
Lecture 8:
Bit Security of DLP, Factoring,

Squaring mod composites
Trapdoor Functions and

Permutations

Spring 2020
Shafi Goldwasser

Today

1. Bit Security of Modular Exponentiation ,
prime modulos gx mod p

2. Elliptic Logs over Elliptic Curves

3. Trapdoor Functions

4. Zn*, composite n

The Quadratic Residues

z Î Zp* is a quadratic residue mod p (square)
if z=x2 mod p for some xÎ Zp* ;
otherwise, z is quadratic non-residue

Ex: p=7, x mod p 1 2 3 4 5 6 squares ={1,2,4}
x2 mod p 1 4 2 2 4 1 non-squares={3,5,6}

Let QRp = quadratic residues mod p
Claim: QRp is subgroup of Zp* of order (p-1)/2
Claim: Let g be a generator for Zp*

y=gi mod p, 0<i<p is a quadratic residue mod p
if and only if i is even (i.e lsb(i)=0)

How to tell if z is a quadratic residue mod p

Legendre Symbol of zÎ Zp* denoted = 1 if z is a quadratic
residue mod p &

-1 otherwise.
Claim[Easy to compute Legendre symbol]

:= z(p-1)/2 mod p
Proof: If z =x2 mod p, then z(p-1)/2 =x2(p-1)/2 =x(p-1) =1 mod p.
z quadratic non-residue ⇒z(p-1)/2 =g(2i+1)(p-1)/2 =xi(p-1)+(p-1)/2 =g(p-1)/2.
Finally, g generator ⇒g(p-1)/2 =(g(p-1))1/2 =(1)1/2 mod p =-1 since
it’s one of the two (see below) roots of 1 and can’t be 1.
Fact 2 : y=x2 mod p has 0 or exactly 2 solutions when p is prime.
Proof: ∃solution x ⇒∃at least 2 solutions x & –x=p-x=xg(p-1)/2 mod p.
Suppose ∃another z ≠ x,-x mod p, z2=x2 mod p & z2-x2= (z-x)(z+x)=0
mod p. Then, p|(z-x)(z+x). As p is prime, it must divide
either (z-x) or (z+x) ⇒z=x mod p or z=-x mod p. Contradiction

Solve for x as follows.
Suppose eq. is solvable, then z(p-1)/2 = 1 mod p.

Case 1: p=3 mod 4, (p-1)/2 = (4t+2)/2
z (2t+1) = 1 mod p
(z (2t+1))z = z mod p
(z (t+1))2 = z mod p
output x=z (t+1) mod p

Case 2: p= 1 mod 4, Harder, uses randomization, homework

Note: found both roots, x and –x=p-x.
For x=gi mod p, -x=gi(-1)=gig(p-1)/2 = gi+(p-1)/2 mod p
x is principal square root when i <(p-1)/2, otherwise –x is

There exists a PPT algorithm for solving
y=x2 mod p

Bit Security of gx mod p

Which information about x leaks from gx mod p, 0<x<p?

A: can compute lsbp,g(x) from gx mod p, by
computing the Legendre symbol of gx mod p.
[lsbp,g(x)=0 iff x is even iff gx mod p is a quadratic residue]

Which information, if any, about x is well hidden by gx mod p?

Is there any bit of x which IS hard to predict better than 50-50?

Most Significant Bit (MSB)

0

(P-1)/2

x>(p-1)/2
msbp,g(x)=1

zp-z

Proof Warm up: y=gx mod p, 0<x<p
Suppose PRED(p,g,gx)=msbp,g (x) for all x

lsbp,g(y) =1 if x is odd, 0 if x is even

IDEA: Will use ability to compute lsb +
the “oracle” PRED for msb to reconstruct x= bn…b1 bit by bit.
Discrete-Logarithm(p.g,y): Initialize z:=y(=gx mod p), n=|p|
Repeat from i=1 to n
1. Compute bi:=lsbp, g(z) [e.g. i=1,b1=0, z=gbn…b20 mod p

i=1,b1=1,z=gbn…b21 mod p]
2. If bi=0, then z=SQRTp(z), else z=SQRTp(zg-1)

[But, there are 2 square roots:
SQRT(z) and -SQRT(z)=SQRT(z)g(p-1)/2 mod p. which one?]

