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Today

1. Bit Security of Modular Exponentiation , 
prime modulos gx mod p

2. Elliptic Logs over Elliptic Curves

3. Trapdoor Functions 

4. Zn*, composite n



The Quadratic Residues 

z Î Zp*  is a quadratic residue mod p  (square)                                                     
if  z=x2 mod p for some xÎ Zp* ; 
otherwise, z is quadratic non-residue

Ex:     p=7,   x mod p   1 2 3 4 5 6      squares ={1,2,4}
x2 mod p 1 4 2 2 4 1        non-squares={3,5,6}

Let QRp = quadratic residues mod p
Claim: QRp is subgroup of Zp* of order  (p-1)/2
Claim: Let g be a generator for Zp* 

y=gi mod p, 0<i<p is a quadratic residue mod p 
if and only if i is even (i.e lsb(i)=0)



How to tell if z is a quadratic residue mod p 

Legendre Symbol of zÎ Zp*  denoted     = 1 if z is a quadratic 
residue mod p &

-1 otherwise.
Claim[Easy to compute Legendre symbol]     

:= z(p-1)/2 mod p   
Proof:  If z =x2 mod p, then z(p-1)/2 =x2(p-1)/2 =x(p-1) =1 mod p.         
z quadratic non-residue ⇒z(p-1)/2 =g(2i+1)(p-1)/2 =xi(p-1)+(p-1)/2 =g(p-1)/2. 
Finally, g generator ⇒g(p-1)/2 =(g(p-1))1/2 =(1)1/2  mod p =-1 since 
it’s one of the two (see below) roots of 1 and can’t be 1.
Fact 2 : y=x2 mod p has 0 or exactly 2 solutions when p is  prime.
Proof: ∃solution x ⇒∃at least 2 solutions x & –x=p-x=xg(p-1)/2 mod p. 
Suppose ∃another z ≠ x,-x mod p, z2=x2 mod p &  z2-x2= (z-x)(z+x)=0 
mod p. Then, p|(z-x)(z+x). As p is prime, it must divide 
either (z-x) or (z+x) ⇒z=x mod p or z=-x mod p. Contradiction



Solve for x as follows.
Suppose eq. is solvable, then z(p-1)/2 = 1 mod p. 

Case 1: p=3 mod 4, (p-1)/2 = (4t+2)/2
z (2t+1) = 1 mod p
(z (2t+1))z = z  mod p
(z (t+1))2 = z mod p
output x=z (t+1) mod p

Case 2: p= 1 mod 4, Harder, uses randomization, homework

Note: found both roots, x and –x=p-x.
For x=gi mod p, -x=gi(-1)=gig(p-1)/2 = gi+(p-1)/2 mod p
x is principal square root when i <(p-1)/2, otherwise –x is

There exists a PPT algorithm for solving 
y=x2 mod p



Bit Security of gx mod p

Which information about x leaks from gx mod p, 0<x<p?

A: can compute lsbp,g(x)  from gx mod p, by 
computing the Legendre  symbol of gx mod p.
[lsbp,g(x)=0 iff x is even iff gx mod p is a quadratic residue]

Which information, if any, about x is well hidden by gx mod p?

Is there any bit of x which IS hard to predict better than 50-50? 



Most Significant Bit (MSB)

0

(P-1)/2

x>(p-1)/2
msbp,g(x)=1

zp-z



Proof Warm up:  y=gx mod p,  0<x<p
Suppose PRED(p,g,gx)=msbp,g (x) for all x 

lsbp,g(y) =1 if x is odd, 0 if x is even 

IDEA: Will use ability to compute lsb +
the “oracle” PRED for msb to reconstruct x= bn…b1 bit by bit.  
Discrete-Logarithm(p.g,y): Initialize z:=y(=gx mod p), n=|p|
Repeat from i=1 to n
1. Compute bi:=lsbp, g( z)          [e.g. i=1,b1=0,  z=gbn…b20 mod p

i=1,b1=1,z=gbn…b21 mod p]
2. If bi=0, then z=SQRTp(z), else z=SQRTp(zg-1)

[But, there are 2 square roots: 
SQRT(z) and -SQRT(z)=SQRT(z)g(p-1)/2 mod p. which one?]

