Lecture 8.

Bit Security of DLP, Factoring,
Sguaring mod composites
Trapdoor Functions and
Permutations

Spring 2020

Shafi Goldwasser

Today

1. Bit Security of Modular Exponentiation
prime modulos g*x mod p

2. Elliptic Logs over Elliptic Curves
3. Trapdoor Functions

4. 7. *, composite n

The Quadratic Residues

Zz € Z,* is a quadratic residue mod p (square)
if z=x2 mod p for some xe Z_* ;
otherwise, z Iis quadratic non-residue

Ex: p=7, xmodp 123456 squares ={1,2,4}
x2modp 142241 non-squares={3,5,6}

Let QR, = quadratic residues mod p
Claim: QR is subgroup of Z,* of order (p-1)/2
Claim: Let g be a generator for Z,*
y=g' mod p, 0<i<p is a quadratic residue mod p
if and only if i is even (i.e Isb(i)=0)

How to tell if z is a quadratic residue mod p

Legendre Symbol of ze Z,* denotedhj =1 if z is a quadratic
residue mod p &

-1 otherwise.
Claim[Easy to compute Legendre symbol]

| :=zPY2mod p

Proof: If z=x2 mod p, then z(-1/2 =x2(>-1)2 =x(>-1) =1 mod p.

z quadratic non-residue =z(P-12 =g(2i*1)(p-1)2 =xi(p-1)+(p-1)/2 =g (p-1)/2,
Finally, g generator =g®-12 =(g(P-1)12 =(1)12 mod p =-1 since
it's one of the two (see below) roots of 1 and can'’t be 1.

Fact 2 : y=x? mod p has 0 or exactly 2 solutions when p is prime.
Proof: 3solution x =3at least 2 solutions x & —x=p-x=xg-12 mod p.
Suppose Janother z # x,-x mod p, z?=x? mod p & z?-x?= (z-x)(z+x)=0
mod p. Then, p|(z-x)(z+x). As p is prime, it must divide

either (z-x) or (z+x) =z=x mod p or z=-x mod p. Contradiction

There exists a PPT algorithm for solving
y=x?mod p
Solve for x as follows.
Suppose eq. is solvable, then zP-12=1 mod p.

Case 1: p=3 mod 4, (p-1)/2 = (4t+2)/2
z 2*1) =1 mod p
(z@*Nz =z modp
(z®1)2 =z mod p
output x=z *)mod p
Case 2: p= 1 mod 4, Harder, uses randomization, homework

Note: found both roots, x and —x=p-x.
For x=g' mod p, -x=g(-1)=g'gP-1/2 = gi*e-12mod p

v 1 hrincinal ecariare ronnot when i1 <(n-1\/2 ntherwice —v ic

Bit Security of g* mod p
Which information about x leaks from g* mod p, 0<x<p?
A: can compute Isb, ,(x) from g* mod p, by

computing the Legendre symbol of g* mod p.
[Isb, 4(x)=0 iff x is even iff g* mod p is a quadratic residue]

Which information, if any, about x is well hidden by g mod p?

Is there any bit of x which |S hard to predict better than 50-507?

Most Significant Bit (MSB)

Theorem[MSB is Hard Core Bit]:

Let msb,, ,(x) = 0 if x <(p-1)/2 and 1 otherwise.
if 3 PPTPRED, c>0 s.t.
Prob[PRED(g* mod p)=msb,, ,(x)] >72+1/n°

then can solve DLP in Z.*. p prime mod p bv PPT alao.