3. If PRED(p,g,z)=1 then set z=zg(p-1)/2 mod p

0

(P-1)/2

x>(p-1)/2
msbp,g(x)=1

zp-z

Proof Warm up: y=gx mod p, 0<x<p
Suppose PRED(p,g,gx)=msbp,g (x) for all x

lsbp,g(y) =1 if x is odd, 0 if x is even

IDEA: Will use ability to compute lsb +
the “oracle” PRED for msb to reconstruct x= bn…b1 bit by bit.

Discrete-Logarithm(p.g,y): Initialize z:=y(=gx mod p), n=|p|
Repeat from i=1 to n
1. Compute bi:=lsbp, g(z)
2. If bi=0, then z=SQRTp(z), else z=SQRTp(zg-1)
3. If PRED(p,g,z)=1 then set z=zg(p-1)/2 mod p
output x=bn…b1

0

(P-1)/2

x>(p-1)/2
msbp,g(x)=1

zp-z

Proof Warm up 2: y=gx mod p

Suppose ∀y: Pr [PRED(p,g,y)=msbp,g (x)]>1-1/2n

Then, ∀y: Prob[DiscreteLogarithm (p,g,y) succeeds]>=
Prob [PRED(p,g,) succeeds in computing msbp,g

in every iteration of the algorithm]= (1-1/2n)n > 1/2

Algorithm Discrete-Logarithm’(p,g,y)
Choose random 0<r<p ,
If Discrete-Logarithm(p, g, ygr mod p) succeeds,
then x= Discrete-Logarithm(p, g, ygr mod p) – r [=x+r-r]

Expected number of iterations =2

Coin Flip over the Phone
A and B want to flip a coin over the telephone, but
they don’t trust each other

•Idea 1: Alice flips a coin, tells Bob outcome… L

•Idea 2: Let p prime, g generator for Zp*
– A flips a coin c;

If c=0, A chooses even 0<x <p
If c=1, A chooses odd 0<x<p
A sends gx mod p to B

– B guesses if x is <(p-1)/2 or >(p-1)/2
– A sends x to B. If guess is correct, then B wins, else A

wins

Summary: Hard vs. Easy
Zp

* = {x < p and gcd(x,p) =1} for n-bit prime p
Let a,b in Zp*

operation Complexity
a mod p O(n2)
a+b mod p O(n)
ab mod p O(n2)
a-1 mod p O(n2)

ab mod p O(n3)
Square or non-Square O(n3)
Solving Quadratic Equations mod p O(n3)
Lsb(x) from gx mod p
DLP,CDH, DDH HARD?
MSB

easy

Today

ü 1. Bit Security of Modular
Exponentiation , prime modulos

2. Elliptic Logs over Elliptic Curves

3. Trapdoor Functions

4. Zn*, composite n

What about other cyclic
groups?

Elliptic Curve Cryptosystems

Elliptic Curves

Elliptic Curve Discrete Log Problem (EDLP):
Given two points Q and G on the curve E,
find integer m s.t. Q =m G

Best Algorithm: exponential time O(2n) for general curve.

OWF candidate: f (m, P) = mP [Koblitz, Miller]

Under Addition of two points (see next slide) as group operation
Ea,b is a commutative group.

Let a,b ÎFp be s.t. gcd(4a3+27b2,p)=1

An elliptic curve denoted as Ea,b over finite field Zp
is the set of points (x,y) satisfying
y2=x3+ax +b mod p PLUS a special identity point

P1+ P2 = P4 where s = (yP1 – yP2) / (xP1 – xP2) mod p

xP4 = s2 – xP1 – xP2 mod p and yP4 = -yP1 + s(xP1 – xP4) mod p

Why consider this group?
• Elliptic Log problem(EDLP) may be harder than the discrete

log problem(DLP)

• Best algorithm known for EDLP is strictly exponential
(in contrast to DLP)

• This means, we are able to use smaller groups with smaller
security parameter (and operation cost) for same time
invested to invert