3.   If PRED(p,g,z)=1 then set z=zg(p-1)/2 mod p 

0

(P-1)/2

x>(p-1)/2
msbp,g(x)=1

zp-z



Proof Warm up:  y=gx mod p,  0<x<p
Suppose PRED(p,g,gx)=msbp,g (x) for all x 

lsbp,g(y) =1 if x is odd, 0 if x is even 

IDEA: Will use ability to compute lsb +
the “oracle” PRED for msb to reconstruct x= bn…b1 bit by bit.

Discrete-Logarithm(p.g,y): Initialize z:=y(=gx mod p), n=|p|
Repeat from i=1 to n
1. Compute bi:=lsbp, g( z) 
2. If bi=0, then z=SQRTp(z), else z=SQRTp(zg-1)
3.   If PRED(p,g,z)=1 then set z=zg(p-1)/2 mod p 
output x=bn…b1

0

(P-1)/2

x>(p-1)/2
msbp,g(x)=1

zp-z



Proof Warm up 2: y=gx mod p 

Suppose ∀y: Pr [PRED(p,g,y)=msbp,g (x)]>1-1/2n

Then, ∀y: Prob[DiscreteLogarithm (p,g,y) succeeds]>= 
Prob [PRED(p,g,)  succeeds in computing msbp,g 

in every iteration of the algorithm]= (1-1/2n)n > 1/2

Algorithm Discrete-Logarithm’(p,g,y)
Choose random 0<r<p ,
If Discrete-Logarithm(p, g, ygr mod p)  succeeds,
then x= Discrete-Logarithm(p, g, ygr mod p) – r [=x+r-r]

Expected number of iterations =2



Coin Flip over the Phone
A and B want to flip a coin over the telephone, but 
they don’t trust each other

•Idea 1: Alice flips a coin, tells Bob outcome… L

•Idea 2: Let p prime, g generator for Zp*
– A flips a coin c; 

If c=0, A chooses even 0<x <p
If c=1, A chooses odd 0<x<p
A sends gx mod p to B

– B guesses if x is <(p-1)/2 or >(p-1)/2
– A sends x to B. If guess is correct, then B wins, else A 

wins



Summary: Hard vs. Easy
Zp

*   =  {x < p and  gcd(x,p) =1} for n-bit prime p
Let a,b in Zp*

operation Complexity
a  mod p O(n2)
a+b mod p O(n)
ab mod p O(n2)
a-1 mod p O(n2)

ab mod p O(n3)
Square or non-Square O(n3)
Solving Quadratic Equations mod p O(n3)
Lsb(x) from gx mod p
DLP,CDH, DDH               HARD?
MSB

easy



Today

ü 1. Bit Security of Modular 
Exponentiation , prime modulos

2. Elliptic Logs over Elliptic Curves

3. Trapdoor Functions 

4. Zn*, composite n



What about other cyclic
groups?

Elliptic Curve Cryptosystems



Elliptic Curves

Elliptic Curve Discrete Log Problem (EDLP):
Given two points  Q and G  on the curve  E,  
find integer m s.t. Q =m G

Best Algorithm: exponential time O(2n) for general curve.

OWF candidate:   f (m, P) =  mP   [Koblitz, Miller]

Under Addition of two points (see next slide)  as group operation  
Ea,b is a commutative group.

Let a,b ÎFp   be s.t. gcd(4a3+27b2,p)=1

An elliptic curve denoted as Ea,b over finite field Zp
is the set of points (x,y) satisfying  
y2=x3+ax +b mod p PLUS a special identity point



P1+ P2 = P4 where s = (yP1 – yP2) / (xP1 – xP2) mod p 

xP4 = s2 – xP1 – xP2 mod p and yP4 = -yP1 + s(xP1 – xP4) mod p 



Why consider this group?
• Elliptic Log problem(EDLP)  may be harder than the discrete 

log problem(DLP)

• Best algorithm known for EDLP is strictly exponential
(in contrast to DLP)  

• This means, we are  able to use smaller groups with smaller 
security parameter (and operation cost) for same time 
invested to invert

• An advantage for wireless devices w. low memory/ power
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Trapdoor Functions



Trapdoor Functions

l Informally:  A trapdoor function family is a 
family of functions such that a randomly-
selected function is:
l Easy to compute
l Hard to invert (given just f(x))
l Easy to invert given some “trapdoor” t

x f(x)
easy

easy 
(given t)

hard



Collections of Trapdoor Functions
Definition:
Let I be a set of indices, and Di  a finite set. A 

collection of trapdoor functions
is a collection of one-way functions 

F= {fi:Di Þ Di}i Î I

• Generation: $ PPT algorithm G that on input 
security parameter 1n selects a random fi ÎF 
with |i|=n with short trapdoor information ti