(P-1)12

Proof Warm up: y=g* mod p, 0<x<p

Suppose PRED(p,g,g*)=msb, 4 (x) for all x JO
pP- Z
g iy P x>(p-1)/2 x<(p-
Isb, 4(y) =1 if x is odd, 0 if x is even msglg(x):l ing,ggzo
(P-1)/2

IDEA: Will use ability to compute Isb +
the “oracle” PRED for msb to reconstruct x= b,...b, bit by bit.
Discrete-Logarithm(p.qg.y): Initialize z:=y(=g* mod p), n=|p|
Repeat from i=1 to n
1. Compute b;:=Isb, 4 z) [e.g. i=1,b4=0, z=gP-220 mod p
i=1,b,=1,z=g"-b21 mod p]

2. Ifb=0, then z=SQRT(z), else z=SQRT(zg™")

[But, there are 2 square roots:

SQRT(z) and -SQRT(z)=SQRT(z)g*-"2mod p. which one?]
3. If PRED(p,g,z)=1 then set z=zg(*-1/2 mod p

Proof Warm up: y=g* mod p, 0<x<p

Suppose PRED(p,g,g*)=msb, 4 (x) for all x JO
pP- Z
g iy P x>(p-1)/2 x<(p-
Isb, 4(y) =1 if x is odd, 0 if x is even ms;lg(x):l im:gggzo
(P-1)/2

IDEA: Will use ability to compute Isb +
the “oracle” PRED for msb to reconstruct x= b,...b, bit by bit.

Discrete-Logarithm(p.qg.y): Initialize z:=y(=g* mod p), n=|p|
Repeat from i=1 to n

1. Compute b;:=Isb, ,(z)

2. Ifb=0, then z=SQRT(z), else z=SQRT(zg™")

3. If PRED(p,g,z)=1 then set z=zg®-12 mod p

output x=b,...b,

Proof Warm up 2: y=g* mod p

Suppose Yy: Pr [PRED(p,g,y)=msb, 4 (x)]>1-1/2n

Then, vy: Prob[DiscreteLogarithm (p,g,y) succeeds]>=

Prob [PRED(p,g,) succeeds in computing msb,, ,
in every iteration of the algorithm]= (1-1/2n)"> 1/2

Algorithm Discrete-Logarithm’(p.qg.y)
Choose random 0O<r<p,
If Discrete-Logarithm(p, g, yg" mod p) succeeds,
then x= Discrete-Logarithm(p, g, yg" mod p) — r [=Xx+r-r]

Expected number of iterations =2

Coin Flip over the Phone

A and B want to flip a coin over the telephone, but
they don’ t trust each other

*l[dea 1: Alice flips a coin, tells Bob outcome... ®

*ldea 2: Let p prime, g generator for £,
— A flips a coin c;
If c=0, A chooses even 0<x <p
If c=1, A chooses odd 0<x<p

A sends g* mod p to B
— B guesses if x is <(p-1)/2 or >(p-1)/2

— A sends x to B. If guess is correct, then B wins, else A
wins

Summary: Hard vs. Easy

Z, = {x<pand gcd(x,p) =1} for n-bit prime p

Leta,bin Z.

operation Complexity N

a modp O(n?)

a+tb mod p O(n)

ab mod p O(n?) >
almodp O(n?

a mod p O(n3) casy
Square or non-Square O(n3) .

Solving Quadratic Equations mod p O(n3)
Lsb(x) from g mod p

DLP,CDH,DDH | HARD?

MSB -

Today

v 1. Bit Security of Modular
Exponentiation , prime modulos

2. Elliptic Logs over Elliptic Curves
3. Trapdoor Functions

4. 7. *, composite n

What about other cyclic
groups?

Elliptic Curve Cryptosystems

Elliptic Curves
Let a,b eF, be s.t. gcd(4a3+27b%,p)=1

An elliptic curve denoted as E_ , over finite field Z,
is the set of points (x,y) satisfying
y2=x3+ax +b mod p PLUS a special identity point

Under Addition of two points (see next slide) as group operation
E., is a commutative group.

Elliptic Curve Discrete Log Problem (EDLP):
Given two points Q and G on the curve E,
find integerms.t. Q=m G

Best Algorithm: exponential time O(2") for general curve.