• An advantage for wireless devices w. low memory/ power

Today

ü 1. Bit Security of Modular
Exponentiation , prime modulos

ü 2. Elliptic Logs over Elliptic Curves

3. Trapdoor Functions

4. Zn*, composite n

Trapdoor Functions

Trapdoor Functions

l Informally: A trapdoor function family is a
family of functions such that a randomly-
selected function is:
l Easy to compute
l Hard to invert (given just f(x))
l Easy to invert given some “trapdoor” t

x f(x)
easy

easy
(given t)

hard

Collections of Trapdoor Functions
Definition:
Let I be a set of indices, and Di a finite set. A

collection of trapdoor functions
is a collection of one-way functions

F= {fi:Di Þ Di}i Î I

• Generation: $ PPT algorithm G that on input
security parameter 1n selects a random fi ÎF
with |i|=n with short trapdoor information ti

• Trapdoor-ness: $ PPT algorithm INV,
s.t INV(i,fi (x), ti) = x’ such that fi(x)=fi(x’)

Today

ü 1. Bit Security of Modular
Exponentiation , prime modulos

ü 2. Elliptic Logs over Elliptic Curves

ü 3. Trapdoor Functions

4. Zn*, composite n

In Search of
Trapdoor Function Examples

Consider composite N

Composite N
Let N=pq where p,q are large primes.

Recall ZN* = {0<x< N s.t gcd(x,N)=1}
is a group under modular multiplication with
order |ZN*| = f(N) = (p-1)(q-1).

Note: ZN* may not be cyclic any more

EX: N=15,
Z15*={1,2,4,7,8,11,13,14}
f(15) = 8

Factoring
Factoring Algorithm:
Given N find divisor d s.t. d|N and 1<d<N

Best Known Algorithm: eO(log N) (log log N)

FACTORING ASSUMPTION:
∀PPT algorithms A,
Prob (A(N) outputs d|N s.t. d≠1,N) < neg(n)
n-bit N=pq, for |p|»|q|

1/3 2/3

Squaring mod N Function[Rabin]

Let N=pq, p,q primes
Let RabinN(x) =x2 mod N

RabinN(x): ZN* QRN , QRN = quadratic residues
mod N

Properties of Squaring mod N

Let N=pq, p,q primes
Let RabinN(x) =x2 mod N

RabinN(x): ZN* QRN , QRN = quadratic residues
mod N

Observations to be proven:
• RabinN is 4-1 function so not uniquely invertible
• Trapdoor: If factorization of N is known there exists a

PPT algorithm for computing square roots mod N
• Collection is One-Way if Factoring is hard: If only N is

known, computing square roots mod N is provably as
hard as factoring.

To prove what we need,
Let us Digress

Effective Chinese Remainder Theorem
(CRT)

Let N=pq be product of two distinct primes.

"zÎZN map z ®(z mod p, z mod q).
This mapping is a one-to-one and onto.
Furthermore, it is polynomial time to compute and invert.

Namely, given (z1,z2) where z1 ∈ Zp & z2 ∈ Zq

can compute unique z in ZN s.t
z=z1 mod p and z =z2 mod q

Chinese Remainder Theorem (CRT)

Proof: Let N=pq be product of two distinct primes.
Compute c1 and c2 s.t.
c1=1 mod p and 0 mod q and
c2=1 mod q and 0 mod p
How?
c1: Compute b1 s.t. b1q=1 mod p and set c1=b1q, Check!
c2: Compute b2 s.t. b2p =1 mod q and set c2=b2p. Check!
Call these the CRT coefficients

Given (z1,z2) where z1 ∈ Zp and z2∈Zq, set
z=c1z1 +c2z2
Claim: Then z=z1 mod p and z=z2 mod q.

General Version:
Chinese Remainder Theorem (CRT)

Let p1 ….pt s.t. gcd(pi,pj) =1 and N=Ppi

and x1 ….xt be integers in Zpi respectively.
Then there is a unique solution x mod N =Ppi

x= x1 mod p1

x= x2 mod p2

.
x= xn mod pt

and x can be easily computed from xi’s.

Example CRT

Compute CRT coefficients
c1= 7, since 7 mod 3 =1 , 7 mod 7 =0 and
c2=15, since 15 mod 3=0, 15 mod 7 = 1

Given c1 and c2, compute x as follows
x =c1z1+ c2z2 = 2*7 + 5*15 = 89 mod 21 = 5 mod 21

Given p=3, q=7, z1=2, z2=5, compute z < 21

Such that z=z1 mod p and z=z2 mod q

Use CRT to show
z in QRN if and only if
z1=z mod p in QRp & z2=z mod q in QRq
⇐Say z1 mod p in QRp & z2 mod q in QRq
let x1 s.t. x1