• Trapdoor-ness:  $ PPT algorithm INV, 
s.t INV(i,fi (x), ti ) = x’ such that  fi(x)=fi(x’)



Today

ü 1. Bit Security of Modular 
Exponentiation , prime modulos

ü 2. Elliptic Logs over Elliptic Curves

ü 3. Trapdoor Functions 

4. Zn*, composite n



In Search of
Trapdoor Function Examples

Consider composite N



Composite N
Let N=pq where p,q are large primes. 

Recall  ZN*   = {0<x< N s.t gcd(x,N)=1}
is a group under modular multiplication with
order   |ZN*| = f(N) = (p-1)(q-1).

Note: ZN* may not be cyclic any more

EX: N=15, 
Z15*={1,2,4,7,8,11,13,14}
f(15) = 8



Factoring
Factoring Algorithm:
Given N find divisor  d  s.t.  d|N  and  1<d<N

Best Known Algorithm:  eO(log N )     (log log N)

FACTORING ASSUMPTION:
∀PPT algorithms A, 
Prob (A(N) outputs d|N s.t. d≠1,N ) < neg(n)
n-bit N=pq, for |p|»|q|

1/3 2/3



Squaring mod N Function[Rabin]

Let N=pq, p,q primes 
Let RabinN(x) =x2 mod N

RabinN(x): ZN*     QRN , QRN = quadratic residues 
mod N



Properties of Squaring mod N

Let N=pq, p,q primes 
Let RabinN(x) =x2 mod N

RabinN(x): ZN*     QRN , QRN = quadratic residues 
mod N

Observations to be proven:
• RabinN is 4-1 function so not uniquely invertible
• Trapdoor: If factorization of N is known there exists a 

PPT algorithm for computing square roots mod N
• Collection is One-Way if Factoring is hard: If only N is 

known, computing square roots mod N is provably as 
hard as factoring. 



To prove what we need,
Let us Digress



Effective Chinese Remainder Theorem
(CRT)

Let N=pq be product of two distinct primes. 

"zÎZN map z ®(z mod p, z mod q).
This mapping is a one-to-one and onto. 
Furthermore, it is polynomial time to compute and invert.

Namely, given (z1,z2) where z1 ∈ Zp &   z2 ∈ Zq

can compute unique z in ZN s.t 
z=z1 mod p and z =z2 mod q



Chinese Remainder Theorem (CRT)

Proof: Let N=pq be product of two distinct primes.
Compute c1 and c2 s.t.
c1=1 mod p and 0 mod q and
c2=1 mod q and 0 mod p
How?
c1: Compute b1 s.t. b1q=1 mod p and set c1=b1q,  Check!
c2: Compute b2 s.t. b2p =1 mod q and set c2=b2p. Check!
Call these the CRT coefficients

Given (z1,z2) where z1 ∈ Zp and z2∈Zq, set
z=c1z1 +c2z2
Claim: Then z=z1 mod p and  z=z2 mod q.



General Version:
Chinese Remainder Theorem (CRT)

Let p1 ….pt s.t. gcd(pi,pj) =1  and N=Ppi

and  x1 ….xt    be integers in Zpi respectively.
Then there is a unique solution x mod N =Ppi

x= x1 mod p1

x= x2 mod p2

.
x= xn mod pt

and x  can be easily computed from xi’s.



Example CRT

Compute CRT coefficients 
c1= 7,  since 7 mod 3 =1 , 7 mod 7 =0 and        
c2=15, since 15 mod 3=0, 15 mod 7 = 1

Given c1 and c2,  compute x as follows 
x =c1z1+ c2z2 = 2*7 + 5*15 = 89 mod 21 = 5 mod 21

Given p=3, q=7, z1=2, z2=5, compute z < 21

Such that z=z1 mod p and z=z2 mod q



Use CRT to show
z in QRN if and only if
z1=z mod p in QRp & z2=z mod q in QRq
⇐Say z1 mod p in QRp & z2 mod q in QRq
let x1 s.t.  x1

2 =z1 mod p 
and x2 s.t.  x2

2= z2 mod q
set x= x1 c1 + x2 c2 mod N
for   c1 = 1 mod p and 0 mod q
and  c2 = 1 mod q and 0 mod p
define z=z1 c1 + z2 c2

