Lecture 7 Spring 2020 Shafi Goldwasser # Today: Search for one-way functions 1. Discrete Log Problems in Cyclic Groups 2. Elliptic Logs over Elliptic Curves ## Recall: One Way Function **Definition:** f: $\{0,1\}^* \Rightarrow \{0,1\}^*$ is a one-way function if 1. Easy to Evaluate: ∃ PPT A s.t. A(x)=f(x) #### 2. Hard to Invert: \forall PPT algorithm *Inverter*, \forall sufficiently large n Pr [x \in {0,1}ⁿ : *Inverter*(f(x))=x' s.t. f(x)=f(x')]=negl(n) ### Weak One-Way Function **Definition:** f: $\{0,1\}^* \Rightarrow \{0,1\}^*$ is a **weak one-way** function - **1. Easy to Evaluate:** \exists PPT algorithm A s.t. A(x)=f(x) - 2. Weakly Hard to Invert: \exists non-negligible ε \forall PPT *Invertor*, \forall sufficiently large n $\Pr[x \in \{0,1\}^n: Invertor(f(x)) \neq x' \text{ s.t. } f(x) = f(x')) > \varepsilon(n)$ **Note:** we say "f has hard-core ϵ " No ppt algorithm can succeed to invert for more than all but $\epsilon(n)$ fraction. #### Weak OWF iff Strong OWF #### **Amplification Theorem:** Weak one-way functions exist if and only if one-way functions exist #### outline: ``` Say f is weak OWF with hard core e Then F(x_1...x_N)=f(x_1)|f(x_2)...|f(x_N) for N=2n/\epsilon(n) is a one-way function |x_i|=n ``` There is a **HUGE blowup** in parameters going from n to n'=Nn In practice, say if f is hard to invert on 1% on length 1000 inputs Then F is hard to invert everywhere on 100,000,000 length inputs # We can do better with concrete one way functions Taking advantage of their algebraic structure # In Search of Concrete Examples of (weak) One-way functions Review: Basic Group Theory #### Basic Group Theory Group (G, \cdot) set with binary operation s.t. - Closure: ∀a,b∈G, a·b∈G - Identity: ∃ 1∈G s.t ∀a, 1·a=a·1=a - Inverse: ∀a ∈G, ∃ a⁻¹∈G, a⁻¹ ·a=1 - Associativity Let G be a finite group Order(G) = number of elements= |G| Lemma: ∀a∈G, a|G| =1 Ex: $(Z_N,+)$ additive modulo N ### Cyclic Groups G is cyclic group if \exists g \in G s.t. G={g, g², g³,..., g^{|G|}} Say that g is the generator of group G Fact: Fix g generator for cyclic group G. ∀a∈G, ∃ unique 1≤i≤|G| s.t a = gⁱ Say that i = discrete log of a w.r.t generator g # Computational Problems Associated with Cyclic Groups DLP in G: Given generator g and a ∈G, compute 1 ≤i≤|G| s.t. a=gⁱ (the discrete log of a) Looking for groups where (1) group operation is easy (2) DLP is hard # **Number Theory** Elliptic Curves # Preliminaries: +, *, gcd Let a,b >0 be n-bit integers. #### Basic Terminology: ``` b|a (b divides a) if ∃ integer d >0 s.t. a=bd gcd(a,b) = greatest integer d such that both d|a and d|b e.g. gcd(9,21)=3 ``` a and b are relatively prime if gcd(a,b)=1. a is prime: has no divisors other than 1 or p | operation | Complexity | Easy ops asymptotically | |----------------|--------------------|---| | a+b | O(n) | In practice, when work | | ab | O(n ²) | with large integers, say n=160-4000 bits, use | | gcd(a,b) | O(n ²) | special `bignums' | | a ^b | $O(n^3)$ | software | #### Modular Arithmetic Let a, b, N> 0 be n-bit integers, a mod N = remainder of a after dividing by N e.g. 10 mod 3 =1, 7 mod 5=2 a=b mod N if (a mod N) = (b mod