2 =z1 mod p
and x2 s.t. x2

2= z2 mod q
set x= x1 c1 + x2 c2 mod N
for c1 = 1 mod p and 0 mod q
and c2 = 1 mod q and 0 mod p
define z=z1 c1 + z2 c2

Claim: z=x2 mod N, therefore z in QRN

⇒If z in QRN then z=x2 mod N
implies z=x2 mod p (z mod p in QRp)

and z=x2 mod q (i.e z mod q in QRq)

Use CRT to show
z in QRN if and only if
z1=z mod p in QRp & z2=z mod q in QRq
⇐Say z1 mod p in QRp & z2 mod q in QRq
let x1 s.t. x1

2 =z1 mod p
and x2 s.t. x2

2= z2 mod q
set x= x1 c1 + x2 c2 mod N
for c1 = 1 mod p and 0 mod q
and c2 = 1 mod q and 0 mod p
define z=z1 c1 + z2 c2

Claim: z=x2 mod N, therefore z in QRN

⇒If z in QRN then z=x2 mod N
implies z=x2 mod p (z mod p in QRp)

and z=x2 mod q (i.e z mod q in QRq)

Finished Digression

Can now establish the necessary
facts about the Rabin
trapdoor function candidate

1. RabinN(x) is 4-to-1 Function

Let z=x2 mod N

Then ∃ x1 s.t. x1
2 =z mod p and

x2 s.t. x2
2= z mod q

The following are the 4 distinct roots of z mod N:
x= x1 c1 + x2 c2 and -x=N-x mod N
x’= -x1 c1 + x2 c2 and –x’=N-x’ mod N

for c1 and c2 CRT coefficients

Check !!!

2.Trapdoor: Given Factorization of N,
Computing Square Roots mod N is easy

Let N=pq and z=x2 mod N.

SQRTN(p,q,z):
– Compute x1 s.t. x1

2 =z mod p
– Compute x2 s.t. x2

2= z mod q
– Compute c1 = 1 mod p and 0 mod q (by CRT)
– Compute c2 = 1 mod q and 0 mod p (by CRT)
– Output x= x1 c1 + x2 c2

Recall: can compute square roots mod primes

3.Without trapdoor, Computing Square
Roots mod N As Hard As Factoring N

Theorem: If $ PPT A s.t. A(N,y)=x for y=x2 mod N, then
$ PPT algorithm to factor N.

Pf: 1. On input N, choose a random r in ZN*.
2. Compute x=A(N,r2 mod N).
3. If x = +/-r mod N [with prob ½], goto 1 [no use,

already know it]
Otherwise x2 = r2 mod N but x≠r mod N

and x ≠-r mod N
[which implies either x ≠ r mod p or x ≠ r mod q]

4. Output gcd (N, x-r).
Claim: gcd(N, x-r) = p or q. Pf: Since x2 – r2 =(x+r)(x-r)=0 mod

N, but x+r≠0 mod N & x-r≠0 mod N, either p|(x-r) or q|(x-r)
but not both, thus gcd(x-r,N) = p or q QED

3’.Squaring is hard to invert on the average
as in the worst case

Theorem:
If $ PPT A s.t. Prob[A(N,y)=x s.t.y=x2 mod N]> e,
then $ PPT A’ s.t. Prob[A(N)=d s.t d|N and d≠1,N]> 1-d
and A’ runs in time poly(e-1, d-1, log N)
Proof: Choose k s.t. 1/eK<d

Repeat 2e-1k times
1.choose a random r in ZN*.
2. Compute x=A(N,r2 mod N).
3. If x = +-r mod N (with prob 1/2), goto 1
Otherwise x2 = r2 mod N but x≠r mod N &x ≠-r mod N

[which implies either x ≠ r mod p or x ≠ r mod q]
4. Output gcd (N, x-r).