Claim: z=x2 mod N, therefore z in QRN

⇒If z in QRN then z=x2 mod N 
implies z=x2 mod p ( z mod p in QRp)

and z=x2 mod q  (i.e z mod q in QRq)



Use CRT to show
z in QRN if and only if
z1=z mod p in QRp & z2=z mod q in QRq
⇐Say z1 mod p in QRp & z2 mod q in QRq
let x1 s.t.  x1

2 =z1 mod p 
and x2 s.t.  x2

2= z2 mod q
set x= x1 c1 + x2 c2 mod N
for   c1 = 1 mod p and 0 mod q
and  c2 = 1 mod q and 0 mod p
define z=z1 c1 + z2 c2

Claim: z=x2 mod N, therefore z in QRN

⇒If z in QRN then z=x2 mod N 
implies z=x2 mod p ( z mod p in QRp)

and z=x2 mod q  (i.e z mod q in QRq)



Finished Digression

Can now establish the necessary
facts about the Rabin
trapdoor function candidate



1. RabinN(x) is 4-to-1 Function

Let z=x2 mod N

Then ∃ x1 s.t. x1
2 =z mod p and 

x2 s.t. x2
2= z mod q

The following are the 4 distinct roots of z mod N:
x= x1 c1 + x2 c2 and -x=N-x  mod N
x’= -x1 c1 + x2 c2 and –x’=N-x’ mod N

for c1 and c2 CRT coefficients 

Check !!!



2.Trapdoor: Given Factorization of N, 
Computing Square Roots mod N is easy

Let N=pq and z=x2 mod N.

SQRTN(p,q,z):
– Compute x1 s.t. x1

2 =z mod p 
– Compute x2 s.t. x2

2= z mod q
– Compute  c1 = 1 mod p and 0 mod q (by CRT)
– Compute  c2 = 1 mod q and 0 mod p (by CRT)
– Output x= x1 c1 + x2 c2

Recall:  can compute square roots mod primes



3.Without trapdoor, Computing Square 
Roots mod N As Hard As Factoring N

Theorem: If $ PPT A s.t. A(N,y)=x for y=x2 mod N, then 
$ PPT algorithm to factor N.

Pf: 1. On input N, choose a random r in ZN*.
2. Compute x=A(N,r2 mod N). 
3. If  x  = +/-r  mod N [with prob ½], goto 1 [no use, 

already know it]
Otherwise x2 = r2 mod N but x≠r mod N 

and x ≠-r mod N
[which implies either x ≠ r mod p or x ≠ r mod q]

4. Output gcd (N, x-r).
Claim: gcd(N, x-r) = p or q. Pf: Since x2 – r2 =(x+r)(x-r)=0 mod 

N, but x+r≠0  mod N & x-r≠0 mod N,  either p|(x-r) or q|(x-r)  
but not both, thus gcd(x-r,N) = p or q QED



3’.Squaring is hard to invert on the average 
as in the worst case

Theorem:
If $ PPT A s.t. Prob[A(N,y)=x s.t.y=x2 mod N]> e,
then $ PPT A’  s.t. Prob[A(N)=d s.t d|N and d≠1,N]> 1-d
and A’ runs in time poly(e-1, d-1, log N) 
Proof: Choose k s.t. 1/eK<d

Repeat 2e-1k times
1.choose a random r in ZN*.
2. Compute x=A(N,r2 mod N). 
3. If  x  = +-r  mod N (with prob 1/2 ), goto 1
Otherwise x2 = r2 mod N but x≠r mod N &x ≠-r mod N

[which implies either x ≠ r mod p or x ≠ r mod q]
4. Output gcd (N, x-r).



Prob[A’ fails to factor N]<
Pr[an iteration fails]#iterations < 
e-k  < d



A Collection of Trapdoor Functions
Define Rabin = { RabinN where N=pq, p,q    

primes  s.t.|p|=|q|=n } 

Theorem: Under Factoring-assumption,
Rabin is a collection of trapdoor functions
Generation: Choose n-bit p,q and test 
for primality.  If primes set N=pq, trapdorN = {p,q} 
Evaluation: Computing RabinN(x) takes O(n2) time
Hard to Invert: by Factoring Assumption 
Trapdoor-ness:  Given N, p and q can compute square 

roots mod N in O(n3)

(recall 1/n  
n-bit integers 
is prime)