OWF candidate: f(m, P)= mP [Koblitz, Miller]

P3

Y

/

Pr=P1 T P2

P1+ P2 = P4 where s = (yp; — ¥p>) / (Xp; — Xp;) mod p

Xps = 8> — Xp; — Xp, MOd p and yps = -yp; + $(Xp; — Xps) Mod p

Why consider this group?

Elliptic Log problem(EDLP) may be harder than the discrete
log problem(DLP)

Best algorithm known for EDLP is strictly exponential
(in contrast to DLP)

This means, we are able to use smaller groups with smaller
security parameter (and operation cost) for same time
Invested to invert

An advantage for wireless devices w. low memory/ power

Today

v 1. Bit Security of Modular
Exponentiation , prime modulos

v’ 2. Elliptic Logs over Elliptic Curves
3. Trapdoor Functions

4. 7. *, composite n

Trapdoor Functions

Trapdoor Functions

. Informally: A trapdoor function family is a
family of functions such that a randomly-
selected function is:

. Easy to compute
« Hard to invert (given just f(x))
« Easy to invert given some “trapdoor” t

x __ had __ f(x)

(given t)

Collections of Trapdoor Functions

Definition:
Let | be a set of indices, and D, a finite set. A
collection of trapdoor functions

IS a collection of one-way functions
F={fiD; = Di}i <
* Generation: 3 PPT algorithm G that on input

security parameter 1" selects a random f; eF
with |i|=n with short trapdoor information t;

* Trapdoor-ness: 3 PPT algorithm INV,
s.t INV(i,f: (x), t.) = x” such that f(x)=f(x")

Today

v 1. Bit Security of Modular
Exponentiation , prime modulos

v’ 2. Elliptic Logs over Elliptic Curves
v’ 3. Trapdoor Functions

4. 7. *, composite n

In Search of
Trapdoor Function Examples

Consider composite N

Composite N

Let N=pqg where p,q are large primes.

Recall Zy* ={0<x< N s.t gcd(x,N)=1}
IS a group under modular multiplication with

order |Zy*[= ¢(N) = (p-1)(g-1).

EX: N=15,
Z5*={1,2,4,7,8,11,13,14}
®(15) = 8

Note: Zy* may not be cyclic any more

Factoring

Factoring Algorithm:
Given N find divisor d s.t. d|N and 1<d<N

1/3 2/3
Best Known Algorithm: eOUogN) (loglogN)

FACTORING ASSUMPTION:
VPPT algorithms A,
Prob (A(N) outputs d|N s.t. d#1,N) < neg(n)

n-bit N=pq, for |p|x~|q|

Squaring mod N Function[Rabin]

Let N=pq, p.q primes
Let Rabing(x) =x2 mod N
Rabiny(x): Zy*—QRyN , QRy = quadratic residues
mod N

Properties of Squaring mod N

Let N=pq, p,q primes
Let Rabiny(x) =x? mod N

Rabiny(x): Zy" —QRy , QRy = quadratic residues
mod N

Observations to be proven:
« Rabinyis 4-1 function so not uniquely invertible

« Trapdoor: If factorization of N is known there exists a
PPT algorithm for computing square roots mod N

« Collection is One-Way if Factoring is hard: If only N is
known, computing square roots mod N is provably as
hard as factoring.

To prove what we need,
Let us Digress

Effective Chinese Remainder Theorem
(CRT)

Let N=pqg be product of two distinct primes.

Vzely map z —>(z mod p, z mod q).
This mapping is a one-to-one and onto.
Furthermore, it is polynomial time to compute and invert.

Namely, given (z1,z2) where z1 € £, & z2 € Z,
can compute unique z in Zy s.t
z=z1 mod p and z =z2 mod g

Chinese Remainder Theorem (CRT)

Proof: Let N=pq be product of two distinct primes.
Compute ¢4 and ¢, s.t.

c,=1 mod p and 0 mod g and

c,=1 mod g and 0 mod p

How?

c,. Compute b, s.t. byg=1 mod p and set c,=b,q, Check!
c,. Compute b, s.t. b,p =1 mod q and set c,=b,p. Check!
Call these the CRT coefficients

Given (z1,z2) where z1 € Z, and z2€Z,, set

z=Cc,z1 +c,z2

Claim: Then z=z1 mod p and z=z2 mod q.