N) b is the inverse of a mod N, denoted by a-1 if a·b=1 mod N, e.g. 3-1 mod 7 = 5, (b exists if gcd(a,N)=1) | operation | complexity | |-----------------------|----------------------------| | a mod N | O(n ²) | | a+b mod N | $O(n^2)$ | | ab mod N | $O(n^2)$ | | a ⁻¹ mod N | O(n²) [Euclid's algorithm] | | a ^b mod N | O(n³) [Repeated Doubling] | # Algorithm to compute a-1 mod N Let $a^{-1} \mod N = x$ s.t $xa = 1 \mod N$ Fact: x exists iff gcd(a,N) = 1 Euclid's algorithm: Given a,b integers. Computes gcd(a,b) and x,y s.t. ax + by= gcd(a,b) Main observation: if d|a and d|b then d|a-b Poll: Can you use Euclid's algorithm to compute a-1 mod N ??? # Algorithm to compute a-1 mod N Let $a^{-1} \mod N = x$ s.t $xa = 1 \mod N$ Fact: x exists iff gcd(a,N) = 1 Euclid's algorithm: Given a,N. Computes gcd(a,N)=1 and find x,y s.t. ax + Ny=1 Output x Group $$Z_N^* = \{1 <= x < N \text{ s.t. } (x,N) = 1\}$$ Theorem: Z_N* is group under multiplication mod n Proof: $\forall a,b \text{ in } Z_n^*, \text{ ab mod } N \text{ in } Z_N^*$ (closed) 1 in Z_N^* is the identity, $\forall a \text{ in } Z_N^*$, $\exists b \text{ s.t. ab=1 mod N}$ Euler Totient Order of Z_N^* = number of elements in $Z_N^* = \varphi(N)$ Function. Theorem: $\varphi(p) = p-1$ for p prime, ϕ (N)= (p-1)(q-1) for N=pq, gcd(p,q)=1 $\varphi(N) = \prod_i p_i^{\alpha i-1}(p_i-1)$ for $N = \prod p_i^{\alpha i}$ Theorem: $\forall a \text{ in } Z_N^*, a \varphi(N) = 1 \mod N$ # Examples $$Z_2^* = \{1\}$$ $Z_3^* = \{1,2\}$ $Z_4^* = \{1,3\}$ $Z_5^* = \{1,2,3,4\}$ $Z_6^* = \{1,5\}$ $Z_7^* = \{1,2,3,4,5,6\}$ Observation: For prime p, $Z_p^* = \{1,2,...,p-1\}$ # Lets first focus on the the case of **p prime** # Group Zp* for p prime Theorem: If p is prime, then Z_p^* is a cyclic group of order p-1 Ex: p=7, g=5, $$Z_7^* = \{1,2,3,4,5,6\} = \{5,4,6,2,3,1\}$$ = $\{5^i \mod 7, i>0\}$ Let g be a generator of Z_p^* , let $a=g^b \mod p$ Call b the **discrete log** of a with respect to g Useful Fact: if $z = x+y \mod (p-1)$ then $g^z = g^{x+y} \mod p$ ### Discrete Log Problem (DLP) DLP: Given prime p, generator g of Z_p^* , a in Z_p^* , find b such that $g^b = a \mod p$ Notation: $DLP_{p,q}(a) = b$ Ex: p=7,g=5, the discrete log of 4 is 2 as $4=5^2 \mod 7$. #### Best Algorithm Known to Solve DLP Runs in time $e^{O((\log p)^{1/3} (\log \log p)^{2/3})} \sim e^{O(n)^{1/3}}$ for n-bit primesp Are there p,g for which DLP is known to be easy? Not when p is prime Furthermore Amplification: fix p, g: can prove that if DLP is hard "at all", then its hard for all x. # Hardness somewhere ⇒ Hardness everywhere Claim: Fix p prime, g generator. If \exists PPT algorithm B s.t. Prob [x in Z_p^* : B(p, g, g^x) = x] > ϵ Then \exists probabilistic algorithm B' s.t. \forall x, B'(p, g, g^x) = x (B' runs in expected time polynomial in ϵ^{-1} and \log p) #### Proof idea: #### B' (p.a.v) 1. Randomize: choose random 0< r<p-1; $$t=B(p,g, yg^r \mod p)$$ In expected 1/ε trials B will succeed 2. B succeeds \Rightarrow g^t=yg^r mod p \Rightarrow x =(t - r) mod (p-1) else repeat (go to step 1) Corollary: If B' doesn't exist, neither does B. Namely, if $DLP_{p,g}$ is hard "at all" then $DLP_{p,g}$ (x) is hard for random x. ### General: Random Self Reducibility Corollary: If hard to invert for some f(x), hard to invert for random f(r) #### Discrete Log ASSUMPTION (DLA) ∀PPT algorithm A, suff. large n, Prob (n-bit prime p, g generator for Z_p^* , 1≤b≤p-1: A(p,g,g^b)= b) =negligible(n) [Discuss: fixed prime, vs. random prime] #### **One Way Permutation CANDIDATE:** ### **Modular Exponentiation** Let p prime, g be a generator for Z_p^* . Define $$EXP(p,g,b) = (p,g, g^b \mod p)$$ $EXP^{-1}(p,g,g^b \mod p) = (p,g,b \text{ s.t. } 1 \leq b \leq p-1)$ # Discrete Log Problem(DLP) ✓ Example of One-Way Permutation Example of OWF collection Extra Structure: Specialized **Applications** #### **Collections** of One-Way Functions Definition: $F = \{f_i: D_i -> R_i\}_{i \in I}$ where I is a set of indices, and D_i , R_i are finite sets. - Sample a function: ∃ PPT algo. G(1ⁿ) that selects f_i in F for i in I ∩{0,1}ⁿ - Sample in Domain: ∃ PPT algorithm S(i) that selects random x in D_i. - Easy to Evaluate: ∃ PPT algorithm A s.t. A(i,x) = f_i(x) - Hard to Invert: ∀ PPT Invert, ∀sufficiently large n, Pr(i=G(¹¹), x=S(i): Invert(i,fi(x))=x' s.t fi(x)=fi(x')) < negligible(n) # OWF **Collection** Candidate: Modular Exponentiation Let p prime, g be a generator for Z_p^* . Define $EXP_{p,g}:\{1,...p-1\} \longrightarrow Z_p^*$, $EXP_{p,g}(a) = g^b \mod p$ $EXP_{p,g}^{-1}(g^b \mod p) = b$ # Theorem: Under DLA, EXP is a collection of one-way functions. $$EXP = \{EXP_{p,g}\}_{p \text{ prime,ggenerator}}$$ #### Sample a function - Need to generate a random prime p - Need to generate a generator g Easy to Evaluate: compute EXP $_{p,g}(x)$ in $O(n^3)$ Hard to Invert: By DLA ## Generating Large Primes Let $\pi(x)$ = number of primes $\langle x \rangle$ Prime Number Theorem: $\lim_{x \to \infty} \frac{\pi(x)}{(x/\ln x)} = 1$ Thus, about $1/(\ln x)$ numbers near x is prime. By choosing at random numbers < x and testing for Primality, we will find a prime in $O(\ln x) = O(|x|)$ steps Theorem [AKS 02]: Testing Primality is Easy. For n-bit numbers, - Current running time O(n⁶). - Probabilistic algorithm: O(n⁴) time /O(1/2ⁿ) error. # Finding a Generator for Zp* There are many generators for Z_p^* O(1/logn) find a generator in O(log n) trials How to check a given g is a generator? Check that $g^{p-1}=1 \mod p$, $g^{(p-1)/qi} \neq 1 \mod p \quad \forall divisors qi|(p-1)$ But do we know the factorization of(p-1)? No. Idea: Choose prime with p-1 in factored form - # Theorem: Under DLA, EXP is a collection of one-way functions. #### Sample a function Given security parameter n, generate n-bit prime p and generator g for Z_p^* as follows: Repeat - 1. Generate a random number m in factored form m= Πq_iαi - 2. let p-1=m. Test p for primality. #### Until p is prime #### Repeat - 1. Choose random g in Z_p* - 2. Test if g is a generator for Z_p^* using factorization (p-1)= $\Pi q_i^{\alpha i}$ Namely: if $g^{(p-1)/q} \neq 1 \mod p \ \forall \ q \mid (p-1), \ g$ is generator #### Until g generator # Special Interesting case: Strong Primes Restrict your prime to be a strong-prime p =2q+1 where q is a prime. - In this case, - half the