Associated Problem:
Deciding Quadratic Residuosity

modulo Composites

• Given factorization of N, easy to tell if z is quadratic 
residue

• Without factorization, don’t know how to tell if z is 
a square mod N

• Jacobi Symbol =       =          an extension of the 
Legendre Symbol
– easy to compute without the factorization of N, but 
– only gives partial information about if z is square 

(i.e if Jacobi symbol of z is -1 then z is definitely not
square, but otherwise no information)

N
z

p
z

q
z



Quadratic Residuosity: 
Primes vs. Composites

•Lehmer: I am not a gambling man, wouldn’t guess
unless z is small (perfect squares )

Question: is it hard for a random z ∈ZN* ? 

Is z=x2 mod N



Quadratic Residuosity Assumption (QRA)

Let QRN(z)= 0 if z quadratic residue mod N
1 if z is quadratic non-residue mod N

Theorem (QR hard to predict if hard at all per n):
Let A be ppt  s.t. Prob(z/N)=1[A(z,n) = QRN(z)]> 1/2+e, 
then ∃PPT B " z in Zn* Prob[B(z,n)=QRN ]>1-d
(B is Monte Carlo  with runtime poly(1/e,1/d,|p|) 

– . 

N
z

=1



Quadratic Residues: 
Random Self Reducability

Theorem[GM]:.
If ∃ PPT  A to decide quadratic residuosity with proby> ½+e (over y’s)
then ∃ PPT B to decide quadratic residuosity ∀y ∈ZN* w.p >1-d
A’ runs poly(A, e-1, d-1) .

Corollary [Worst Case to Average]:
Fix n. QR is hard for worst case y⇒its hard to for the average y  

y
Break into random instances

r1 r2 r3

Combine

y is quadratic residue or not

A solves random instances
Better than ½+e



Quadratic Residuosity Assumption (QRA)

: ∀PPT algo A, " n sufficiently large, 
prob (A(N,z) ¹ QRN(z) ) > non-neg (n)                                        
(over N, z where       =1)z

N

Let QRN(z)= 0 if z quadratic residue mod N
1 if z is quadratic non-residue mod Nz

N =1



Quadratic Residuosoity
is very Versatile

• Encryption: 
– Public Key Semantically secure
– IBE [cocks]
– Circular Security[BR]
– Leakage Resilience [BR]

• Protocols:
– Homomorphism : PIR [KO]
– Interactive and Non-Interactive Zero Knowledge [GMR, 

BFM]

• First ZK protocol



Trapdoor Permutations



Is there a Collection of Trapdoor 
Permutations equivalent to factoring

Definition: Let I be a set of indices, and Di  a finite 
set. A collection of trapdoor permutations is a 
collection of one way permutations 
F= {fi:Di Þ Di}i Î I

• Generation: $ PPT algorithm G that on input 
security parameter 1n selects a random fi ÎF 
with |i|=n with short trapdoor information ti

• Trapdoor-ness:  $ PPT algorithm INV, 
s.t INV(fi (x), ti ) = x’ such that  fi(x)=fi(x’)



Trapdoor Permutation Equivalent 
to Factoring [Blum-Williams]

Let N=pq, p,q primes s.t. p=q=3 mod 4
Define BWN: QRN QRN as BWN(x)=x2 mod N

Claim: When p=q=3 mod 4, then each quadratic residue 
mod N has a unique square root which 
itself is a quadratic residue mod N
Proof:  (-1/p)=(-1/q)=-1 so -1 is a non-square.
So say root x= c1x1+c2x2 is a square, then x1 is a square mod p 

and x2 is a square mod q, which means that –x1 and -x2 are 
non-square mod p and q and thus all other roots of x2 mod N 
are non-squares

Conclusion: BWN is a permutation over the squares mod N
.