General Version:
Chinese Remainder Theorem (CRT)

Let py ...py s.t. gcd(p;,p;) =1 and N=IIp,
and X;...X; be integers in Zp respectively.
Then there is a unique solution x mod N =TIp;
X= X1 mod py
X= X, mod p;

X= X, mod p;
and x can be easily computed from x;’s.

Example CRT
Given p=3, g=7, z,=2, z,=5, compute z < 21
Such that z=z, mod p and z=z, mod ¢
Compute CRT coefficients

c,=7, since7 mod3=1,7mod7 =0and
c,=15, since 15 mod 3=0, 15 mod 7 = 1

Given ¢, and ¢,, compute x as follows
X =C1Z1+ CoZo = 27 + 5*15 =89 mod 21 = 5 mod 21

Use CRT to show
zin QRy ifand only if
z,=zmod p in QR & z,=z mod q in QR
<Say z;mod p in QR, & z, mod g in QR
let x, s.t. x42=z, modp
and x, s.t. x,°=2z, mod g
set x= X4 Cq4+X,C, mod N
for ¢, =1 mod p and 0 mod g
and ¢, =1 modgand 0 mod p
define z=z, ¢, + z, C,
Claim: z=x2 mod N, therefore z in QR
=If z in QRy then z=x2 mod N
implies z=x? mod p (z mod p in QR,)
and z=x?mod q (i.e zmod qin QR,)

Use CRT to show
zin QRy ifand only if
z,=zmod p in QR & z,=z mod q in QR
<Say z;mod p in QR, & z, mod g in QR
let x, s.t. x42=z, modp
and x, s.t. x,°=2z, mod g
set x= X4 Cq4+X,C, mod N
for ¢, =1 mod p and 0 mod g
and ¢, =1 modgand 0 mod p
define z=z, ¢, + z, C,
Claim: z=x2 mod N, therefore z in QR
=If z in QRy then z=x2 mod N
implies z=x? mod p (z mod p in QR,)
and z=x?mod q (i.e zmod qin QR,)

Finished Digression

Can now establish the necessary
facts about the Rabin
trapdoor function candidate

1. Rabiny(x) is 4-to-1 Function

Let z=x2 mod N

Then 3 x4 s.t. X424 =z mod p and
X, S.t. X,2= z mod q

The following are the 4 distinct roots of z mod N:
X=X4Ci*+X,C, and-x=N-x mod N
X =-XqC4+X,C, and —x =N-x" mod N

for c, and c, CRT coefficients

Check !l

2. Trapdoor: Given Factorization of N,
Computing Square Roots mod N is easy

Let N=pg and z=x? mod N.

SQRT\(p,q,2):
— Compute x4 s.t. x42=zmod p
— Compute x, s.t. X,2=z mod q
— Compute ¢4 =1 mod p and 0 mod g (by CRT)
— Compute ¢, =1 mod g and 0 mod p (by CRT)
— Output x= x4 ¢4 + X, C,

Recall: can compute square roots mod primes

3.Without trapdoor, Computing Square
Roots mod N As Hard As Factoring N

Theorem: If 3 PPT A s.t. A(N,y)=x for y=x2 mod N, then
1 PPT algorithm to factor N.

Pf: 1. On input N, choose a random r in Z*.
2. Compute x=A(N,r2 mod N).