elements of Z_p^* are generators - Can easily find and test a generator Most often used in practice # Discrete Log Problem(DLP) ✓ Example of One-Way Permutation ✓ Example of OWF collection Extra Structure: Specialized Applications #### Hard Problems to DLP Computational Diffie-Hellman Problem (CDH): given p,g, g^a mod p and g^b mod p, compute g^{ab} mod p Diffie Hellman Decisional Problem (DDH): given ga mod p, gb mod p, and gc mod p distinguish c=ab mod (p-1) from random 0<c<p-1 - Both problems are hard. - Best solution known: first compute Discrete Log, same running time as Discrete Log. ### Application 1: Diffie Hellman Key Exchange ``` Let p be a prime, g generator. Party A chooses 1<x<p at random, set y= g^x, and sends y to B over public channel Party B chooses 1<z<p at random, set w= g^z, and sends w to A over public channel Joint Secret Key of A and B = gxz = w^x = [A can compute] [B can compute] yz ``` # Security of Diffie-Hellman - First key Exchange over public channels proposed - Security - If CDH is hard adversary can't compute g^{xy} mod p - If DDH is hard adversary can't distinguish g^{xy} mod p from random The hardness of DDH...later in class ### Coin Flip over the Phone A and B want to flip a coin over the telephone, but they don't trust each other ``` Idea 1: Alice flips a coin, tells Bob…BAD idea⊗ Idea 2: Let p prime, g generator function A flips a coin c; If c=0, A chooses even 0<x <p If c=1, A chooses odd 0<x<p Sends g^x mod p to в B guesses if x is even or odd A sends x to B. If guess is correct, then B wins, else A wins Is this a good idea? What is the bit security of x x from g^x mod p? ``` #### The Quadratic Residues $$z \in Z_p^*$$ is a quadratic residue mod p (square) if $z=x^2$ mod p for some $x \in Z_p^*$; and quadratic non-residue otherwise Ex: $$p=7$$, $x \mod p$ 123456 squares ={1,2,4} $x^2 \mod p$ 142241 non-squares={3,5,6} Let QR_p = quadratic residues mod p Claim: QR_p is subgroup of Z_p^* of order (p-1)/2 Claim: Let g be a generator for Z_p* y=gⁱ mod p, 0<i<p is a quadratic residue mod p iff i is even ### Decide if z is a quadratic residue mod p Legendre Symbol of $z \in Z_p^*$ denoted p = 1 if z is a quadratic residue mod p & -1 otherwise. Claim[Easy to compute Legendre symbol] $z = z^{(p-1)/2} \mod p$ **Proof:** If $z = x^2 \mod p$, then $z^{(p-1)/2} = x^{2(p-1)/2} = x^{(p-1)} = 1 \mod p$. z quadratic non-residue $\Rightarrow z^{(p-1)/2} = g^{(2i+1)(p-1)/2} = x^{i(p-1)+(p-1)/2} = q^{(p-1)/2}$. Finally, g generator $\Rightarrow g^{(p-1)/2} = (g^{(p-1)})^{1/2} = (1)^{1/2} \mod p = -1$ since it's one of the two (see below) roots of 1 and can't be 1. Fact 2: $y=x^2$ mod p has 0 or 2 solutions when p is prime. Proof: \exists solution $x \Rightarrow \exists$ at least 2 solutions $x \& -x = p - x \mod p$. Suppose \exists another $z \neq x$,- $x \mod p$, $z^2=x^2 \mod p$ & $z^2-x^2=(z-x)(z+x)=0$ mod p. Then, p|(z-x)(z+x). As p is prime, it must divide either (z-x) or $(z+x) \Rightarrow z=x \mod p$ or $z=-x \mod p$. Contradiction #### Bit Security of g^x mod p Which information about x leaks from g^x mod p, 0<x<p? A: can compute LSB(x) from g^x mod p, by computing