Prob[A’ fails to factor N]<
Pr[an iteration fails]#iterations <
e-k < d

A Collection of Trapdoor Functions
Define Rabin = { RabinN where N=pq, p,q

primes s.t.|p|=|q|=n }

Theorem: Under Factoring-assumption,
Rabin is a collection of trapdoor functions
Generation: Choose n-bit p,q and test
for primality. If primes set N=pq, trapdorN = {p,q}
Evaluation: Computing RabinN(x) takes O(n2) time
Hard to Invert: by Factoring Assumption
Trapdoor-ness: Given N, p and q can compute square

roots mod N in O(n3)

(recall 1/n
n-bit integers
is prime)

Associated Problem:
Deciding Quadratic Residuosity

modulo Composites

• Given factorization of N, easy to tell if z is quadratic
residue

• Without factorization, don’t know how to tell if z is
a square mod N

• Jacobi Symbol = = an extension of the
Legendre Symbol
– easy to compute without the factorization of N, but
– only gives partial information about if z is square

(i.e if Jacobi symbol of z is -1 then z is definitely not
square, but otherwise no information)

N
z

p
z

q
z

Quadratic Residuosity:
Primes vs. Composites

•Lehmer: I am not a gambling man, wouldn’t guess
unless z is small (perfect squares)

Question: is it hard for a random z ∈ZN* ?

Is z=x2 mod N

Quadratic Residuosity Assumption (QRA)

Let QRN(z)= 0 if z quadratic residue mod N
1 if z is quadratic non-residue mod N

Theorem (QR hard to predict if hard at all per n):
Let A be ppt s.t. Prob(z/N)=1[A(z,n) = QRN(z)]> 1/2+e,
then ∃PPT B " z in Zn* Prob[B(z,n)=QRN]>1-d
(B is Monte Carlo with runtime poly(1/e,1/d,|p|)

– .

N
z

=1

Quadratic Residues:
Random Self Reducability

Theorem[GM]:.
If ∃ PPT A to decide quadratic residuosity with proby> ½+e (over y’s)
then ∃ PPT B to decide quadratic residuosity ∀y ∈ZN* w.p >1-d
A’ runs poly(A, e-1, d-1) .

Corollary [Worst Case to Average]:
Fix n. QR is hard for worst case y⇒its hard to for the average y

y
Break into random instances

r1 r2 r3

Combine

y is quadratic residue or not

A solves random instances
Better than ½+e

Quadratic Residuosity Assumption (QRA)

: ∀PPT algo A, " n sufficiently large,
prob (A(N,z) ¹ QRN(z)) > non-neg (n)
(over N, z where =1)z

N

Let QRN(z)= 0 if z quadratic residue mod N
1 if z is quadratic non-residue mod Nz

N =1

Quadratic Residuosoity
is very Versatile

• Encryption:
– Public Key Semantically secure
– IBE [cocks]
– Circular Security[BR]
– Leakage Resilience [BR]

• Protocols:
– Homomorphism : PIR [KO]
– Interactive and Non-Interactive Zero Knowledge [GMR,

BFM]

• First ZK protocol

Trapdoor Permutations

Is there a Collection of Trapdoor
Permutations equivalent to factoring

Definition: Let I be a set of indices, and Di a finite
set. A collection of trapdoor permutations is a
collection of one way permutations
F= {fi:Di Þ Di}i Î I

• Generation: $ PPT algorithm G that on input
security parameter 1n selects a random fi ÎF
with |i|=n with short trapdoor information ti

• Trapdoor-ness: $ PPT algorithm INV,
s.t INV(fi (x), ti) = x’ such that fi(x)=fi(x’)

Trapdoor Permutation Equivalent
to Factoring [Blum-Williams]

Let N=pq, p,q primes s.t. p=q=3 mod 4
Define BWN: QRN QRN as BWN(x)=x2 mod N

Claim: When p=q=3 mod 4, then each quadratic residue
mod N has a unique square root which
itself is a quadratic residue mod N
Proof: (-1/p)=(-1/q)=-1 so -1 is a non-square.
So say root x= c1x1+c2x2 is a square, then x1 is a square mod p

and x2 is a square mod q, which means that –x1 and -x2 are
non-square mod p and q and thus all other roots of x2 mod N
are non-squares

Conclusion: BWN is a permutation over the squares mod N
.