3. If x =+/-r mod N [with prob %], goto 1 [no use,
already know it]

Otherwise x?2 = r¢ mod N but x#r mod N
and x #r mod N
[which implies either x # r mod p or X # r mod q]
4. Output ged (N, x-r).
Claim: gcd(N, x-r) = p or q. Pf: Since x? — r2 =(x+r)(x-r)=0 mod
N, but x+r#0 mod N & x-r#0 mod N, either p|(x-r) or q|(x-r)
but not both, thus ged(x-r,N)=porqg QED

3'.Squaring is hard to invert on the average
as in the worst case

Theorem:
If 3 PPT A s.t. Prob[A(N,y)=x s.t.y=x2 mod N> ¢,
then 3 PPT A’ s.t. Prob[A(N)=d s.t d|N and dz1 N]> 1-§
and A’ runs in tfime poly(e?!, 81, log N)
Proof: Choose k s.t. 1/ek3
Repeat 2¢k times
1.choose a random r in ZN*.
2. Compute x=A(N,r2 mod N).
3.If x =+-r mod N (with prob 1/2), goto 1
Otherwise x% = r> mod N but xzr mod N &x z-r mod N
[which implies either x z r mod p or x z r mod q]
4. Output gcd (N, x-r).

Prob[A’ fails to factor Nk
Prlan iteration fails]#iterations ¢
ek <38

A Collection of Trapdoor Functions

Define Rabin = { Rabiny where N=pq, p.q
primes s.t.|p|=|q|=n}

Theorem: Under Factoring-assumption,

Rabin is a collection of trapdoor fUﬂCTion{Sj)Cietﬂiln‘tégers
Generation: Choose n-bit p,q and test 's prime)
for primality. If primes set N=pq, trapdory = {p.q}
Evaluation: Computing Rabiny(x) takes O(n?) time

Hard to Invert: by Factoring Assumption

Trapdoor-ness: Given N, p and q can compute square
roots mod N in O(n3)

Associated Problem:
Deciding Quadratic Residuosity
modulo Composites

« Given factorization of N, easy to tell if z is quadratic
residue

« Without factorization, don’ t know how to tell if z is
a square mod N

Z

N

Z

p

V4 .
E an extension of the

« Jacobi Symbol =
Legendre Symbol
— easy to compute without the factorization of N, but
— only gives partial information about if z is square

(i.e if Jacobi symbol of z is -1 then z is definitely not
square, but otherwise no information)

Quadratic Residuosity:
Primes vs. Composites

Is z=x2 mod N

Lehmer: | am not a gambling man, wouldn’t guess
unless z is small (perfect squares)

Question: is it hard for a random z €Z* ?

Quadratic Residuosity Assumption (QRA)

Let QR\(z) 0 if z quadratic residue mod N
{ } 1 if z is quadratic non-residue mod N
—|=1

Theorem (QR hard to predict if hard at all per n):

Let A be ppt s.t. Probn=1[A(z,n) = QR\(z)]> 1/2+¢,
then IPPT B V zin Z,* Prob[B(z,n)=QRy]>1-6

(B is Monte Carlo with runtime poly(1/¢,1/3,|p|)

Quadratic Residues:
Random Self Reducability

Theorem|GM]..
It 3 PPT A to decide quadratic residuosity with prob,> 2+¢ (over y’s)
then 3 PPT B to decide quadratic residuosity Vy €Zy* w.p >1-0
A’ runs poly(A, €71, 871).
Ly

Break into random instances
rl l "1 ' 13

A solves random 1nstances

Better tl}an 1/2+e¢

Combine

y is quadratic residue or not

Corollary [Worst Case to Average]:
Fix n. QR 1s hard for worst case y=its hard to for the average y

Quadratic Residuosity Assumption (QRA)

Let QRN(2)={0 if z quadratic residue mod N
{JZ]\J i 1if z is quadratic non-residue mod N

QRA: VPPT algo A, V n sufficiently large,
prob (A(N,z) ﬁf,\,(z) > non-neg (n)

over N, z where | £

Quadratic Residuosoity

is very Versatile

* Encryption:
— Public Key Semantically secure
— |IBE [cocks]
— Circular Security[BR]
— Leakage Resilience [BR]

* Protocols:
— Homomorphism : PIR [KO]

GO 8[6 quadratic residuosity cryptography

Web Images Videos ~ News Shopping More~ Search tools

Page 10 of about 119,000 results (0.57 seconds)

P eryptography, statistics and pseudorandomness. ii - Cwi
oai.cwi.nlloai/asset/1376/1376A.pdf ~ Centrum Wiskunde & Informatica

by S BRANDS - Cited by 8 - Related articles

contained an introduction to the cryptographic theory of random number ... an x is
called a quadratic residue modulo m, and the set of all quadratic residues.