RSA: 

Was the first example of 
Trapdoor permutation

Rivest-Shamir-Adelman
Turing Award



RSA Math
Let �N=pq for p,q large prime and f(N) =(p-1)(q-1)
Let e <f(N) such that gcd(e,f(N))=1 .
Ex: N=3*7=21, e=5, gcd(5,12)=1

Claim: Let e <f(N) and d s.t. de=1 mod f(N). 
"x in Zn*, (x e mod N )d mod N = x ed mod f(n) mod N = x mod N

Define RSA N,e(x) = xe mod N   Ex: 25 mod 21 = 11

Claim:. RSAN,e : ZN* Þ ZN*  is a permutation 

RSA -1n,e(y) =  yd mod n :ZN* Þ ZN* where e,d <f(N) 
de=1 mod f(N)              

Proof: (RSA n,e(x))d = xed mod N =x 1 mod f(N) mod n = x



How hard is to generate
N, e and  d

• Choose p, q s.t. |p|=|q| and set N=pq
• Choose e at random s.t. gcd(e, f(n))=1 
• Compute d s.t. ed=1 mod f(n) using 

Euclidean-Gcd(e,f(n)) to get d,c s.t.
de+cf(n)=1, and thus de=1 mod f(n)



How hard is to invert RSA given 
e and just N?

Claim: If can compute d, given N and e s.t.
ed=1 mod f(n), then can factor N
Proof: Homework

Does this mean that inverting RSA is as hard as 
Factoring?

Not necessarily. It may be possible to invert 
RSA without learning d and without factoring.



RSA and Factoring Integers
• Fact 1: Given N, e, p, and q, its easy to 

compute f(N) and  d=e-1 mod f(N).
• Fact 2: Given only N,e, computing f(N) 

is as hard as factoring N
• Fact 3: Given only N,e, computing d is 

as hard as factoring N
• Conclusions: 

– If can factor, can invert RSA
– But, is Inverting (breaking) RSA as hard 

as factoring? MAJOR OPEN PROBLEM



RSA Assumption
∀PPT algorithms A
Prob(A(N,e,xe mod N) = x) < neg (n)
(over n-bit  N=pq, 
p,q primes of equal size                         
And e s.t. gcd(e,f(N))=1 and xÎ ZN*)

Strong RSA Assumption
∀PPT algorithms A
Prob(A(N,y)=(e,x) s.t. y=xe mod N) < neg (n)
(over n-bit  N=pq, 
p,q primes of equal size,                         
yÎ ZN*)



If RSA is hard to invert in the worst case, 
it is hard to invert with non-neg probability

Claim: Fix N, 1<e<f(n).
If  $ PPT B s.t. probx(B(N,e,RSAN,e(x))=x)> non-neg(n)

then $ PPT algorithm A to invert RSAN,e (x) for all x.
Proof:
Given y= xe mod N , choose random r in ZN* and map y 
to z=y re mod N.  Now, run B(z). If successful, i.e B(z)= xr mod N, 
output x= B(z)/r mod N, else choose another r.
In expected 1/e  trials will be successful.

QED



RSA Collection of Trapdoor Functions
Define RSA = { RSAN,e } N,e where n=pq, for p,q primes  

s.t.|p|=|q|, (e,f(N))=1}  

Theorem: Under RSA assumption,
RSA is a collection of trapdoor functions
Generation:
1. Choose at random  n-bit p,q and test them for primality. If 

prime, set N=pq
2.  Choose odd e, check that gcd(e,f(N))=1
3.  Compute d=e-1 mod f(N). d is the trapdoorN,e

Evaluation: computing RSAN,e(x) takes O(n3) time
Hard to Invert: by RSA-Assumption
Trapdoor: Given N, e, and d, x= (RSAN,e(x))d mod N

Takes
O(n3)



Trapdoor Predicates



Trapdoor Predicates

A trapdoor predicate collection isa collection of 
Boolean functions  {Bi: {0,1}*  Þ {0,1}}i s.t
– Easy to Generate Can generate (Bi,ti) where ti is a trapdoor 

information
– Sample: For b Î{0,1}, there exists PPT algorithm A which 

outputs random s.t. Bi(x)=b
– Hard to Guess: For all PPT algorithms P,   prob 

(P(x)=Bi(x)) < ½ +non-neg(n)
– Trapdoorness: there exist poly time algorithm Inv,  s.t. 

Inv(ti,I, x)=Bi(x) for all x,i
•

•

Where can we find trapdoor predicates?



Under QRA, QRN(z) is a trapdoor predicate
for N=pq for p=q=3 (mod 4) 

Easy to Sample: N=pq for p=q=3 (mod 4)

• Easy to sample in squares  =  x2 mod N
• Easy to sample in non-squares                          

with Jacobi symbol 1         = -x2 mod N

• Where else can we find trapdoor 
predicates



Trapdoor Functions 
⇒

Trapdoor Predicates

Sample: Given b, choose x,r at random 
s.t. <x,r>=b and output f’(x,r)=f(x),r


