satisfying  
y2=x3+ax +b mod p PLUS a special identity point



P1+ P2 = P4 where s = (yP1 – yP2) / (xP1 – xP2) mod p 

xP4 = s2 – xP1 – xP2 mod p and yP4 = -yP1 + s(xP1 – xP4) mod p 



Why consider this group?

Elliptic Log problem(EDLP)  may be harder than the discrete log 
problem(DLP)
Best algorithm known for EDLP is strictly exponential
(in contrast to DLP)  

This means, we are  able to use smaller groups with smaller 
security parameter (and operation cost) for same time invested to 
invert: an advantage for wireless devices w. low memory/ power

Can define ECDH & EDDH analogues over Elliptic Curves of 
CDH & DDH

ECDH  seems hard, 
but
EDDH problem is easy to decide.  