The distribution of quadratic residues and non-residues in ...
www.degruyter.com/view/jl...fmc-2013-0001.xml ~ Walter de Gruyter

by B Justus - 2014 - Related articles

Jan 14, 2014 - The paper also discusses cryptographic implications of the results
obtained. Keywords: Quadratic residuosity problem; Goldwasser-Micali

The Decision Diffie-Hellman Assumption and the Quadratic ...
earch.ieice. in/pdf_link.php?category v

by T SAITO - 2001 - Cited by 5 - Related articles

PAPER Special Section on Cryptography and Information Security. The Decision

Definition 2.1: The Quadratic Residuosity assump- tion with respect to G is ..

P71 Primeless Factoring-Based Cryptography - Infoscience
infoscience.epfl.ch/.../primeles... ~ Ecole Polytechnique Fédérale de Lausanne
by SM Bogos - 2013 - Related articles

The GM cryptosystem is semantically secure under the assumption that the quadratic
residuosity. (QR) problem modulo a composite integer n is hard. As in the .

PPof1 Pyblic-key Cryptography Theory and Practice - Departme...

cse.iitkgp.ac.in/- KC/PKCslidesChapter5-N .pdf ~
by A Das - Cited by 18 - Related articles

— Interactive and Non-Interactive Zero Knowledge |GMR,

BFM]

* First ZK protocol

©

Trapdoor Permutations

|s there a Collection of Trapdoor
Permutations equivalent to factoring

Definition: Let | be a set of indices, and D; a finite
set. A collection of trapdoor permutations is a
collection of one way permutations
F={fiD; = D<)

« Generation: 3 PPT algorithm G that on input

security parameter 1" selects a random f; eF
with |i|=n with short trapdoor information t;

* Trapdoor-ness: 3 PPT algorithm INV,
s.t INV(f (x),) = x such that f(x)=f(x")

Trapdoor Permutation Equivalent
to Factoring [Blum-Williams]

Let N=pq, p,q primes s.t. p=g=3 mod 4
Define BWy: QRg— QRy as BWy(x)=x2 mod N

Claim: When p=g=3 mod 4, then each quadratic residue

mod N has a unique square root which

itself is a quadratic residue mod N

Proof: (-1/p)=(-1/q)=-1 so -1 is a non-square.

So say root x= cX4+C,X, IS a square, then x, is a square mod p

and X, is a square mod q, which means that —x, and -x, are
non-square mod p and g and thus all other roots of x2 mod N

are non-squares
Conclusion: BW\ is a permutation over the squares mod N

Was the first example of
Trapdoor permutation

Rivest-Shamir-Adelman
Turing Award

RSA Math

Let ON=pq for p,q large prime and ¢(N) =(p-1)(g-1)
Let e <¢(N) such that gcd(e,d(N))=1.
Ex: N=3*7=21, e=5, gcd(5,12)-1

Claim: Let e <¢p(N) and d s.t. de=1 mod ¢(N).
vx in Z,*, (x emod N)d mod N = x edmodé(Mmod N = x mod N

Define RSA \o(x) =x¢mod N Ex: 2°mod 21 =11
Claim:. RSAN . Z* = Z* is a permutation

RSA 1 .(y) = y9mod n :Zy* = Z* where e,d <¢(N)
A VTN de=1 mod o(N)

Proof: (RSA ,.(x))d = x¢d mod N =x 1med ¢(N) mod n = x

How hard is to generate
N, eand d

» Choose p, g s.t. |p|l=1q| and set N=pq
* Choose e at random s.t. gcd(e, ¢(n))=1
» Compute d s.t. ed=1 mod ¢(n) using
Euclidean-Gcd(e,p(n)) to get d,c s.t.
de+cd(n)=1, and thus de=1 mod ¢(n)

How hard is to invert RSA given
e and just N?