the Legendre symbol of g^x mod p, Which information, if any, about x is well hidden by gx mod p? There must be some bit of x which is hard to compute, but which one? Is there any bit of x which is **hard to predict** better than 50-50? #### Theorem[MostSignificantBit is Hard Core Bit]: Let $msb_{p,g}(x) = 0$ if x < (p-1)/2 and 1 otherwise. if $\exists PPT PRED$, c > 0 s.t. $Prob[PRED(g^x mod p) = msb_{p,g}(x)] > \frac{1}{2} + \frac{1}{n^c}$ then $\exists PPT$ that solves the discrete log problem mod p. #### Proof Warm up: y=g^x mod p, 0<x<p Suppose PRED(p,g,y)=MSB_{p,q} (x) for all y LSB(p,g,y) = 1 if x is odd, 0 if x is even IDEA: Will use LSB and the "oracle" PRED for MSB to reconstruct $x = b_n ... b_1$ bit by bit. #### Discrete-Logarithm(p.g,y): - 0. Initialize z:=y mod p(= g^x mod p), n=|p|,i=1 - 1. Compute b_i:=LSB(p, g, z) - 2. If $b_i=0$, then $z=SQRT_p(z)$, else $z=SQRT_p(zg^{-1})$ - 3. If PRED(p,g,z)=1 then set z=p-z. - 4. If i< n, let i=i+1,goto 1, else output b_n...b₁ There are 2 square roots of g²ⁱ For g^i and $-g^{i/2}=g^{i/2}(-1)=g^ig^{(p-1)/2}=g^{i+(p-1)/2}$ mod p gi is principal square root when i <(p-1)/2, otherwis x>(p-1)/2 #### Proof Warm up 2: y=gx mod p Suppose $\forall y$: Pr [Pred(p,g,y)=MSB_{p,g} (x)]>1-1/2n Then, ∀y: Prob[DiscreteLogarithm (p,g,y) succeeds]= Prob [Pred always succeeds]= (1-1/2n)ⁿ > 1/2 #### Algorithm Discrete-Logarithm'(p,g,y) Choose random 0<r<p , If Discrete-Logarithm(p, g, yg^r mod p) succeeds, then x= Discrete-Logarithm(p, g, yg^r mod p) – r =x+r-r Expected number of iterations =2 #### Summary: Hard vs. Easy ``` Z_p^* = \{x Let a,b in Z_{p*} operation Complexity O(n^2) a mod p a+b mod p O(n) O(n^2) ab mod p O(n^2) a-1 mod p O(n^3) ab mod p Square or non-Square O(n³) easy Solving Quadratic Equations mod p O(n³) Lsb(x) from g^x mod p DL, DDH, DHP HARD? MSB ``` What about other cyclic groups? Elliptic Curve Cryptosystems ### Elliptic Curves Let $a,b \in F_p$ be s.t. $gcd(4a^3+27b^2,p)=1$ An elliptic curve denoted as $E_{a,b}$ over finite field Z_p is the set of points (x,y) satisfying $y^2=x^3+ax+b$ mod p PLUS a special identity point Under Addition of two points (see next slide) as group operation $\mathsf{E}_{\mathsf{a},\mathsf{b}}$ is a commutative group. Elliptic Curve Discrete Log Problem (EDLP): Given two points Q and P on the curve E, find integer m s.t. Q = mP Best Algorithm: exponential time O(2ⁿ) for general curve. OWF candidate: f (m, P) = mP [Koblitz, Miller] $$P1+P2=P4 \text{ where } s=(y_{P1}-y_{P2}) \, / \, (x_{P1}-x_{P2}) \text{ mod } p$$ $$x_{P4}=s^2-x_{P1}-x_{P2} \text{ mod } p \text{ and } y_{P4}=-y_{P1}+s(x_{P1}-x_{P4}) \text{ mod } p$$ ## Why consider this group? - Elliptic Log problem(EDLP) may be harder than the discrete log problem(DLP) - Best algorithm known for EDLP is strictly exponential (in contrast to DLP) - This means, we are able to use smaller groups with smaller security parameter (and operation cost) for same time invested to invert: an advantage for wireless devices w. low memory/ power - Can define ECDH & EDDH analogues over Elliptic Curves of CDH & DDH ECDH seems hard, but **EDDH** problem is easy to decide.