RSA:

Was the first example of
Trapdoor permutation

Rivest-Shamir-Adelman
Turing Award

RSA Math
Let �N=pq for p,q large prime and f(N) =(p-1)(q-1)
Let e <f(N) such that gcd(e,f(N))=1 .
Ex: N=3*7=21, e=5, gcd(5,12)=1

Claim: Let e <f(N) and d s.t. de=1 mod f(N).
"x in Zn*, (x e mod N)d mod N = x ed mod f(n) mod N = x mod N

Define RSA N,e(x) = xe mod N Ex: 25 mod 21 = 11

Claim:. RSAN,e : ZN* Þ ZN* is a permutation

RSA -1n,e(y) = yd mod n :ZN* Þ ZN* where e,d <f(N)
de=1 mod f(N)

Proof: (RSA n,e(x))d = xed mod N =x 1 mod f(N) mod n = x

How hard is to generate
N, e and d

• Choose p, q s.t. |p|=|q| and set N=pq
• Choose e at random s.t. gcd(e, f(n))=1
• Compute d s.t. ed=1 mod f(n) using

Euclidean-Gcd(e,f(n)) to get d,c s.t.
de+cf(n)=1, and thus de=1 mod f(n)

How hard is to invert RSA given
e and just N?

Claim: If can compute d, given N and e s.t.
ed=1 mod f(n), then can factor N
Proof: Homework

Does this mean that inverting RSA is as hard as
Factoring?

Not necessarily. It may be possible to invert
RSA without learning d and without factoring.

RSA and Factoring Integers
• Fact 1: Given N, e, p, and q, its easy to

compute f(N) and d=e-1 mod f(N).
• Fact 2: Given only N,e, computing f(N)

is as hard as factoring N
• Fact 3: Given only N,e, computing d is

as hard as factoring N
• Conclusions:

– If can factor, can invert RSA
– But, is Inverting (breaking) RSA as hard

as factoring? MAJOR OPEN PROBLEM

RSA Assumption
∀PPT algorithms A
Prob(A(N,e,xe mod N) = x) < neg (n)
(over n-bit N=pq,
p,q primes of equal size
And e s.t. gcd(e,f(N))=1 and xÎ ZN*)

Strong RSA Assumption
∀PPT algorithms A
Prob(A(N,y)=(e,x) s.t. y=xe mod N) < neg (n)
(over n-bit N=pq,
p,q primes of equal size,
yÎ ZN*)

If RSA is hard to invert in the worst case,
it is hard to invert with non-neg probability

Claim: Fix N, 1<e<f(n).
If $ PPT B s.t. probx(B(N,e,RSAN,e(x))=x)> non-neg(n)

then $ PPT algorithm A to invert RSAN,e (x) for all x.
Proof:
Given y= xe mod N , choose random r in ZN* and map y
to z=y re mod N. Now, run B(z). If successful, i.e B(z)= xr mod N,
output x= B(z)/r mod N, else choose another r.
In expected 1/e trials will be successful.

QED

RSA Collection of Trapdoor Functions
Define RSA = { RSAN,e } N,e where n=pq, for p,q primes

s.t.|p|=|q|, (e,f(N))=1}

Theorem: Under RSA assumption,
RSA is a collection of trapdoor functions
Generation:
1. Choose at random n-bit p,q and test them for primality. If

prime, set N=pq
2. Choose odd e, check that gcd(e,f(N))=1
3. Compute d=e-1 mod f(N). d is the trapdoorN,e

Evaluation: computing RSAN,e(x) takes O(n3) time
Hard to Invert: by RSA-Assumption
Trapdoor: Given N, e, and d, x= (RSAN,e(x))d mod N

Takes
O(n3)

Trapdoor Predicates

Trapdoor Predicates

A trapdoor predicate collection isa collection of
Boolean functions {Bi: {0,1}* Þ {0,1}}i s.t
– Easy to Generate Can generate (Bi,ti) where ti is a trapdoor

information
– Sample: For b Î{0,1}, there exists PPT algorithm A which

outputs random s.t. Bi(x)=b
– Hard to Guess: For all PPT algorithms P, prob

(P(x)=Bi(x)) < ½ +non-neg(n)
– Trapdoorness: there exist poly time algorithm Inv, s.t.

Inv(ti,I, x)=Bi(x) for all x,i
•

•

Where can we find trapdoor predicates?

Under QRA, QRN(z) is a trapdoor predicate
for N=pq for p=q=3 (mod 4)

Easy to Sample: N=pq for p=q=3 (mod 4)

• Easy to sample in squares = x2 mod N
• Easy to sample in non-squares

with Jacobi symbol 1 = -x2 mod N

• Where else can we find trapdoor
predicates

Trapdoor Functions
⇒

Trapdoor Predicates

Sample: Given b, choose x,r at random
s.t. <x,r>=b and output f’(x,r)=f(x),r