Claim: If can compute d, given N and e s.t.
ed=1 mod ¢(n), then can factor N
Proof: Homework

Does this mean that inverting RSA is as hard as
Factoring?

Not necessarily. It may be possible to invert
RSA without learning d and without factoring.

RSA and Factoring Integers

* Fact 1: Given N, e, p, and q, its easy to
compute ¢(N) and d=e! mod ¢(N).

* Fact 2: Given only N,e, computing ¢(N)
is as hard as factoring N

* Fact 3: Given only N,e, computing d is
as hard as factoring N

» Conclusions:

- If can factor, can invert RSA

- But, is Inverting (breaking) RSA as hard
as factoring? MAJOR OPEN PROBLEM

RSA Assumption

VPPT algorithms A

Prob(A(N,e,x® mod N) = x) < neg (n)
(over n-bit N=pq,

p.q primes of equal size

And e s.t. gcd(e,0(N))=1 and xe Z*)

Strong RSA Assumption
VPPT algorithms A

Prob(A(N,y)=(e x) s.t. y=x¢ mod N) < neg (n)
(over n-bit N=pgq,

p,q primes of equal size,

ye Z*)

If RSA is hard to invert in the worst case,
it is hard to invert with non-neg probability

Claim: Fix N, 1<e<d(n).
If 3 PPT B s.t. prob,(B(N,e,RSAy .(x))=x)> non-neg(n)
then 3 PPT algorithm A to invert RSAy . (x) for all x.

Proof:

Given y= x¢ mod N, choose random r in Zy* and map y

to z=y re mod N. Now, run B(z). If successful, i.e B(z)= xr mod N,
output x= B(z)/r mod N, else choose another r.

In expected 1/¢ trials will be successful.

QED

RSA Collection of Trapdoor Functions

Define RSA = { RSAWN . } ne Where n=pq, for p,q primes
s.t.Ipl=1ql, (e.0(N))=1}

Theorem: Under RSA assumption,
RSA is a collection of trapdoor functions

Generation:

1. Choose at random n-bit p,q and test them for primality. If
prime, set N=pq

2. Choose odd e, check that gcd(e,d(N))=1

3. Compute d=e! mod ¢(N). d is the trapdoory,,
Evaluation: computing RSAy .(x) takes O(n3) time
Hard to Invert: by RSA-Assumption Takes

| o)
Trapdoor: Given N, e, and d, x= (RSAy .(x))d mod N |

Trapdoor Predicates

Trapdoor Predicates

A trapdoor predicate collection isa collection of
Boolean functions {B;: {0,1}* = {0,1}}; s.t

— Easy to Generate Can generate (B;,t)) where ti is a trapdoor
information

— Sample: For b €{0,1}, there exists PPT algorithm A which
outputs random s.t. B,(x)=b

— Hard to Guess: For all PPT algorithms P, prob
(P(x)=B;(x)) < ¥2 +non-neg(n)

— Trapdoorness: there exist poly time algorithm Inv, s.t.
Inv(t;,l, x)=B,(x) for all x,i

Where can we find trapdoor predicates?

Under QRA, QR\(z) is a trapdoor predicate
for N=pq for p=q=3 (mod 4)

Easy to Sample: N=pq for p=q=3 (mod 4)

+ Easy to sample in squares = x> mod N

+ Easy to sample in non-squares
with Jacobi symbol 1 = -x* mod N

* Where else can we find trapdoor
predicates

Trapdoor Functions
=

Trapdoor Predicates

Sample: Given b, choose x,r at random
s.t. <x,r>=b and output f’ (x,r)=f(x),r

